1
|
Stich TA. Characterization of Paramagnetic Iron-Sulfur Clusters Using Electron Paramagnetic Resonance Spectroscopy. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2353:259-280. [PMID: 34292554 DOI: 10.1007/978-1-0716-1605-5_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Continuous-wave (CW) electron paramagnetic resonance (EPR) spectroscopy is a powerful ally in characterizing the multitude of redox-active iron-sulfur cluster-containing ([Fe-S]) species present in biological samples. The technique detects only those clusters that are paramagnetic-having a nonzero total electron spin (S > 0)-thus, it can discriminate between clusters in different oxidation states. The low-temperature CW-EPR spectrum of an [Fe-S] yields the three magnetic g-values that serve as a fingerprint of its electronic structure. This chapter briefly describes the underlying theory that defines this electronic structure and provides a recipe for the acquisition and analysis of EPR spectra of [Fe-S] proteins.
Collapse
Affiliation(s)
- Troy A Stich
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, USA.
| |
Collapse
|
2
|
Colaneri MJ, Vitali J. Probing Axial Water Bound to Copper in Tutton Salt Using Single Crystal 17O-ESEEM Spectroscopy. J Phys Chem A 2018; 122:6214-6224. [PMID: 29989412 DOI: 10.1021/acs.jpca.8b04075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Electron spin-echo envelope modulation (ESEEM) signals attributed to axial water bound to Cu2+ have been detected and analyzed in Cu(II)-doped 17O-water-enriched potassium zinc sulfate hexahydrate (Tutton salt) crystals. The magnetic field orientation dependences of low frequency modulations were measured to fit hyperfine and quadrupole coupling tensors of a 17O ( I = 5/2) nucleus. The hyperfine tensor ( A xx, A yy, A zz: 0.13, 0.23, -3.81 MHz) exhibits almost axial symmetry with the largest value directed normal to the metal equatorial plane in the host structure. Comparisons with quantum chemical calculations position this nucleus about 2.3 Å from the copper. The isotropic coupling (-1.15 MHz) is small and reflects the weak axial water interaction with a dx2-y2 unshared orbital of copper. The 17O-water quadrupole interaction parameters ( e2 qQ/ h = 6.4 MHz and η = 0.93) are close to the average of those found in a variety of solid hydrates. In addition, the coupling tensor directions correlate very closely with the O8 water geometry, with the maximum quadrupole direction 3° from the water plane normal, and its minimum coupling about 2° from the H-H direction. In almost all previous magnetic resonance 17O-water studies, the quadrupole tensor orientation was based on theoretical considerations. This work represents one of the few experimental confirmations of its principal axis frame. When Cu2+ dopes into the Tutton salt, a Jahn-Teller distortion interchanges the relative long and intermediate metal O7 and O8 bond lengths of the zinc host. Therefore, only those unit cells containing the impurity conform to the pure copper Tutton structure. This study provides further support for this model. Moreover, coupling interactions from distant H217O such as in the present case have important implications in studies of copper enzymes and proteins where substrates have been proposed to displace weakly bound water in the active site.
Collapse
Affiliation(s)
- Michael J Colaneri
- Department of Chemistry and Physics , State University of New York at Old Westbury , Old Westbury , New York 11568 , United States
| | - Jacqueline Vitali
- Department of Physics and Department of Biological, Geological and Environmental Sciences , Cleveland State University , Cleveland , Ohio 44115 , United States
| |
Collapse
|
3
|
Albertini M, Berto P, Vallese F, Di Valentin M, Costantini P, Carbonera D. Probing the Solvent Accessibility of the [4Fe-4S] Cluster of the Hydrogenase Maturation Protein HydF from Thermotoga neapolitana by HYSCORE and 3p-ESEEM. J Phys Chem B 2015; 119:13680-9. [PMID: 25978307 DOI: 10.1021/acs.jpcb.5b03110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The catalytic site of [FeFe]-hydrogenase, the "H-cluster", composed of a [4Fe-4S] unit connected by a cysteinyl residue to a [2Fe] center coordinated by three CO, two CN(-), and a bridging dithiolate, is assembled in a complex maturation pathway, at present not fully characterized, involving three conserved proteins, HydG, HydE, and HydF. HydF is a complex enzyme, which is thought to act as a scaffold and carrier for the [2Fe] subunit of the H-cluster. This maturase protein contains itself a [4Fe-4S] cluster binding site, with three conserved cysteine residues and a noncysteinyl fourth ligand. In this work, we have exploited 3p-ESEEM and HYSCORE spectroscopies to get insight into the structure and the chemical environment of the [4Fe-4S] cluster of HydF from the hyperthermophilic organism Thermotoga neapolitana. The nature of the fourth ligand and the solvent accessibility of the active site comprising the [4Fe-4S] cluster are discussed on the basis of the spectroscopic results obtained upon H/D exchange. We propose that the noncysteinyl ligated Fe atom of the [4Fe-4S] cluster is the site where the [2Fe] subcluster precursor is anchored and finally processed to be delivered to the hydrogenase (HydA).
Collapse
Affiliation(s)
- Marco Albertini
- Department of Chemical Sciences, University of Padova , Via F. Marzolo 1, 35131 Padova, Italy
| | - Paola Berto
- Department of Biomedical Sciences, University of Padova , Viale G. Colombo 3, 35131 Padova, Italy
| | - Francesca Vallese
- Department of Biomedical Sciences, University of Padova , Viale G. Colombo 3, 35131 Padova, Italy
| | - Marilena Di Valentin
- Department of Chemical Sciences, University of Padova , Via F. Marzolo 1, 35131 Padova, Italy
| | - Paola Costantini
- Department of Biology, University of Padova , Viale G. Colombo 3, 35131 Padova, Italy
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova , Via F. Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
4
|
Cutsail GE, Telser J, Hoffman BM. Advanced paramagnetic resonance spectroscopies of iron-sulfur proteins: Electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1370-94. [PMID: 25686535 DOI: 10.1016/j.bbamcr.2015.01.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 12/20/2022]
Abstract
The advanced electron paramagnetic resonance (EPR) techniques, electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM) spectroscopies, provide unique insights into the structure, coordination chemistry, and biochemical mechanism of nature's widely distributed iron-sulfur cluster (FeS) proteins. This review describes the ENDOR and ESEEM techniques and then provides a series of case studies on their application to a wide variety of FeS proteins including ferredoxins, nitrogenase, and radical SAM enzymes. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- George E Cutsail
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, IL 60605, USA
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
5
|
Li J, Wang K, Smirnova TI, Khade RL, Zhang Y, Oldfield E. Isoprenoid Biosynthesis: Ferraoxetane or Allyl Anion Mechanism for IspH Catalysis? Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Li J, Wang K, Smirnova TI, Khade RL, Zhang Y, Oldfield E. Isoprenoid biosynthesis: ferraoxetane or allyl anion mechanism for IspH catalysis? Angew Chem Int Ed Engl 2013; 52:6522-5. [PMID: 23649534 PMCID: PMC3821072 DOI: 10.1002/anie.201302343] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Jikun Li
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 607 South Mathews Avenue, Urbana, IL 61801 (USA)
| | - Ke Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801 (USA), Fax: (+1)217-244-0997
| | - Tatyana I. Smirnova
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695 (USA)
| | - Rahul L. Khade
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken NJ 07030 (USA)
| | - Yong Zhang
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken NJ 07030 (USA)
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801 (USA), Fax: (+1)217-244-0997
| |
Collapse
|
7
|
Wang W, Wang K, Span I, Jauch J, Bacher A, Groll M, Oldfield E. Are free radicals involved in IspH catalysis? An EPR and crystallographic investigation. J Am Chem Soc 2012; 134:11225-34. [PMID: 22687151 DOI: 10.1021/ja303445z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The [4Fe-4S] protein IspH in the methylerythritol phosphate isoprenoid biosynthesis pathway is an important anti-infective drug target, but its mechanism of action is still the subject of debate. Here, by using electron paramagnetic resonance (EPR) spectroscopy and (2)H, (17)O, and (57)Fe isotopic labeling, we have characterized and assigned two key reaction intermediates in IspH catalysis. The results are consistent with the bioorganometallic mechanism proposed earlier, and the mechanism is proposed to have similarities to that of ferredoxin, thioredoxin reductase, in that one electron is transferred to the [4Fe-4S](2+) cluster, which then performs a formal two-electron reduction of its substrate, generating an oxidized high potential iron-sulfur protein (HiPIP)-like intermediate. The two paramagnetic reaction intermediates observed correspond to the two intermediates proposed in the bioorganometallic mechanism: the early π-complex in which the substrate's 3-CH(2)OH group has rotated away from the reduced iron-sulfur cluster, and the next, η(3)-allyl complex formed after dehydroxylation. No free radical intermediates are observed, and the two paramagnetic intermediates observed do not fit in a Birch reduction-like or ferraoxetane mechanism. Additionally, we show by using EPR spectroscopy and X-ray crystallography that two substrate analogues (4 and 5) follow the same reaction mechanism.
Collapse
Affiliation(s)
- Weixue Wang
- Center for Biophysics and Computational Biology, 607 South Mathews Avenue, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Matasova LV, Popova TN. Aconitate hydratase of mammals under oxidative stress. BIOCHEMISTRY. BIOKHIMIIA 2008; 73:957-64. [PMID: 18976211 PMCID: PMC7087844 DOI: 10.1134/s0006297908090010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 12/20/2007] [Indexed: 12/14/2022]
Abstract
Data on the structure, functions, regulation of activity, and expression of cytosolic and mitochondrial aconitate hydratase isoenzymes of mammals are reviewed. The role of aconitate hydratase and structurally similar iron-regulatory protein in maintenance of homeostasis of cell iron is described. Information on modifications of the aconitate hydratase molecule and changes in expression under oxidative stress is generalized. The role of aconitate hydratase in the pathogenesis of some diseases is considered.
Collapse
Affiliation(s)
- L V Matasova
- Voronezh State University, Voronezh, 394006, Russia.
| | | |
Collapse
|
9
|
|
10
|
Baute D, Goldfarb D. The 17O Hyperfine Interaction in V17O(H217O)52+ and Mn(H217O)62+ Determined by High Field ENDOR Aided by DFT Calculations. J Phys Chem A 2005; 109:7865-71. [PMID: 16834167 DOI: 10.1021/jp052132q] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 17O hyperfine interaction of the water ligands and the V=O oxygen in the vanadyl aquo complex and of the water ligands in the Mn2+ aquo complex in a frozen solution were determined by W-band (95 GHz) electron-nuclear double resonance (ENDOR). Orientation selective ENDOR spectra of the vanadyl complex exhibited two distinct signals assigned to the vanadyl oxygen and the water ligands. The assignment of the signals was done based on the orientation of the principal axis system of the hyperfine interaction and through comparison with the hyperfine interaction predicted by DFT calculations. The latter showed good agreement with the experimental values thus providing clear evidence that the vanadyl oxygen is exchangeable. The interaction of the vanadyl oxygen, especially its anisotropic part, was significantly larger than that of the water oxygens due to a relatively large negative spin density on the oxygen p orbitals. The 17O hyperfine interaction of the water ligand in the Mn2+ complex was found to be similar to that of the water ligand in the vanadyl complex and was in good agreement with earlier single-crystal data. Here, due to the large thermal polarization, it was also possible to determine the absolute sign of the hyperfine coupling by selecting different EPR transitions.
Collapse
Affiliation(s)
- Debbie Baute
- Department of Chemical Physics, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
11
|
Cicchillo RM, Baker MA, Schnitzer EJ, Newman EB, Krebs C, Booker SJ. Escherichia coli L-Serine Deaminase Requires a [4Fe-4S] Cluster in Catalysis. J Biol Chem 2004; 279:32418-25. [PMID: 15155761 DOI: 10.1074/jbc.m404381200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
L-Serine deaminases catalyze the deamination of L-serine, producing pyruvate and ammonia. Two families of these proteins have been described and are delineated by the cofactor that each employs in catalysis. These are the pyridoxal 5'-phosphate-dependent deaminases and the deaminases that are activated in vitro by iron and dithiothreitol. In contrast to the enzymes that employ pyridoxal 5'-phosphate, detailed physical and mechanistic characterization of the iron-dependent deaminases is limited, primarily because of their extreme instability. We report here the characterization of L-serine deaminase from Escherichia coli, which is the product of the sdaA gene. When purified anaerobically, the isolated protein contains 1.86 +/- 0.46 eq of iron and 0.670 +/- 0.019 eq of sulfide per polypeptide and displays a UV-visible spectrum that is consistent with a [4Fe-4S] cluster. Reconstitution of the protein with iron and sulfide generates considerably more of the cluster, and treatment of the reconstituted protein with dithionite gives rise to an axial EPR spectrum, displaying g axially = 2.03 and g radially = 1.93. Mössbauer spectra of the (57)Fe-reconstituted protein reveal that the majority of the iron is in the form of [4Fe-4S](2+) clusters, as evidenced by the typical Mössbauer parameters-isomer shift, delta = 0.47 mm/s, quadrupole splitting of Delta E(Q) = 1.14 mm/s, and a diamagnetic (S = 0) ground state. Treatment of the dithionite-reduced protein with L-serine results in a slight broadening of the feature at g = 2.03 in the EPR spectrum of the protein, and a dramatic loss in signal intensity, suggesting that the amino acid interacts directly with the cluster.
Collapse
Affiliation(s)
- Robert M Cicchillo
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA
| | | | | | | | | | | |
Collapse
|
12
|
Plank DW, Gengenbach BG, Gronwald JW. Effect of iron on activity of soybean multi-subunit acetyl-coenzyme A carboxylase. PHYSIOLOGIA PLANTARUM 2001; 112:183-194. [PMID: 11454223 DOI: 10.1034/j.1399-3054.2001.1120206.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Multi-subunit acetyl-coenzyme A carboxylase (MS-ACCase; EC 6.4.1.2) isolated from soybean chloroplasts is a labile enzyme that loses activity during purification. We found that incubating the chloroplast stromal fraction under anaerobic conditions or in the presence of 5 mM FeSO4 stimulated ACCase (acetyl-CoA-->malonyl-CoA) and carboxyltransferase (malonyl-CoA-->acetyl-CoA) activity. Fe-stimulation of activity was associated with 59Fe binding to a stromal protein fraction. ACCase and carboxyltransferase activities measured in the stromal protein fraction containing bound 59Fe were 2-fold and 6-fold greater, respectively, than the control (stromal fraction not pretreated with FeSO4). Superose 6 gel filtration chromatography indicated 59Fe comigrated with stromal protein of approximately 180 kDa that exhibited carboxyltransferase activity, but lacked ACCase activity. Anion exchange (Mono-Q) chromatography of the Superose 6 fraction yielded a protein peak that was enriched in carboxyltransferase activity and contained protein-bound 59Fe. Denaturing gels of the Mono-Q fraction indicated that the 180-kDa protein was composed of a 56-kDa subunit that was bound by an antibody raised against a synthetic beta-carboxyltransferase (beta-CTase) peptide. Incubation of the Mono-Q carboxyltransferase fraction with increasing concentrations of iron at a fixed substrate concentration resulted in increased initial velocities that fit well to a single rectangular three parameter hyperbola (v=vo+Vmax[FeSO4]/Km+[FeSO4]) consistent with iron functioning as a bound activator of catalysis. UV/Vis spectroscopy of the partially purified fraction before and after iron incubation yielded spectra consistent with a protein-bound metal cluster. These results suggest that the beta-CTase subunit of MS-ACCase in soybean chloroplasts is an iron-containing enzyme, which may in part explain its labile nature.
Collapse
Affiliation(s)
- David W. Plank
- Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA Plant Science Research Unit, USDA-ARS, St. Paul, MN 55108, USA
| | | | | |
Collapse
|
13
|
Ruzicka FJ, Lieder KW, Frey PA. Lysine 2,3-aminomutase from Clostridium subterminale SB4: mass spectral characterization of cyanogen bromide-treated peptides and cloning, sequencing, and expression of the gene kamA in Escherichia coli. J Bacteriol 2000; 182:469-76. [PMID: 10629195 PMCID: PMC94298 DOI: 10.1128/jb.182.2.469-476.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lysine 2,3-aminomutase (KAM, EC 5.4.3.2.) catalyzes the interconversion of L-lysine and L-beta-lysine, the first step in lysine degradation in Clostridium subterminale SB4. KAM requires S-adenosylmethionine (SAM), which mediates hydrogen transfer in a mechanism analogous to adenosylcobalamin-dependent reactions. KAM also contains an iron-sulfur cluster and requires pyridoxal 5'-phosphate (PLP) for activity. In the present work, we report the cloning and nucleotide sequencing of the gene kamA for C. subterminale SB4 KAM and conditions for its expression in Escherichia coli. The cyanogen bromide peptides were isolated and characterized by mass spectral analysis and, for selected peptides, amino acid and N-terminal amino acid sequence analysis. PCR was performed with degenerate oligonucleotide primers and C. subterminale SB4 chromosomal DNA to produce a portion of kamA containing 1,029 base pairs of the gene. The complete gene was obtained from a genomic library of C. subterminale SB4 chromosomal DNA by use of DNA probe analysis based on the 1,029-base pair fragment. The full-length gene consisted of 1,251 base pairs specifying a protein of 47,030 Da, in reasonable agreement with 47, 173 Da obtained by electrospray mass spectrometry of the purified enzyme. N- and C-terminal amino acid analysis of KAM and its cyanogen bromide peptides firmly correlated its amino acid sequence with the nucleotide sequence of kamA. A survey of bacterial genome databases identified seven homologs with 31 to 72% sequence identity to KAM, none of which were known enzymes. An E. coli expression system consisting of pET 23a(+) plus kamA yielded unsatisfactory expression and bacterial growth. Codon usage in kamA includes the use of AGA for all 29 arginine residues. AGA is rarely used in E. coli, and arginine clusters at positions 4 and 5, 25 and 27, and 134, 135, and 136 apparently compound the barrier to expression. Coexpression of E. coli argU dramatically enhanced both cell growth and expression of KAM. Purified recombinant KAM is equivalent to that purified from C. subterminale SB4.
Collapse
Affiliation(s)
- F J Ruzicka
- Institute for Enzyme Research, The Graduate School, Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | | | | |
Collapse
|
14
|
Abstract
Aconitases are important cellular targets of nitric oxide (NO.) toxicity, and NO.-derived species, rather than NO. per se, have been proposed to mediate their inactivation. NO.-mediated inactivation of the Escherichia coli aconitase and the porcine mitochondrial aconitase was investigated. In E. coli, aconitase activity decreased by approximately 70% during a 2-h exposure to an atmosphere containing 120 ppm NO. in N2. The NO.-inactivated aconitase reactivated poorly in E. coli under anaerobic or aerobic conditions. Elevated superoxide dismutase activity did not affect the aerobic inactivation of aconitase by NO., thus indicating a limited role of the NO.- and superoxide-derived species peroxynitrite. Glutathione-deficient and glutathione-containing E. coli were comparably sensitive to NO.-mediated aconitase inactivation, thus excluding the participation of S-nitrosoglutathione or more oxidizing NO.-derived species. NO. progressively decreased aconitase activity in extracts in the presence of substrates, and inactivation was greatest at an acidic pH with cis-aconitate. The porcine mitochondrial aconitase was sensitive to NO. when exposed at pH 6.5, but not at pH 7.5, and irreversible inactivation occurred during catalysis. The requirement of an acidic pH or substrates for sensitivity may explain the reported resistance of aconitases to NO. in vitro (Castro, L., Rodriguez, M., and Radi, R. (1994) J. Biol. Chem. 269, 29409-29415; Hausladen, A., and Fridovich, I. (1994) J. Biol. Chem. 269, 29405-29408). An S-nitrosation of the aconitase [4Fe-4S] center catalyzed by the solvent-exposed electron withdrawing iron atom (Fea) is proposed.
Collapse
Affiliation(s)
- P R Gardner
- Division of Critical Care, Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
15
|
Beinert H, Kennedy MC, Stout CD. Aconitase as Ironminus signSulfur Protein, Enzyme, and Iron-Regulatory Protein. Chem Rev 1996; 96:2335-2374. [PMID: 11848830 DOI: 10.1021/cr950040z] [Citation(s) in RCA: 428] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Helmut Beinert
- Institute for Enzyme Research, Graduate School, and Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, Wisconsin 53705, Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | | | | |
Collapse
|
16
|
Affiliation(s)
- J A Kovacs
- Department of Chemistry, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|
17
|
Bennett B, Gruer MJ, Guest JR, Thomson AJ. Spectroscopic characterisation of an aconitase (AcnA) of Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 233:317-26. [PMID: 7588761 DOI: 10.1111/j.1432-1033.1995.317_1.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A spectroscopic study of an aconitase, AcnA, from Escherichia coli is presented. The amino acid sequence of AcnA has 53% identity with mammalian cytosolic aconitase (c-aconitase) which is the translational regulator known as iron regulatory factor (IRF). In the [3Fe-4S](+)-containing, inactive state, AcnA displays an EPR signal which is not unlike the corresponding signal from mammalian mitochondrial aconitase (m-aconitase) but is even more similar to the signal from c-aconitase. This is perhaps related to the greater similarity of the AcnA amino acid sequence with c-aconitase. Magnetic circular dichroism (MCD) spectroscopy has revealed that the electronic structure of the [3Fe-4S] cluster of AcnA must be similar to, but not identical to that of m-aconitase. Whilst the [Fe-4S] clusters from both of these enzymes display some features in their MCD spectra common to [3Fe-4S] clusters in general, their spectra overall are unique and indicate that the Fea atom of the [4Fe-4S] form is not the only unusual feature of the [Fe-S] clusters of aconitases. Active [4Fe-4S]-containing AcnA can be reduced to yield an EPR signal due to a [4Fe-4S]+ cluster which is indistinguishable from the signals from the [4Fe-4S]+ cluster in the mammalian enzymes. However, in contrast to the mammalian enzymes, the EPR signals of the cluster in AcnA are not significantly perturbed upon the addition of substrate. Furthermore, the catalytic activity of [Fe-4S](2+)-containing AcnA is fivefold higher than that of m-aconitase. The mechanistic implications of these data are discussed. A novel S = 1/2 EPR signal with g approximately 2 was observed in AcnA upon treatment with EDTA. The species giving rise to this signal is proposed to be an intermediate in cluster deconstruction.
Collapse
Affiliation(s)
- B Bennett
- School of Chemical Sciences, University of East Anglia, Norwich, UK
| | | | | | | |
Collapse
|
18
|
Peyret P, Perez P, Alric M. Structure, genomic organization, and expression of the Arabidopsis thaliana aconitase gene. Plant aconitase show significant homology with mammalian iron-responsive element-binding protein. J Biol Chem 1995; 270:8131-7. [PMID: 7713917 DOI: 10.1074/jbc.270.14.8131] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We report the purification of the unstable aconitase enzyme from melon seeds and the NH2-terminal amino acid sequence determination. Antibodies raised against this protein enabled the first isolation and characterization of cDNA encoding aconitase in plants. A full-length cDNA clone of 3210 base pairs was isolated from a library of cDNA clones derived from immature pods of Arabidopsis thaliana. The amino acid sequence deduced from the open reading frame includes the sequence obtained by direct sequencing of the NH2 terminus of the purified enzyme. Genomic clones of the aconitase gene were isolated, and comparison of the cDNA and genomic sequences reveals that the coding sequence is divided among 20 exons. There are five putative sites for transcription initiation. The aconitase gene is constitutively expressed, but at a low level, during most developmental stages, with a dramatic increase during seed and pollen maturation and during germination. Surprisingly, plant aconitases have reasonably high homology to binding proteins for iron-responsive elements from mammalian species, opening the possibility that a similar type of translational regulation occurs in plants.
Collapse
Affiliation(s)
- P Peyret
- Laboratoire Biocem Groupe Limagrain, Aubière, France
| | | | | |
Collapse
|
19
|
Flint D, Tuminello J, Emptage M. The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)41538-4] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Flint D, Emptage M, Finnegan M, Fu W, Johnson M. The role and properties of the iron-sulfur cluster in Escherichia coli dihydroxy-acid dehydratase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82394-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Belinskii M. Spin coupling model for tetrameric iron clusters in ferredoxins. I. Theory, exchange levels, g-factors. Chem Phys 1993. [DOI: 10.1016/0301-0104(93)80116-q] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Belinskii M. Spin coupling model for tetrameric iron clusters in ferredoxins. II. Hyperfine interactions, magnetism, high-spin systems. Chem Phys 1993. [DOI: 10.1016/0301-0104(93)80117-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Metalloenzyme Active-Site Structure and Function through Multifrequency CW and Pulsed ENDOR. EMR OF PARAMAGNETIC MOLECULES 1993. [DOI: 10.1007/978-1-4615-2892-0_4] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
|
25
|
|
26
|
Lauble H, Kennedy MC, Beinert H, Stout CD. Crystal structures of aconitase with isocitrate and nitroisocitrate bound. Biochemistry 1992; 31:2735-48. [PMID: 1547214 DOI: 10.1021/bi00125a014] [Citation(s) in RCA: 185] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The crystal structures of mitochondrial aconitase with isocitrate and nitroisocitrate bound have been solved and refined to R factors of 0.179 and 0.161, respectively, for all observed data in the range 8.0-2.1 A. Porcine heart enzyme was used for determining the structure with isocitrate bound. The presence of isocitrate in the crystals was corroborated by Mössbauer spectroscopy. Bovine heart enzyme was used for determining the structure with the reaction intermediate analogue nitroisocitrate bound. The inhibitor binds to the enzyme in a manner virtually identical to that of isocitrate. Both compounds bind to the unique Fe atom of the [4Fe-4S] cluster via a hydroxyl oxygen and one carboxyl oxygen. A H2O molecule is also bound, making Fe six-coordinate. The unique Fe is pulled away approximately 0.2 A from the corner of the cubane compared to the position it would occupy in a symmetrically ligated [4Fe-4S] cluster. At least 23 residues from all four domains of aconitase contribute to the active site. These residues participate in substrate recognition (Arg447, Arg452, Arg580, Arg644, Gln72, Ser166, Ser643), cluster ligation and interaction (Cys358, Cys421, Cys424, Asn258, Asn446), and hydrogen bonds supporting active site side chains (Ala74, Asp568, Ser571, Thr567). Residues implicated in catalysis are Ser642 and three histidine-carboxylate pairs (Asp100-His101, Asp165-His147, Glu262-His167). The base necessary for proton abstraction from C beta of isocitrate appears to be Ser642; the O gamma atom is proximal to the calculated hydrogen position, while the environment of O gamma suggests stabilization of an alkoxide (an oxyanion hole formed by the amide and side chain of Arg644). The histidine-carboxylate pairs appear to be required for proton transfer reactions involving two oxygens bound to Fe, one derived from solvent (bound H2O) and one derived from substrate hydroxyl. Each oxygen is in contact with a histidine, and both are in contact with the side chain of Asp165, which bridges the two sites on the six-coordinate Fe.
Collapse
Affiliation(s)
- H Lauble
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037
| | | | | | | |
Collapse
|
27
|
Affiliation(s)
- D J Lowe
- AFRC IPSR Nitrogen Fixation Laboratory, University of Sussex, Brighton, U.K
| |
Collapse
|
28
|
|
29
|
|
30
|
|
31
|
Gardner PR, Fridovich I. Superoxide sensitivity of the Escherichia coli 6-phosphogluconate dehydratase. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52319-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
|
33
|
Zheng L, Andrews PC, Hermodson MA, Dixon JE, Zalkin H. Cloning and structural characterization of porcine heart aconitase. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39874-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
Beinert H, Kennedy MC. 19th Sir Hans Krebs lecture. Engineering of protein bound iron-sulfur clusters. A tool for the study of protein and cluster chemistry and mechanism of iron-sulfur enzymes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 186:5-15. [PMID: 2598939 DOI: 10.1111/j.1432-1033.1989.tb15170.x] [Citation(s) in RCA: 182] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An increasing number of iron-sulfur (Fe-S) proteins are found in which the Fe-S cluster is not involved in net electron transfer, as it is in the majority of Fe-S proteins. Most of the former are (de)hydratases, of which the most extensively studied is aconitase. Approaches are described and discussed by which the Fe-S cluster of this enzyme could be brought into states of different structure, ligation, oxidation and isotope composition. The species, so obtained, provided the basis for spectroscopic and chemical investigations. Results from studies by protein chemistry, EPR, Mössbauer, 1H, 2H and 57Fe electron-nuclear double resonance spectroscopy are described. Conclusions, which bear on the electronic structure of the Fe-S cluster, enzyme-substrate interaction and the enzymatic mechanism, were derived from a synopsis of the recent work described here and of previous contributions from several laboratories. These conclusions are discussed and summarized in a final section.
Collapse
Affiliation(s)
- H Beinert
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226
| | | |
Collapse
|
35
|
Plank D, Kennedy M, Beinert H, Howard J. Cysteine Labeling Studies of Beef Heart Aconitase Containing a 4Fe, a Cubane 3Fe, or a Linear 3Fe Cluster. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)47074-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
36
|
Abstract
The crystal structure of the 80,000 Da Fe-S enzyme aconitase has been solved and refined at 2.1 A resolution. The protein contains four domains; the first three from the N-terminus are closely associated around the [3Fe-4S] cluster with all three cysteine ligands to the cluster being provided by the third domain. Association of the larger C-terminal domain with the first three domains creates an extensive cleft leading to the Fe-S cluster. Residues from all four domains contribute to the active site region, which is defined by the Fe-S cluster and a bound SO4(2-) ion. This region of the structure contains 4 Arg, 3 His, 3 Ser, 2 Asp, 1 Glu, 3 Asn, and 1 Gln residues, as well as several bound water molecules. Three of these side chains reside on a three-turn 3(10) helix in the first domain. The SO4(2-) ion is bound 9.3 A from the center of the [3Fe-4S] cluster by the side chains of 2 Arg and 1 Gln residues. Each of 3 His side chains in the putative active site is paired with Asp or Glu side chains.
Collapse
Affiliation(s)
- A H Robbins
- Research Institute of Scripps Clinic, La Jolla, California 92037
| | | |
Collapse
|
37
|
Plank DW, Howard JB. Identification of the reactive sulfhydryl and sequences of cysteinyl-tryptic peptides from beef heart aconitase. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68459-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
|
39
|
|