1
|
Nuclear Phosphoinositides: Their Regulation and Roles in Nuclear Functions. Int J Mol Sci 2019; 20:ijms20122991. [PMID: 31248120 PMCID: PMC6627530 DOI: 10.3390/ijms20122991] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/22/2019] [Accepted: 06/17/2019] [Indexed: 12/29/2022] Open
Abstract
Polyphosphoinositides (PPIns) are a family of seven lipid messengers that regulate a vast array of signalling pathways to control cell proliferation, migration, survival and differentiation. PPIns are differentially present in various sub-cellular compartments and, through the recruitment and regulation of specific proteins, are key regulators of compartment identity and function. Phosphoinositides and the enzymes that synthesise and degrade them are also present in the nuclear membrane and in nuclear membraneless compartments such as nuclear speckles. Here we discuss how PPIns in the nucleus are modulated in response to external cues and how they function to control downstream signalling. Finally we suggest a role for nuclear PPIns in liquid phase separations that are involved in the formation of membraneless compartments within the nucleus.
Collapse
|
2
|
DNA damage causes rapid accumulation of phosphoinositides for ATR signaling. Nat Commun 2017; 8:2118. [PMID: 29242514 PMCID: PMC5730617 DOI: 10.1038/s41467-017-01805-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022] Open
Abstract
Phosphoinositide lipids (PPIs) are enriched in the nucleus and are accumulated at DNA damage sites. Here, we investigate roles of nuclear PPIs in DNA damage response by sequestering specific PPIs with the expression of nuclear-targeted PH domains, which inhibits recruitment of Ataxia telangiectasia and Rad3-related protein (ATR) and reduces activation of Chk1. PPI-binding domains rapidly (< 1 s) accumulate at damage sites with local enrichment of PPIs. Accumulation of PIP3 in complex with the nuclear receptor protein, SF1, at damage sites requires phosphorylation by inositol polyphosphate multikinase (IPMK) and promotes nuclear actin assembly that is required for ATR recruitment. Suppressed ATR recruitment/activation is confirmed with latrunculin A and wortmannin treatment as well as IPMK or SF1 depletion. Other DNA repair pathways involving ATM and DNA-PKcs are unaffected by PPI sequestration. Together, these findings reveal that nuclear PPI metabolism mediates an early damage response through the IPMK-dependent pathway to specifically recruit ATR. Phosphoinositides are enriched in the nucleus and accumulate upon DNA damage but their role in responding to DNA damage is poorly defined. Here, the authors show that phosphoinositides rapidly accumulate at DNA damage sites and are required for ATR recruitment and subsequent Chk1 activation.
Collapse
|
3
|
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP(2)) is a membrane bound lipid molecule with capabilities to affect a wide array of signaling pathways to regulate very different cellular processes. PIP(2) is used as a precursor to generate the second messengers PIP(3), DAG and IP(3), indispensable molecules for signaling events generated by membrane receptors. However, PIP(2) can also directly regulate a vast array of proteins and is emerging as a crucial messenger with the potential to distinctly modulate biological processes critical for both normal and pathogenic cell physiology. PIP(2) directly associates with effector proteins via unique phosphoinositide binding domains, altering their localization and/or enzymatic activity. The spatial and temporal generation of PIP(2) synthesized by the phosphatidylinositol phosphate kinases (PIPKs) tightly regulates the activation of receptor signaling pathways, endocytosis and vesicle trafficking, cell polarity, focal adhesion dynamics, actin assembly and 3' mRNA processing. Here we discuss our current understanding of PIPKs in the regulation of cellular processes from the plasma membrane to the nucleus.
Collapse
|
4
|
Fiume R, Keune WJ, Faenza I, Bultsma Y, Ramazzotti G, Jones DR, Martelli AM, Somner L, Follo MY, Divecha N, Cocco L. Nuclear phosphoinositides: location, regulation and function. Subcell Biochem 2012; 59:335-361. [PMID: 22374096 DOI: 10.1007/978-94-007-3015-1_11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Lipid signalling in human disease is an important field of investigation and stems from the fact that phosphoinositide signalling has been implicated in the control of nearly all the important cellular pathways including metabolism, cell cycle control, membrane trafficking, apoptosis and neuronal conduction. A distinct nuclear inositide signalling metabolism has been identified, thus defining a new role for inositides in the nucleus, which are now considered essential co-factors for several nuclear processes, including DNA repair, transcription regulation, and RNA dynamics. Deregulation of phoshoinositide metabolism within the nuclear compartment may contribute to disease progression in several disorders, such as chronic inflammation, cancer, metabolic, and degenerative syndromes. In order to utilize these very druggable pathways for human benefit there is a need to identify how nuclear inositides are regulated specifically within this compartment and what downstream nuclear effectors process and integrate inositide signalling cascades in order to specifically control nuclear function. Here we describe some of the facets of nuclear inositide metabolism with a focus on their relationship to cell cycle control and differentiation.
Collapse
Affiliation(s)
- Roberta Fiume
- Cellular Signalling Laboratory, Department of Human Anatomical Sciences, University of Bologna, Bologna, Italy,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Winck FV, Kwasniewski M, Wienkoop S, Mueller-Roeber B. AN OPTIMIZED METHOD FOR THE ISOLATION OF NUCLEI FROM CHLAMYDOMONAS REINHARDTII (CHLOROPHYCEAE)(1). JOURNAL OF PHYCOLOGY 2011; 47:333-340. [PMID: 27021865 DOI: 10.1111/j.1529-8817.2011.00967.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The cell nucleus harbors a large number of proteins involved in transcription, RNA processing, chromatin remodeling, nuclear signaling, and ribosome assembly. The nuclear genome of the model alga Chlamydomonas reinhardtii P. A. Dang. was recently sequenced, and many genes encoding nuclear proteins, including transcription factors and transcription regulators, have been identified through computational discovery tools. However, elucidating the specific biological roles of nuclear proteins will require support from biochemical and proteomics data. Cellular preparations with enriched nuclei are important to assist in such analyses. Here, we describe a simple protocol for the isolation of nuclei from Chlamydomonas, based on a commercially available kit. The modifications done in the original protocol mainly include alterations of the differential centrifugation parameters and detergent-based cell lysis. The nuclei-enriched fractions obtained with the optimized protocol show low contamination with mitochondrial and plastid proteins. The protocol can be concluded within only 3 h, and the proteins extracted can be used for gel-based and non-gel-based proteomic approaches.
Collapse
Affiliation(s)
- Flavia Vischi Winck
- University of Potsdam, GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany University of Potsdam, GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany University of Silesia, Department of Genetics, Jagiellonska 28, 40-032, Katowice, PolandMax-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany University of Potsdam, GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Miroslaw Kwasniewski
- University of Potsdam, GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany University of Potsdam, GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany University of Silesia, Department of Genetics, Jagiellonska 28, 40-032, Katowice, PolandMax-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany University of Potsdam, GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Stefanie Wienkoop
- University of Potsdam, GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany University of Potsdam, GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany University of Silesia, Department of Genetics, Jagiellonska 28, 40-032, Katowice, PolandMax-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany University of Potsdam, GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- University of Potsdam, GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany University of Potsdam, GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany University of Silesia, Department of Genetics, Jagiellonska 28, 40-032, Katowice, PolandMax-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany University of Potsdam, GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
6
|
Tomassoni ML, Amori D, Magni MV. Changes of nuclear membrane lipid composition affect RNA nucleocytoplasmic transport. Biochem Biophys Res Commun 1999; 258:476-81. [PMID: 10329412 DOI: 10.1006/bbrc.1999.0659] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that the nuclear membrane fluidity of rat liver, measured by fluorescence anisotropy of two probes, is higher in the hydrophobic core, with respect to the bilayer surface, in newborn rats compared to adult rats. The aim of the present research is to investigate whether the nuclear membrane fluidity influences RNA nucleocytoplasmic transport. To this end two experimental models were used: the fluidity of nuclear membrane isolated from adult rats was increased by a choline base exchange reaction, which is known to be accompanied by an increase of phosphatidylcholine unsaturated fatty acids, whereas that of nuclear membrane isolated from newborn rats was decreased by incubation with dimyristoylphosphatidylcholine-cholesterol liposomes. The RNA efflux, evaluated by using [3H]uridine, significantly increased in the adult nuclear membrane submitted to choline base exchange reaction, whereas a strong decrease in the newborn nuclear membrane enriched with cholesterol was found. The activity of nucleoside triphosphatase, a nuclear membrane-associated enzyme which is correlated with mRNA transport, showed parallel variations. Therefore, for the first time, we have provided evidence that the nuclear membrane fluidity plays a regulatory role in RNA nucleocytoplasmic transport, although the mechanism by which this effect takes place remains to be clarified.
Collapse
Affiliation(s)
- M L Tomassoni
- School of Medicine, University of Perugia, Perugia, 06100, Italy
| | | | | |
Collapse
|
7
|
Abstract
Genome and pre-genome replication in all animal DNA viruses except poxviruses occurs in the cell nucleus (Table 1). In order to reproduce, an infecting virion enters the cell and traverses through the cytoplasm toward the nucleus. Using the cell's own nuclear import machinery, the viral genome then enters the nucleus through the nuclear pore complex. Targeting of the infecting virion or viral genome to the multiplication site is therefore an essential process in productive viral infection as well as in latent infection and transformation. Yet little is known about how infecting genomes of animal DNA viruses reach the nucleus in order to reproduce. Moreover, this nuclear locus for viral multiplication is remarkable in that the sizes and composition of the infectious particles vary enormously. In this article, we discuss virion structure, life cycle to reproduce infectious particles, viral protein's nuclear import signal, and viral genome nuclear targeting.
Collapse
Affiliation(s)
- H Kasamatsu
- Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California at Los Angeles 90095, USA
| | | |
Collapse
|
8
|
D'Santos CS, Clarke JH, Divecha N. Phospholipid signalling in the nucleus. Een DAG uit het leven van de inositide signalering in de nucleus. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1436:201-32. [PMID: 9838115 DOI: 10.1016/s0005-2760(98)00146-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Diverse methodologies, ranging from activity measurements in various nuclear subfractions to electron microscopy, have been used to demonstrate and establish that many of the key lipids and enzymes responsible for the metabolism of inositol lipids are resident in nuclei. PtdIns(4)P, PtdIns(4,5)P2 and PtdOH are all present in nuclei, as well as the corresponding enzyme activities required to synthesise and metabolise these compounds. In addition other non-inositol containing phospholipids such as phosphatidylcholine constitute a significant percentage of the total nuclear phospholipid content. We feel that it is pertinent to include this lipid in our discussion as it provides an alternative source of 1, 2-diacylglycerol (DAG) in addition to the hydrolysis of PtdIns(4, 5)P2. We discuss at length data related to the sources and possible consequences of nuclear DAG production as this lipid appears to be increasingly central to a number of general physiological functions. Data relating to the existence of alternative pathways of inositol phospholipid synthesis, the role of 3-phosphorylated inositol lipids and lipid compartmentalisation and transport are reviewed. The field has also expanded to a point where we can now also begin to address what role these lipids play in cellular proliferation and differentiation and hopefully provide avenues for further research.
Collapse
Affiliation(s)
- C S D'Santos
- The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
9
|
Baker RR, Chang H. MgATP has different inhibitory effects on the use of 1-acyl-lysophosphatidylcholine and lyso platelet-activating factor acceptors by neuronal nuclear acetyltransferase activities. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1392:351-60. [PMID: 9630721 DOI: 10.1016/s0005-2760(98)00050-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The inhibitory effects of MgATP on neuronal nuclear acetyltransferase activities were studied using lyso platelet-activating factor (lyso-PAF, 1-alkyl-sn-glycero-3-phosphocholine) and lysophosphatidylcholine (lyso-PC, 1-acyl-sn-glycero-3-phosphocholine). The nuclear (N1) acetylation of lyso-PC was more profoundly inhibited by MgATP. MgATP did not alter the apparent Km for acetyl-CoA in either acetylation reaction. The inhibitory effects of MgATP were not seen for other nucleotides or MgAMP-PCP. Kinase inhibitors such as staurosporine (1 microM), chelerythrine, and R59022 (diglyceride kinase inhibitor I) did not block the MgATP inhibition of either acetylation. However, the addition of phospholipids to the assays indicated a selective inhibitory effect for PIP (25-50 microM) in the nuclear acetylation of lyso-PAF. When N1 was incubated with [gamma-33P]ATP, phosphatidic acid and PIP were the principal radioactive lipid products. While the extent of MgATP inhibition of lyso-PAF acetylation was similar at different concentrations of lyso-PAF, increasing lyso-PC concentrations greatly decreased the MgATP inhibition seen in lyso-PC acetylations. Nuclear envelopes prepared in the presence of PMSF, and fraction N1 exposed to PMSF, did not show the inhibitory effect of MgATP on lyso-PC acetylation. PMSF (an inhibitor of certain phospholipase and lysophospholipase activities) did not reduce the MgATP inhibition of lyso-PAF acetylation. Arachidonoyl trifluoromethylketone, an inhibitor of cytosolic phospholipases A2 and of lysophospholipase activity associated with cPLA2, also blocked the inhibitory effect of MgATP on lyso-PC acetylation. Using radioactive lyso-PC substrate, fraction N1 produced labeled free fatty acid and phosphatidylcholine. In the presence of acetyl-CoA, the production of radioactive phosphatidylcholine increased almost 6-fold when MgATP was also included in these incubations. In the presence of MgATP and acetyl-CoA, PMSF reduced the levels of radioactive free fatty acid and phosphatidylcholine derived from lyso-PC, while Triacsin C, an inhibitor of acyl CoA synthetase, decreased phosphatidylcholine labeling. These findings suggest that MgATP inhibition of lyso-PC acetylation results from a loss of lyso-PC substrate that is largely mediated by nuclear lysophospholipase, acyl-CoA synthetase and lyso-PC acylation. Thus the neuronal nuclear production of Acyl PAF may be regulated by paths that compete for the lyso-PC substrate. In contrast, the acetylation of lyso-PAF is inhibited by PIP, a product of nuclear PI kinase reactions.
Collapse
Affiliation(s)
- R R Baker
- Division of Neurology, Department of Medicine, Clinical Science Division, Room 6368, Medical Sciences Bldg., University of Toronto, Toronto, Ont., M5S 1A8, Canada
| | | |
Collapse
|
10
|
Czubryt MP, Russell JC, Sarantopoulos J, Pierce GN. Nuclear cholesterol content and nucleoside triphosphatase activity are altered in the JCR:LA-cp corpulent rat. J Cell Biochem 1996; 63:349-57. [PMID: 8913886 DOI: 10.1002/(sici)1097-4644(19961201)63:3<349::aid-jcb10>3.0.co;2-c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A nuclear pore complex-associated nucleoside triphosphatase (NTPase) activity is believed to provide energy for nuclear export of poly(A)+ mRNA. This study was initiated to determine if nuclear membrane lipid composition is altered during chronic hyperlipidemia, and what effect this has on NTPase activity. The JCR:LA-cp corpulent rat model is characterized by severe hypertriglyceridemia and moderate hypercholesterolemia, and thus represents an ideal animal model in which to study nuclear cholesterol and NTPase activity. NTPase activity was markedly increased in purified hepatic nuclei from corpulent female JCR:LA-cp rats in comparison to lean control rats as a function of assay time, [GTP], [ATP], and [Mg2+]. Nuclear membrane cholesterol and phospholipid content were significantly elevated in the corpulent animals. Nuclei of corpulent animals were less resistant to salt-induced lysis than nuclei of lean animals, suggesting a change in relative membrane integrity. Together, these results indicate that altered lipid metabolism in a genetic corpulent animal model can lead to changes in nuclear membrane lipid composition, which in turn may alter nuclear membrane NTPase activity and integrity.
Collapse
Affiliation(s)
- M P Czubryt
- Ion Transport Laboratory, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
11
|
Smith CD, Zhang X. Mechanism of action cryptophycin. Interaction with the Vinca alkaloid domain of tubulin. J Biol Chem 1996; 271:6192-8. [PMID: 8626409 DOI: 10.1074/jbc.271.11.6192] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cryptophycin is a potent antitumor agent that depletes microtubules in intact cells, including cells with the multidrug resistance phenotype. To determine the mechanism of action of cryptophycin, its effects on tubulin function in vitro were analyzed. Cryptophycin reduced the in vitro polymerization of bovine brain microtubules by 50% at a drug:tubulin ratio of 0.1. Cryptophycin did not alter the critical concentration of tubulin required for polymerization, but instead caused substoichiometric reductions in the amount of tubulin that was competent for assembly. Consistent with its persistent effects on intact cells, cryptophycin-treated microtubule protein remained polymerization-defective even after cryptophycin was reduced to sub-inhibitory concentrations. The effects of cryptophycin were not due to denaturation of tubulin and were associated with the accumulation of rings of microtubule protein. The site of cryptophycin interaction with tubulin was examined using functional and competitive binding assays. Cryptophycin blocked the formation of vinblastine-tubulin paracrystals in intact cells and suppressed vinblastine-induced tubulin aggregation in vitro. Cryptophycin inhibited the binding of [3H]vinblastine and the hydrolysis of [gamma32P]GTP by isolated tubulin, but did not block the binding of colchicine. These results indicate that cryptophycin disrupts the Vinca alkaloid site of tubulin; however, the molecular details of this interaction are distinct from those of other antimitotic drugs.
Collapse
Affiliation(s)
- C D Smith
- Department of Pharmacology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | |
Collapse
|
12
|
Csermely P, Schnaider T, Szántó I. Signalling and transport through the nuclear membrane. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1241:425-51. [PMID: 8547304 DOI: 10.1016/0304-4157(95)00015-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- P Csermely
- Institute of Biochemistry I., Semmelweis University, Budapest, Hungary
| | | | | |
Collapse
|
13
|
Randazzo PA, Olshan JS, Bijivi AA, Jarett L. The effect of orthovanadate on phosphoinositide metabolism in NIH 3T3 fibroblasts. Arch Biochem Biophys 1992; 292:258-65. [PMID: 1309296 DOI: 10.1016/0003-9861(92)90077-a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Orthovanadate is an agent known to stimulate cell growth and mimic insulin action. The effects of this compound on phosphoinositides in NIH 3T3 cells were examined. Both 100 and 1000 microM orthovanadate were found to increase the cellular content of inositol phosphate secondary to the activation of phosphatidylinositol-specific phospholipase C (PtdIns-PLC). The time course, dependence on orthovanadate concentration, and sensitivity to the isoflavone genistein were similar for orthovanadate-induced accumulation of inositol phosphate and protein tyrosine phosphate, indicating that there is a correlation between cellular protein tyrosine phosphate levels and PtdIns-PLC activity. Increased phosphatidylinositol phosphate (PtdInsP) content also occurred when cells were incubated with orthovanadate and appeared to result from the activation of PtdIns kinase. This effect was not correlated with cellular protein tyrosine phosphate content. Hence, orthovanadate is shown to affect phosphoinositide metabolism at a minimum of two sites by both tyrosine phosphate-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- P A Randazzo
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104
| | | | | | | |
Collapse
|
14
|
Rodriguez de Turco EB, Spitzer JA. Hepatic phosphatidylinositol kinase activity in continuously endotoxemic rats. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1093:216-22. [PMID: 1650578 DOI: 10.1016/0167-4889(91)90125-h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The activity of phosphatidylinositol (PI) kinase and the content and fatty acid composition of inositol phospholipids (IPLs) were analyzed in the livers of rats that had been continuously infused with Escherichia coli endotoxin (ET) or saline for 30 h. Maximal enzymatic activity in total liver membrane fractions was observed in the presence of 1 mM ATP, 20 mM MgCl2, exogenously added 0.3 mM PI and Triton X-100 (0.25%). The activity of PI kinase for endogenous and exogenous PI was 43 and 79% higher respectively, in ET- as compared with saline-infused rats. The Km of the enzyme for ATP was not altered (0.175 mM), while the apparent Vmax was higher for ET- as compared with saline-infused rats (0.48 and 0.38 nmol of phosphatidylinositol 4-phosphate formed/mg protein per min, respectively). The ET-induced higher activity of PI kinase was paralleled by a 68-78% increase in the content of polyphosphoinositides (PPI), while PI content was unchanged. All IPLs from livers of endotoxemic rats had a lower content of arachidonic acid. We demonstrate for the first time that ET can directly and/or indirectly stimulate the net synthesis of PPI in liver cells. This effect could serve to modulate the PPI derived signals by increasing the availability of the substrate phosphatidylinositol 4,5-bisphosphate.
Collapse
|
15
|
Ochsner M, Creba J, Walker J, Bentley P, Muakkassah-Kelly SF. Nafenopin, a hypolipidemic and non-genotoxic hepatocarcinogen increases intracellular calcium and transiently decreases intracellular pH in hepatocytes without generation of inositol phosphates. Biochem Pharmacol 1990; 40:2247-57. [PMID: 2244926 DOI: 10.1016/0006-2952(90)90719-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Addition of nafenopin (30-300 microM to 45Ca2+ preloaded cultured hepatocytes caused a rapid and concentration-dependent increase in 45Ca2+ efflux in a manner similar to vasopressin, as evidenced by the loss of radioactivity from the cells. In contrast to vasopressin, addition of nafenopin to [3H]inositol prelabelled hepatocytes in culture did not increase [3H]inositol phosphate production. When added simultaneously with vasopressin, nafenopin inhibited the vasopressin-stimulated [3H]inositol phosphate production. In hepatocyte suspensions isolated from rats treated for 1 week with a carcinogenic dose of nafenopin (1000 ppm in their daily food) the incorporation of [3H]inositol into the phosphoinositide fraction, particularly phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate, was much less than that in hepatocytes isolated from untreated rats. The vasopressin-stimulated [3H]inositol phosphate production was also decreased. Experiments with hepatocyte suspensions preloaded with Ca2+ or pH sensitive fluorescent indicators demonstrated that addition of nafenopin caused an increase in intracellular free Ca2+ and transient acidification of the cells. The increase in [Ca2+]i was decreased by only about 25% when extracellular calcium was removed indicating that nafenopin mainly mobilizes Ca2+ from intracellular stores. The recovery to basal pH was amiloride-sensitive indicating the importance of Na+/H+ exchange in pH recovery after intracellular acidification. Amiloride also inhibited DNA synthesis induced by nafenopin and by epidermal growth factor in cultured hepatocytes; but this effect occurred concomitantly with inhibition of basal DNA synthesis. We suggest that hepatic Ca2+ mobilization induced by nafenopin may play an important role in the mechanism by which nafenopin exerts its physiological as well as its tumour promotive activity upon chronic treatment with carcinogenic doses.
Collapse
Affiliation(s)
- M Ochsner
- Central Physics Unit, Ciba-Geigy Ltd, Basel, Switzerland
| | | | | | | | | |
Collapse
|
16
|
Baker RR, Chang H. Phosphatidylinositol synthetase activities in neuronal nuclei and microsomal fractions isolated from immature rabbit cerebral cortex. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1042:55-61. [PMID: 2153412 DOI: 10.1016/0005-2760(90)90056-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The synthesis of phosphatidylinositol was studied using a nuclear fraction N1, a microsomal fraction P3, rough (R) and smooth (S) microsomal fractions and a microsomal fraction P derived from isolated nerve cell bodies. Each fraction was prepared using cerebral cortices of 15-day-old rabbits. In assays using CDP-diacylglycerol (prepared from egg phosphatidylcholine) and myo[3H]inositol at pH 7.4, fraction N1 had the highest maximal specific rates of phosphatidylinositol synthetase (EC 2.7.8.11) (expressed per mumol phospholipid in the fraction). However the three microsomal fractions achieved maximal specific activities at liponucleotide concentrations close to 50 microM, while fraction N1 required 200 microM concentrations. In certain cases (25-120 microM CDP-diacylglycerol, and at higher pH values) fraction R had specific activities which equalled or surpassed those of N1. However, with respect to inositol, fraction N1 had a distinctly lower Km than was shown for fractions R or P3. Each of the microsomal fractions and N1 required Mg2+ for the reaction, but for N1, maximal rates could be sustained at 0.1 mM, while for the microsomal fractions the optimal Mg2+ concentration was 1 mM. For each fraction Mn2+ could not replace Mg2+ in the reaction and Mn2+ was inhibitory. The optimal pH for the reaction was between 8.0 and 9.0. Phosphatidylinositol synthetase could also be shown using fraction N1 enriched in endogenous CDP-diacylglycerol. The relatively high specific activities of fraction N1, and the differences found between N1 and the microsomal fractions, for optimal CDP-diacylglycerol and Mg2+ concentrations and for Km values for inositol, support the existence of a neuronal nuclear phosphatidylinositol synthetase.
Collapse
Affiliation(s)
- R R Baker
- Department of Medicine, University of Toronto, Canada
| | | |
Collapse
|
17
|
Wakizaka A, Imai H, Aiba N, Okuhara E. Enhanced ATPase activity in liver cell nuclei induced by administration of mitomycin C to rats. Jpn J Cancer Res 1989; 80:1206-11. [PMID: 2534122 PMCID: PMC5917938 DOI: 10.1111/j.1349-7006.1989.tb01656.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Intraperitoneal administration of mitomycin C (40 micrograms/100 g body weight) to male Wistar rats increased the ATPase activity in hypotonic extracts of liver cell nuclei for 4 days after injection. Partially purified ATPase, obtained by the DEAE-cellulose column chromatography of these extracts, showed a 14 times higher specific activity than that found in normal rat liver nuclei. The enzymatic activity was strongly enhanced by the addition of polynucleotides, especially poly A and poly I, to the assay mixture, but was inhibited by GTP, a chelating agent, heparin and thiol-group inhibitors. Quercetin and oligomycin were less effective, and ouabain showed no inhibitory effect. Mg2+ ions were essential, but neither Ca2+, Na+ nor K+ ions were required for the manifestation of the activity. These characteristic properties of the enzyme are similar to those of a nucleoside triphosphatase found in the nuclear matrix and envelope, suggesting that some energy-providing mechanisms involved in the repair processes of DNA damage or cellular injury are induced by mitomycin C administration.
Collapse
Affiliation(s)
- A Wakizaka
- Department of Biochemistry, Akita University School of Medicine
| | | | | | | |
Collapse
|
18
|
|
19
|
Auger KR, Serunian LA, Soltoff SP, Libby P, Cantley LC. PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell 1989; 57:167-75. [PMID: 2467744 DOI: 10.1016/0092-8674(89)90182-7] [Citation(s) in RCA: 740] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A phosphatidylinositol (PI) kinase activity associated with certain protein tyrosine kinases important in cell proliferation phosphorylates the 3' hydroxyl position of PI to produce phosphatidylinositol-3-phosphate (PI-3-P). Here we report that, in addition to PI-3' kinase activity, anti-phosphotyrosine (alpha-P-tyr) immunoprecipitates from platelet-derived growth factor (PDGF)-stimulated smooth muscle cells (SMC) contain lipid kinase activities that utilize the substrates phosphatidylinositol-4-phosphate (PI-4-P) and phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2). These activities are absent in alpha-P-tyr immunoprecipitates from quiescent SMC. The product of PI-4-P phosphorylation appears to be phosphatidylinositol-3,4-bisphosphate (PI-3,4-P2), a lipid not previously reported. The product of PI-4,5-P2 phosphorylation is phosphatidylinositol-trisphosphate (PIP3). PI-3-P was detected in quiescent SMC and increased only slightly in response to PDGF. PIP3 and the putative PI-3,4-P2 appeared only after the addition of mitogen. Both the temporal production of these novel phospholipids after PDGF stimulation and the observation of the enzymatic activities that produce them in alpha-P-tyr immunoprecipitates suggest that these phospholipids are excellent candidates for mediators of the PDGF mitogenic response.
Collapse
Affiliation(s)
- K R Auger
- Department of Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | | | | | | |
Collapse
|
20
|
Schröder HC, Diehl-Seifert B, Rottmann M, Messer R, Bryson BA, Agutter PS, Müller WE. Functional dissection of nuclear envelope mRNA translocation system: effects of phorbol ester and a monoclonal antibody recognizing cytoskeletal structures. Arch Biochem Biophys 1988; 261:394-404. [PMID: 2895607 DOI: 10.1016/0003-9861(88)90355-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Unidirectional transport of poly(A)-containing mRNA [poly(A)+ mRNA] through the nuclear envelope pore complex is thought to be an energy (ATP or GTP)-dependent process which involves a nuclear envelope nucleoside triphosphatase (NTPase). In the intact envelope, this enzyme is regulatable by poly(A) binding and by poly(A)-dependent phosphorylation/dephosphorylation of other components of the mRNA translocation system, which are as yet unidentified. Monoclonal antibodies (mAbs) were elicited against the poly(A) binding nuclear envelope fraction isolated from rat liver. The mAbs were screened for their modulatory effects on mRNA transport in vitro. One stable clone decreased the efflux of rapidly labeled RNA and of one specific mRNA (ovalbumin) from isolated nuclei. It increased the binding of poly(A) to the envelope and increased the maximal catalytic rate of the NTPase, but it did not alter the apparent Km of the enzyme or the extent of its stimulation by poly(A). The nuclear envelope-associated protein kinase that down-regulates the NTPase was inhibited by the antibody, while other protein kinases were not affected. Because both the NTPase and mRNA efflux were inhibited by the tumor promoter, 12-O-tetradecanoylphorbol 13-acetate, the sensitive kinase is probably protein kinase C. Protein kinase C was found to be associated with the isolated nuclear envelope. The antibody reacted with both a Mr 83,000 and a Mr 65,000 nuclear envelope polypeptide from rat liver and other tissues. By immunofluorescence microscopy in CV-1 cells, the antibody localized to the nuclear envelope and, in addition, to cytoplasmic filaments which show some superposition with the microfilament network.
Collapse
Affiliation(s)
- H C Schröder
- Institut für Physiologische Chemie, Universität, Mainz, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Nucleo-Cytoplasmic Transport of mRNA: Its Relationship to RNA Metabolism, Subcellular Structures and Other Nucleocytoplasmic Exchanges. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1988. [DOI: 10.1007/978-3-642-73599-8_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Schröder HC, Trölltsch D, Wenger R, Bachmann M, Diehl-Seifert B, Müller WE. Cytochalasin B selectively releases ovalbumin mRNA precursors but not the mature ovalbumin mRNA from hen oviduct nuclear matrix. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 167:239-45. [PMID: 3650154 DOI: 10.1111/j.1432-1033.1987.tb13329.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hen oviduct nuclear matrix-bound mature ovalbumin mRNA is released from the matrix in the presence of ATP, while the ovalbumin mRNA precursors remain bound to this structure. Detachment of the mature mRNA from the matrix by ATP as well as ATP-dependent efflux of mRNA from isolated nuclei were found to be inhibited by cytochalasin B. On the other hand, in the absence of ATP, cytochalasin B exclusively caused the release (and nucleocytoplasmic efflux) of the ovalbumin messenger precursors, but not of the mature mRNA. After cytochalasin B treatment, actin could be detected in the matrix supernatant. Phalloidin which stabilizes actin filaments did not cause RNA liberation in the absence of ATP, but inhibited the ATP-induced detachment of mature mRNA. RNA release was also achieved with a monoclonal antibody against actin but not with monoclonal antibodies against tubulin and intermediate filaments. These results suggest that actin-containing filaments are involved in the restriction of immature messengers to the cell nucleus.
Collapse
|
23
|
Schröder HC, Trölltsch D, Friese U, Bachmann M, Müller WE. Mature mRNA is selectively released from the nuclear matrix by an ATP/dATP-dependent mechanism sensitive to topoisomerase inhibitors. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47502-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
Schröder HC, Bachmann M, Diehl-Seifert B, Müller WE. Transport of mRNA from nucleus to cytoplasm. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1987; 34:89-142. [PMID: 3326042 DOI: 10.1016/s0079-6603(08)60494-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
25
|
Schröder HC, Rottmann M, Bachmann M, Müller WE, McDonald AR, Agutter PS. Proteins from rat liver cytosol which stimulate mRNA transport. Purification and interactions with the nuclear envelope mRNA translocation system. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 159:51-9. [PMID: 3017718 DOI: 10.1111/j.1432-1033.1986.tb09832.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two polysome-associated proteins with particular affinities for poly(A) have been purified from rat liver. These proteins stimulate the efflux of mRNA from isolated nuclei in conditions under which such efflux closely stimulates mRNA transport in vivo, and they are therefore considered as mRNA-transport-stimulatory proteins. Their interaction with the mRNA-translocation system in isolated nuclear envelopes has been studied. The results are generally consistent with the most recently proposed kinetic model of mRNA translocation. One protein, P58, has not been described previously. It inhibits the protein kinase that down-regulates the NTPase, it enhances the NTPase activity in both the presence and the absence of poly(A) and it seems to increase poly(A) binding in unphosphorylated, but not in phosphorylated, envelopes. The other protein, P31, which probably corresponds to the 35,000-Mr factor described by Webb and his colleagues, enhances the binding of poly(A) to the mRNA-binding site in the envelope, thus stimulating the phosphoprotein phosphatase and, in consequence, the NTPase. The possible physiological significance of these two proteins is discussed.
Collapse
|
26
|
Purification and characterization of the major nucleoside triphosphatase from rat liver nuclear envelopes. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)36144-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
27
|
Abstract
A number of closely related post-transcriptional facets of RNA metabolism show nuclear compartmentation, including capping, methylation, splicing reactions, and packaging in ribonucleoprotein particles (RNP). These nuclear 'processing' events are followed by the translocation of the finished product across the nuclear envelope. Due to the inherent complexity of these interrelated events, in vitro systems have been designed to examine the processes separately, particularly so with regard to translocation. A few studies have utilized nuclear transplantation/microinjection techniques and specialized systems to show that RNA transport occurs as a regulated phenomenon. While isolated nuclei swell in aqueous media and dramatic loss of nuclear protein is associated with this swelling, loss of RNA is not substantial, and most studies on RNA translocation have employed isolated nuclei. The quantity of RNA transported from isolated nuclei is related to hydrolysis of high-energy phosphate bonds in nucleotide additives. The RNA is released predominantly in RNP: messenger-like RNA is released in RNP which have buoyant density and polypeptide composition similar to cytoplasmic messenger RNP, but which have distinctly different composition from those in heterogeneous nuclear RNP. Mature 18 and 28S ribosomal RNA is released in 40 and 60S RNP which represent mature ribosomal subunits. RNA transport proceeds with characteristics of an energy-requiring process, and proceeds independently of the presence or state of fluidity of nuclear membranes. The energy for transport appears to be utilized by a nucleoside triphosphatase (NTPase) which is distributed mainly within heterochromatin at the peripheral lamina. Photoaffinity labeling has identified the pertinent NTPase as a 46 kD polypeptide which is associated with nuclear envelope and matrix preparations. The NTPase does not appear to be modulated via direct phosphorylation or to reflect kinase-phosphatase activities. A large number of additives (including RNA and insulin) produce parallel effects upon RNA transport and nuclear envelope NTPase, strengthening the correlative relationship between these activities. Of particular interest has been the finding that carcinogens induce specific, long-lasting increases in nuclear envelope (and matrix) NTPase; this derangement may underlie the alterations in RNA transport associated with cancer and carcinogenesis.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
28
|
Clawson GA, Button J, Smuckler EA. Photoaffinity labelling of a nuclear matrix nucleoside triphosphatase and its modulation in the acute-phase response. Exp Cell Res 1985; 159:171-5. [PMID: 2411577 DOI: 10.1016/s0014-4827(85)80046-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Photoaffinity labelling has been used to identify the major nuclear matrix nucleoside triphosphatase (NTPase) as a 46 kD polypeptide, which appears to represent the same polypeptide photolabelled in nuclear envelope. Nuclear matrix NTPase and its photolabelling were selectively decreased in the acute phase response of rat liver, which also encompasses decreases (30%) in RNA transport in vitro and nuclear envelope NTPase. These results, and quantitative considerations suggest that the NTPase correlatively linked to RNA transport is not solubilized by detergents; it appears to represent a nuclear matrix component.
Collapse
|
29
|
Whitman M, Kaplan DR, Schaffhausen B, Cantley L, Roberts TM. Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 1985; 315:239-42. [PMID: 2987699 DOI: 10.1038/315239a0] [Citation(s) in RCA: 648] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Polyoma middle-T antigen is required for viral transformation of cultured cells and for tumorigenesis in animals. Like many other transforming gene products, middle-T is bound to the membrane and has an associated tyrosine kinase activity in vitro. This activity seems to result from the interaction of middle-T with pp60c-src, the cellular homologue of the transforming gene product of the Rous sarcoma virus, pp60v-src (refs 3-5). Both pp60v-src (ref. 6) and another retrovirus transforming gene product, pp68v-ros (ref. 7) were shown recently to have an associated phosphatidylinositol (PI) kinase activity in vitro and to increase PI turnover in vivo. These results suggest that viral transformation may be directly connected to a complex network of second messengers generated from PI turnover. Here, we assayed for PI kinase activity in immunoprecipitates made with middle-T- or pp60c-src-specific antisera of cells infected with polyoma virus. A PI kinase activity was detected in those immunoprecipitates which contained middle-T. Studies of mutants of middle-T defective in transformation indicate a close correlation between PI kinase activity and transformation.
Collapse
|