1
|
Kriegler T, Lang S, Notari L, Hessa T. Prion Protein Translocation Mechanism Revealed by Pulling Force Studies. J Mol Biol 2020; 432:4447-4465. [PMID: 32502491 DOI: 10.1016/j.jmb.2020.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/10/2020] [Accepted: 05/28/2020] [Indexed: 11/26/2022]
Abstract
The mammalian prion protein (PrP) engages with the ribosome-Sec61 translocation channel complex to generate different topological variants that are either physiological, or involved in neurodegenerative diseases. Here, we describe cotranslational folding and translocation mechanisms of PrP coupled to an Xbp1-based arrest peptide as folding sensor, to measure forces acting on PrP nascent chain. Our data reveal two main pulling events followed by a minor third one exerted on the nascent chains during their translocation. Using those force landscapes, we show that a specific sequence within an intrinsically disordered region, containing a polybasic and glycine-proline rich residues, modulates the second pulling event by interacting with TRAP complex. This work also delineates the sequence of events involved in generation of PrP toxic transmembrane topologies during its synthesis. Our results shed new insight into the folding of such a topological complex protein, where marginal pulling by the signal sequence, together with the flanking downstream sequence in the mature domain, primarily drives an overall inefficient translocation resulting in the nascent chain to adopt alternative topologies.
Collapse
Affiliation(s)
- Theresa Kriegler
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Luigi Notari
- Department of Clinical Neuroscience, Therapeutic Immune Design Unit, CMM, L8:02, Karolinska Institutet, Sweden
| | - Tara Hessa
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.
| |
Collapse
|
2
|
Cellular prion protein is present in mitochondria of healthy mice. Sci Rep 2017; 7:41556. [PMID: 28148964 PMCID: PMC5288712 DOI: 10.1038/srep41556] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/13/2016] [Indexed: 01/04/2023] Open
Abstract
Cellular prion protein (PrPC) is a mammalian glycoprotein which is usually found anchored to the plasma membrane via a glycophosphatidylinositol (GPI) anchor. PrPC misfolds to a pathogenic isoform PrPSc, the causative agent of neurodegenerative prion diseases. The precise function of PrPC remains elusive but may depend upon its cellular localization. Here we show that PrPC is present in brain mitochondria from 6–12 week old wild-type and transgenic mice in the absence of disease. Mitochondrial PrPC was fully processed with mature N-linked glycans and did not require the GPI anchor for localization. Protease treatment of purified mitochondria suggested that mitochondrial PrPC exists as a transmembrane isoform with the C-terminus facing the mitochondrial matrix and the N-terminus facing the intermembrane space. Taken together, our data suggest that PrPC can be found in mitochondria in the absence of disease, old age, mutation, or overexpression and that PrPC may affect mitochondrial function.
Collapse
|
3
|
Sauvé S, Buijs D, Gingras G, Aubin Y. Interactions between the conserved hydrophobic region of the prion protein and dodecylphosphocholine micelles. J Biol Chem 2011; 287:1915-22. [PMID: 22128151 DOI: 10.1074/jbc.m111.279364] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three-dimensional structure of PrP110-136, a peptide encompassing the conserved hydrophobic region of the human prion protein, has been determined at high resolution in dodecylphosphocholine micelles by NMR. The results support the conclusion that the (Ctm)PrP, a transmembrane form of the prion protein, adopts a different conformation than the reported structures of the normal prion protein determined in solution. Paramagnetic relaxation enhancement studies with gadolinium-diethylenetriaminepentaacetic acid indicated that the conserved hydrophobic region peptide is not inserted symmetrically in the micelle, thus suggesting the presence of a guanidium-phosphate ion pair involving the side chain of the terminal arginine and the detergent headgroup. Titration of dodecylphosphocholine into a solution of PrP110-136 revealed the presence of a surface-bound species. In addition, paramagnetic probes located the surface-bound peptide somewhere below the micelle-water interface when using the inserted helix as a positional reference. This localization of the unknown population would allow a similar ion pair interaction.
Collapse
Affiliation(s)
- Simon Sauvé
- Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | | | | | | |
Collapse
|
4
|
Harrison CF, Barnham KJ, Hill AF. Neurotoxic species in prion disease: a role for PrP isoforms? J Neurochem 2007; 103:1709-20. [DOI: 10.1111/j.1471-4159.2007.04936.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
5
|
Stewart RS, Harris DA. Mutational analysis of topological determinants in prion protein (PrP) and measurement of transmembrane and cytosolic PrP during prion infection. J Biol Chem 2003; 278:45960-8. [PMID: 12933795 DOI: 10.1074/jbc.m307833200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The prion protein (PrP) can adopt multiple membrane topologies, including a fully translocated form (SecPrP), two transmembrane forms (NtmPrP and CtmPrP), and a cytosolic form. It is important to understand the factors that influence production of these species, because two of them, CtmPrP and cytosolic PrP, have been proposed to be key neurotoxic intermediates in certain prion diseases. In this paper, we perform a mutational analysis of PrP synthesized using an in vitro translation system in order to further define sequence elements that influence the formation of CtmPrP. We find that substitution of charged residues in the hydrophobic core of the signal peptide increases synthesis of CtmPrP and also reduces the efficiency of translocation into microsomes. Combining these mutations with substitutions in the transmembrane domain causes the protein to be synthesized exclusively with the CtmPrP topology. Reducing the spacing between the signal peptide and the transmembrane domain also increases CtmPrP. In contrast, topology is not altered by mutations that prevent signal peptide cleavage or by deletion of the C-terminal signal for glycosylphosphatidylinositol anchor addition. Removal of the signal peptide completely blocks translocation. Taken together, our results are consistent with a model in which the signal peptide and transmembrane domain function in distinct ways as determinants of PrP topology. We also present characterization of an antibody that selectively recognizes CtmPrP and cytosolic PrP by virtue of their uncleaved signal peptides. By using this antibody, as well as the distinctive gel mobility of CtmPrP and cytosolic PrP, we show that the amounts of these two forms in cultured cells and rodent brain are not altered by infection with scrapie prions. We conclude that CtmPrP and cytosolic PrP are unlikely to be obligate neurotoxic intermediates in familial or infectiously acquired prion diseases.
Collapse
Affiliation(s)
- Richard S Stewart
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
6
|
Kim SJ, Hegde RS. Cotranslational partitioning of nascent prion protein into multiple populations at the translocation channel. Mol Biol Cell 2002; 13:3775-86. [PMID: 12429823 PMCID: PMC133591 DOI: 10.1091/mbc.e02-05-0293] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2002] [Revised: 07/27/2002] [Accepted: 08/08/2002] [Indexed: 01/11/2023] Open
Abstract
The decisive events that direct a single polypeptide such as the prion protein (PrP) to be synthesized at the endoplasmic reticulum in both fully translocated and transmembrane forms are poorly understood. In this study, we demonstrate that the topological heterogeneity of PrP is determined cotranslationally, while at the translocation channel. By evaluating sequential intermediates during PrP topogenesis, we find that signal sequence-mediated initiation of translocation results in an interaction between nascent PrP and endoplasmic reticulum chaperones, committing the N terminus to the lumen. Synthesis of the transmembrane domain before completion of this step allows it to direct the generation of (Ctm)PrP, a transmembrane form with its N terminus in the cytosol. Thus, segregation of nascent PrP into different topological configurations is critically dependent on the precise timing of signal-mediated initiation of N-terminus translocation. Consequently, this step could be experimentally tuned to modify PrP topogenesis, including complete reversal of the elevated (Ctm)PrP caused by disease-associated mutations in the transmembrane domain. These results delineate the sequence of events involved in PrP biogenesis, explain the mechanism of action of (Ctm)PrP-favoring mutations associated with neurodegenerative disease, and more generally, reveal that translocation substrates can be cotranslationally partitioned into multiple populations at the translocon.
Collapse
Affiliation(s)
- Soo Jung Kim
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
7
|
Connolly JG, Tate RJ, McLennan NF, Brown D, Telling GC, Fraser J, Head MW. Properties of the cellular prion protein expressed in Xenopus oocytes. Neuroreport 2002; 13:1229-33. [PMID: 12151775 DOI: 10.1097/00001756-200207020-00032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The cellular prion protein (PrPC) from different species can be reproducibly expressed in Xenopus oocytes following injection of in vitro transcribed mRNAs. The level of PrPC accumulation increases with the amount of RNA injected and with the duration of incubation. PrPC expressed in oocytes is similar in size and abundance to PrPC protein in mouse brain and >100 ng of PrPC is expressed per oocyte allowing complete experiments to be carried out in single living cells. The protein is glycosylated, fully protease sensitive and expressed on the cell surface. Xenopus oocytes therefore provide a useful model system for the study of prion proteins and their associated disease processes.
Collapse
Affiliation(s)
- John G Connolly
- Department of Physiology and Pharmacology, University of Strathclyde, SIBS, 27, Taylor Street, Glasgow G4 0NR, UK
| | | | | | | | | | | | | |
Collapse
|
8
|
Harris DA. Biosynthesis and cellular processing of the prion protein. ADVANCES IN PROTEIN CHEMISTRY 2002; 57:203-28. [PMID: 11447691 DOI: 10.1016/s0065-3233(01)57023-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- D A Harris
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
9
|
Abstract
A great deal of effort has been devoted during the past 20 years to defining the chemical nature of prions, the infectious agents responsible for transmissible spongiform encephalopathies. In contrast, much less attention has been paid to elucidating how prions actually damage the central nervous system. Although it is commonly assumed that PrP(Sc), the protein constituent of infectious prions, is the primary culprit, increasing evidence indicates that this may not be the case. Several alternative molecular forms of PrP are reasonable candidates for the neurotoxic species in prion diseases, although it is still too early to tell whether these or other ones will turn out to be the true instigating factors. The cellular pathways activated by neurotoxic forms of PrP that ultimately result in neuronal death are also being investigated, and several possible mechanisms have been uncovered, including the operation of quality control processes in the endoplasmic reticulum. Elucidating the distinction between the infectious and neurotoxic forms of PrP has important implications for designing therapy of prion diseases, as well as for understanding pathogenic mechanisms operative in other neurodegenerative disorders and the role of prion-like states in biology.
Collapse
Affiliation(s)
- R Chiesa
- Istituto di Ricerche Farmacologiche Mario Negri, Milano, 20157, Italy
| | | |
Collapse
|
10
|
Kim SJ, Rahbar R, Hegde RS. Combinatorial control of prion protein biogenesis by the signal sequence and transmembrane domain. J Biol Chem 2001; 276:26132-40. [PMID: 11359769 DOI: 10.1074/jbc.m101638200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The prion protein (PrP) is synthesized in three topologic forms at the endoplasmic reticulum. (sec)PrP is fully translocated into the endoplasmic reticulum lumen, whereas (Ntm)PrP and (Ctm)PrP are single-spanning membrane proteins of opposite orientation. Increased generation of (Ctm)PrP in either transgenic mice or humans is associated with the development of neurodegenerative disease. To study the mechanisms by which PrP can achieve three topologic outcomes, we analyzed the translocation of proteins containing mutations introduced into either the N-terminal signal sequence or potential transmembrane domain (TMD) of PrP. Although mutations in either domain were found to affect PrP topogenesis, they did so in qualitatively different ways. In addition to its traditional role in mediating protein targeting, the signal was found to play a surprising role in determining orientation of the PrP N terminus. By contrast, the TMD was found to influence membrane integration. Analysis of various signal and TMD double mutants demonstrated that the topologic consequence of TMD action was directly dependent on the previous, signal-mediated step. Together, these results reveal that PrP topogenesis is controlled at two discrete steps during its translocation and provide a framework for understanding how these steps act coordinately to determine the final topology achieved by PrP.
Collapse
Affiliation(s)
- S J Kim
- Laboratory of Cellular Oncology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
11
|
Abstract
The prion protein displays a unique structural ambiguity in that it can adopt multiple stable conformations under physiological conditions. In our view, this puzzling feature resulted from a sudden environmental change in evolution when the prion, previously an integral membrane protein, got expelled into the extracellular space. Analysis of known vertebrate prions unveils a primordial transmembrane protein encrypted in their sequence, underlying this relocalization hypothesis. Apparently, the time elapsed since this event was insufficient to create a "minimally frustrated" sequence in the new milieu, probably due to the functional constraints set by the importance of the very flexibility that was created in the relocalization. This scenario may explain why, in a structural sense, the prion protein is still en route toward becoming a foldable globular protein.
Collapse
Affiliation(s)
- P Tompa
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 7, H-1518 Budapest, Hungary
| | | | | | | |
Collapse
|
12
|
Stewart RS, Drisaldi B, Harris DA. A transmembrane form of the prion protein contains an uncleaved signal peptide and is retained in the endoplasmic Reticulum. Mol Biol Cell 2001; 12:881-9. [PMID: 11294893 PMCID: PMC32273 DOI: 10.1091/mbc.12.4.881] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2000] [Revised: 12/27/2000] [Accepted: 01/30/2001] [Indexed: 01/15/2023] Open
Abstract
Although there is considerable evidence that PrP(Sc) is the infectious form of the prion protein, it has recently been proposed that a transmembrane variant called (Ctm)PrP is the direct cause of prion-associated neurodegeneration. We report here, using a mutant form of PrP that is synthesized exclusively with the (Ctm)PrP topology, that (Ctm)PrP is retained in the endoplasmic reticulum and is degraded by the proteasome. We also demonstrate that (Ctm)PrP contains an uncleaved, N-terminal signal peptide as well as a C-terminal glycolipid anchor. These results provide insight into general mechanisms that control the topology of membrane proteins during their synthesis in the endoplasmic reticulum, and they also suggest possible cellular pathways by which (Ctm)PrP may cause disease.
Collapse
Affiliation(s)
- R S Stewart
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
13
|
Stewart RS, Harris DA. Most pathogenic mutations do not alter the membrane topology of the prion protein. J Biol Chem 2001; 276:2212-20. [PMID: 11053411 DOI: 10.1074/jbc.m006763200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The prion protein (PrP), a glycolipid-anchored membrane glycoprotein, contains a conserved hydrophobic sequence that can span the lipid bilayer in either direction, resulting in two transmembrane forms designated (Ntm)PrP and (Ctm)PrP. Previous studies have shown that the proportion of (Ctm)PrP is increased by mutations in the membrane-spanning segment, and it has been hypothesized that (Ctm)PrP represents a key intermediate in the pathway of prion-induced neurodegeneration. To further test this idea, we have surveyed a number of mutations associated with familial prion diseases to determine whether they alter the proportions of (Ntm)PrP and (Ctm)PrP produced in vitro, in transfected cells, and in transgenic mice. For the in vitro experiments, PrP mRNA was translated in the presence of murine thymoma microsomes which, in contrast to the canine pancreatic microsomes used in previous studies, are capable of efficient glycolipidation. We confirmed that mutations within or near the transmembrane domain enhance the formation of (Ctm)PrP, and we demonstrate for the first time that this species contains a C-terminal glycolipid anchor, thus exhibiting an unusual, dual mode of membrane attachment. However, we find that pathogenic mutations in other regions of the molecule have no effect on the amounts of (Ctm)PrP and (Ntm)PrP, arguing against the proposition that transmembrane PrP plays an obligate role in the pathogenesis of prion diseases.
Collapse
Affiliation(s)
- R S Stewart
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
14
|
Haïk S, Peyrin JM, Lins L, Rosseneu MY, Brasseur R, Langeveld JP, Tagliavini F, Deslys JP, Lasmézas C, Dormont D. Neurotoxicity of the putative transmembrane domain of the prion protein. Neurobiol Dis 2000; 7:644-56. [PMID: 11114262 DOI: 10.1006/nbdi.2000.0316] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been shown recently that the generation of an abnormal transmembrane form of the prion protein ((Ctm)PrP) is involved in the neurodegeneration process during inherited and infectious prion diseases but a causative relationship has never been established. We wanted to know if and how the proposed transmembrane domain of PrP could induce neuronal dysfunction. Thus, we investigated the neurotoxic properties of two peptides whose sequences are encompassed within this domain. We show that PrP peptides 118-135 and 105-132 as well as an amidated more soluble peptide 105-132 induce the death of pure cortical neurons originating from normal and PrP knockout mice. This can be correlated with the high propensity of these peptides to insert stably into and to destabilize cell membranes. Through this study, we have identified a novel mechanism of neurotoxicity for PrP, which directly involves membrane perturbation; this mechanism is independent of fibril formation and probably corresponds to the effect of the transmembrane insertion of (Ctm)PrP.
Collapse
Affiliation(s)
- S Haïk
- CEA, Fontenay aux Roses Cedex, 92 265, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Schwarzman AL, Singh N, Tsiper M, Gregori L, Dranovsky A, Vitek MP, Glabe CG, St George-Hyslop PH, Goldgaber D. Endogenous presenilin 1 redistributes to the surface of lamellipodia upon adhesion of Jurkat cells to a collagen matrix. Proc Natl Acad Sci U S A 1999; 96:7932-7. [PMID: 10393925 PMCID: PMC22165 DOI: 10.1073/pnas.96.14.7932] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most familial early-onset Alzheimer's disease cases are caused by mutations in the presenilin 1 (PS1) gene. Subcellular localization of the endogenous PS1 is essential for understanding its function, interactions with proteins, and role in Alzheimer's disease. Although numerous studies revealed predominant localization of PS1 to endoplasmic reticulum and Golgi, there are conflicting reports on the localization of PS1 to the cell surface. We found that endogenous PS1 is highly expressed in T lymphocytes (Jurkat cells). Using a variety of methods, we present evidence that endogenous PS1 is localized to the cell surface in addition to intracellular membrane compartments. Moreover, PS1 appeared in high levels on the surface of lamellipodia upon adhesion of the cells to a collagen matrix. The redistribution of PS1 in adhered cells was strikingly similar to that of the well characterized adhesion protein CD44. Cell surface PS1 formed complexes in vivo with actin-binding protein filamin (ABP-280), which is known to form bridges between cell surface receptors and cytoskeleton and mediate cell adhesion and cell motility. Taken together, our results suggest a role of PS1 in cell adhesion and/or cell-matrix interaction.
Collapse
Affiliation(s)
- A L Schwarzman
- Department of Psychiatry and Behavioral Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Prion diseases are fatal neurodegenerative disorders of humans and animals that are important because of their impact on public health and because they exemplify a novel mechanism of infectivity and biological information transfer. These diseases are caused by conformational conversion of a normal host glycoprotein (PrPC) into an infectious isoform (PrPSc) that is devoid of nucleic acid. This review focuses on the current understanding of prion diseases at the cell biological level. The characteristics of the diseases are introduced, and a brief history and description of the prion hypothesis are given. Information is then presented about the structure, expression, biosynthesis, and possible function of PrPC, as well as its posttranslational processing, cellular localization, and trafficking. The latest findings concerning PrPSc are then discussed, including cell culture systems used to generate this pathogenic isoform, the subcellular distribution of the protein, its membrane attachment, proteolytic processing, and its kinetics and sites of synthesis. Information is also provided on molecular models of the PrPC-->PrPSc conversion reaction and the possible role of cellular chaperones. The review concludes with suggestions of several important avenues for future investigation.
Collapse
Affiliation(s)
- D A Harris
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
17
|
Abstract
Prions are unprecedented infectious pathogens that cause a group of invariably fatal neurodegenerative diseases by an entirely novel mechanism. Prion diseases may present as genetic, infectious, or sporadic disorders, all of which involve modification of the prion protein (PrP). Bovine spongiform encephalopathy (BSE), scrapie of sheep, and Creutzfeldt-Jakob disease (CJD) of humans are among the most notable prion diseases. Prions are transmissible particles that are devoid of nucleic acid and seem to be composed exclusively of a modified protein (PrPSc). The normal, cellular PrP (PrPC) is converted into PrPSc through a posttranslational process during which it acquires a high beta-sheet content. The species of a particular prion is encoded by the sequence of the chromosomal PrP gene of the mammals in which it last replicated. In contrast to pathogens carrying a nucleic acid genome, prions appear to encipher strain-specific properties in the tertiary structure of PrPSc. Transgenetic studies argue that PrPSc acts as a template upon which PrPC is refolded into a nascent PrPSc molecule through a process facilitated by another protein. Miniprions generated in transgenic mice expressing PrP, in which nearly half of the residues were deleted, exhibit unique biological properties and should facilitate structural studies of PrPSc. While knowledge about prions has profound implications for studies of the structural plasticity of proteins, investigations of prion diseases suggest that new strategies for the prevention and treatment of these disorders may also find application in the more common degenerative diseases.
Collapse
Affiliation(s)
- S B Prusiner
- Departments of Neurology and of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
18
|
Abstract
While many aspects of prion disease biology are unorthodox, perhaps the most fundamental paradox is posed by the coexistence of inherited, sporadic, and infectious forms of these diseases. Sensible molecular mechanisms for prion propagation must explain all three forms of prion diseases in a manner that is compatible with the formidable array of experimental data derived from histopathological, biochemical, biophysical, human genetic, and transgenetic studies. In this review, we explore prion disease pathogenesis initially from the perspective of an autosomal dominant inherited disease. Subsequently, we examine how an intrinsically inherited disease could present in sporadic and infectious forms. Finally, we explore the phenomenologic constraints on models of prion replication with a specific emphasis on biophysical studies of prion protein structures.
Collapse
Affiliation(s)
- F E Cohen
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143, USA.
| | | |
Collapse
|
19
|
Moss K, Helm A, Lu Y, Bragin A, Skach WR. Coupled translocation events generate topological heterogeneity at the endoplasmic reticulum membrane. Mol Biol Cell 1998; 9:2681-97. [PMID: 9725920 PMCID: PMC25541 DOI: 10.1091/mbc.9.9.2681] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/1998] [Accepted: 06/10/1998] [Indexed: 01/04/2023] Open
Abstract
Topogenic determinants that direct protein topology at the endoplasmic reticulum membrane usually function with high fidelity to establish a uniform topological orientation for any given polypeptide. Here we show, however, that through the coupling of sequential translocation events, native topogenic determinants are capable of generating two alternate transmembrane structures at the endoplasmic reticulum membrane. Using defined chimeric and epitope-tagged full-length proteins, we found that topogenic activities of two C-trans (type II) signal anchor sequences, encoded within the seventh and eighth transmembrane (TM) segments of human P-glycoprotein were directly coupled by an inefficient stop transfer (ST) sequence (TM7b) contained within the C-terminus half of TM7. Remarkably, these activities enabled TM7 to achieve both a single- and a double-spanning TM topology with nearly equal efficiency. In addition, ST and C-trans signal anchor activities encoded by TM8 were tightly linked to the weak ST activity, and hence topological fate, of TM7b. This interaction enabled TM8 to span the membrane in either a type I or a type II orientation. Pleiotropic structural features contributing to this unusual topogenic behavior included 1) a short, flexible peptide loop connecting TM7a and TM7b, 2) hydrophobic residues within TM7b, and 3) hydrophilic residues between TM7b and TM8.
Collapse
Affiliation(s)
- K Moss
- Departments of Molecular and Cellular Engineering and Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
20
|
Hegde RS, Mastrianni JA, Scott MR, DeFea KA, Tremblay P, Torchia M, DeArmond SJ, Prusiner SB, Lingappa VR. A transmembrane form of the prion protein in neurodegenerative disease. Science 1998; 279:827-34. [PMID: 9452375 DOI: 10.1126/science.279.5352.827] [Citation(s) in RCA: 516] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
At the endoplasmic reticulum membrane, the prion protein (PrP) can be synthesized in several topological forms. The role of these different forms was explored with transgenic mice expressing PrP mutations that alter the relative ratios of the topological forms. Expression of a particular transmembrane form (termed CtmPrP) produced neurodegenerative changes in mice similar to those of some genetic prion diseases. Brains from these mice contained CtmPrP but not PrPSc, the PrP isoform responsible for transmission of prion diseases. Furthermore, in one heritable prion disease of humans, brain tissue contained CtmPrP but not PrPSc. Thus, aberrant regulation of protein biogenesis and topology at the endoplasmic reticulum can result in neurodegeneration.
Collapse
Affiliation(s)
- R S Hegde
- Department of Physiology, University of California, San Francisco, CA 94143-0444, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tezapsidis N, Li HC, Ripellino JA, Efthimiopoulos S, Vassilacopoulou D, Sambamurti K, Toneff T, Yasothornsrikul S, Hook VY, Robakis NK. Release of nontransmembrane full-length Alzheimer's amyloid precursor protein from the lumenar surface of chromaffin granule membranes. Biochemistry 1998; 37:1274-82. [PMID: 9477953 DOI: 10.1021/bi9714159] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We previously demonstrated the presence of a soluble form of full-length Alzheimer's amyloid precursor protein (APP) in the lumen of adrenal medullary chromaffin granules (CG). Furthermore, full-length APP is released from CG membranes in vitro at pH 9.0 by an enzymatic mechanism, sensitive to protease inhibitors [Vassilacopoulou et al. (1995) J. Neurochem. 64, 2140-2146]. In this study, we found that when intact CG were subjected to exogenous trypsin, a fraction of APP was not digested, consistent with an intragranular population of APP. To examine the substrate-product relationship between membrane and soluble full-length APP, we labeled CG transmembrane APP with 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID), a lipophilic probe, specific for membrane-spanning domains of proteins. APP released from the membranes at pH 9.0 was not labeled with [125I]TID. In addition, this APP was not biotinylated in intact CG. Combined, the results indicate that APP released from CG membranes derives from a unique nontransmembrane population of membrane-associated APP, located in the lumenal side of CG membranes. Dithiobis(succinimidylpropionate) (DSP) cross-linking indicated that APP in CG is situated in close proximity with other proteins, possibly with APP itself. APP complexes were also detected under nonreducing conditions, without DSP cross-linking. These results, combined with our previous studies, indicate that full-length APP within CG exists as three different populations: (I) transmembrane, (II) membrane-associated/nontransmembrane, and (III) soluble. The existence of nontransmembrane populations suggests that putative gamma-secretase cleavage sites of APP, assumed to be buried within the lipid bilayer, could be accessible to proteolysis in a soluble intravesicular environment.
Collapse
Affiliation(s)
- N Tezapsidis
- Department of Psychiatry, Mount Sinai School of Medicine, New York 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Salmona M, Forloni G, Diomede L, Algeri M, De Gioia L, Angeretti N, Giaccone G, Tagliavini F, Bugiani O. A neurotoxic and gliotrophic fragment of the prion protein increases plasma membrane microviscosity. Neurobiol Dis 1997; 4:47-57. [PMID: 9258911 DOI: 10.1006/nbdi.1997.0133] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Prion-related encephalopathies are characterized by astrogliosis and nerve cell degeneration and loss. These lesions might be the consequence of an interaction between the abnormal isoform of the cellular prion protein that accumulates in nervous tissue and the plasma membranes. Previously we found that a synthetic peptide, homologous to residues 106-126 of the human prion protein, is fibrillogenic and toxic to neurons and trophic to astrocytes in vitro. This study dealt with the ability of the peptide to interact with membranes. Accordingly, we compared PrP 106-126 with different synthetic PrP peptides (PrP 89-106, PrP 127-147, a peptide with a scrambled sequences of 106-126, and PrP 106-126 amidated at the C-terminus) as to the ability to increase the microviscosity of artificial and natural membranes. The first three had no effect on nerve and glial cells in vitro, whereas the amidated peptide caused neuronal death. Using a fluorescent probe that becomes incorporated into the hydrocarbon core of the lipid bilayer and records the lipid fluidity, we found PrP 106-126 able to increase significantly the membrane microviscosity of liposomes and of all cell lines investigated. This phenomenon was associated with the distribution of the peptide over the cell surface, but not with changes in the membrane lipid or protein content, or with membrane lipid phase transitions. Accordingly, we deduced that increased membrane microviscosity was unrelated to changes in the membrane native components and was the result of increased lipid density following PrP 106-126 embedding into the lipid bilayer. No control peptides had comparable effects on the membrane microviscosity, except PrP 106-126 amidated at the C-terminus. Since the latter was as neurotoxic, but not as fibrillogenic, as PrP 106-126, we argued that the ability of PrP 106-126 to increase membrane microviscosity was unrelated to the propensity of the peptide to raise fibrils. Rather, it could be connected with the primary structure of PrP 106-126, characterized by two opposing regions, one hydrophilic and the other hydrophobic, that enabled the peptide to interact with the lipid bilayer. Based on these findings, we speculated that the glial and nerve cell involvement occurring in prion-related encephalopathies might be caused by the interaction with the plasma membrane of a PrP 106-126-like fragment or of the sequence spanning residues 106-126 of the abnormal isoform of the prion protein.
Collapse
Affiliation(s)
- M Salmona
- Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Leiper JM, Harrison GB, Bayliss J, Scott JD, Pease RJ. Systematic expression of the complete coding sequence of apoB-100 does not reveal transmembrane determinants. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)37303-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Lehmann S, Harris DA. A mutant prion protein displays an aberrant membrane association when expressed in cultured cells. J Biol Chem 1995; 270:24589-97. [PMID: 7592679 DOI: 10.1074/jbc.270.41.24589] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Inherited forms of prion disease have been linked to mutations in the gene encoding PrP, a neuronal and glial protein that is attached to the plasma membrane by a glycosyl-phosphatidylinositol (GPI) anchor. One familial form of Creutzfeldt-Jakob disease is associated with a mutant PrP containing six additional octapeptide repeats. We report here our analysis of cultured Chinese hamster ovary cells expressing a murine homologue of this mutant PrP. We find that, like wild-type PrP, the mutant protein is glycosylated, GPI-anchored, and expressed on the cell surface. Surprisingly, however, cleavage of the GPI anchor using phosphatidylinositol-specific phospholipase C fails to release the mutant PrP from the surface of intact cells, suggesting that it has an additional mode of membrane attachment. The phospholipase-treated protein is hydrophobic, since it partitions into the detergent phase of Triton X-114 lysates; and it is tightly membrane-associated, since it is not extractable in carbonate buffer at pH 11.5. Whether membrane attachment of the mutant PrP involves integration of the polypeptide into the lipid bilayer, self-association, or binding to other membrane proteins remains to be determined. Our results suggest that alterations in the membrane association of PrP may be an important feature of prion diseases.
Collapse
Affiliation(s)
- S Lehmann
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
25
|
Bennett JA, Dingledine R. Topology profile for a glutamate receptor: three transmembrane domains and a channel-lining reentrant membrane loop. Neuron 1995; 14:373-84. [PMID: 7857646 DOI: 10.1016/0896-6273(95)90293-7] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We investigated the transmembrane topology of the GluR3 subunit that was translated in rabbit reticulocytes supplemented with microsomal membranes. A prolactin reporter epitope was fused to GluR3 at six locations, bracketing each of the proposed transmembrane domains. The sidedness of the epitope in the microsomal membrane was then assessed by proteinase K sensitivity. The N terminus and the entire region between M3 and M4 was extracellular, and the C terminus was intracellular by this method. Four native N-linked glycosylation sites in the amino terminus and one introduced site between M3 and M4 were utilized, confirming the extracellular location of these regions. Epitopes inserted upstream and downstream of M2 were protease sensitive and thus intracellular. Our results support a topological model for glutamate receptor subunits that consists of three transmembrane domains, M1, M3, and M4, and another domain, the proposed channel-lining M2, which forms a reentrant membrane segment with both ends facing the cytoplasm.
Collapse
Affiliation(s)
- J A Bennett
- Department of Pharmacology, Emory University, Atlanta, Georgia 30322
| | | |
Collapse
|