1
|
Kim S, Chang JH. Structural Analysis of Spermidine Synthase from Kluyveromyces lactis. Molecules 2023; 28:molecules28083446. [PMID: 37110680 PMCID: PMC10146546 DOI: 10.3390/molecules28083446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Spermidine is a polyamine molecule that performs various cellular functions, such as DNA and RNA stabilization, autophagy modulation, and eIF5A formation, and is generated from putrescine by aminopropyltransferase spermidine synthase (SpdS). During synthesis, the aminopropyl moiety is donated from decarboxylated S-adenosylmethionine to form putrescine, with 5'-deoxy-5'-methylthioadenosine being produced as a byproduct. Although the molecular mechanism of SpdS function has been well-established, its structure-based evolutionary relationships remain to be fully understood. Moreover, only a few structural studies have been conducted on SpdS from fungal species. Here, we determined the crystal structure of an apo-form of SpdS from Kluyveromyces lactis (KlSpdS) at 1.9 Å resolution. Structural comparison with its homologs revealed a conformational change in the α6 helix linked to the gate-keeping loop, with approximately 40° outward rotation. This change caused the catalytic residue Asp170 to move outward, possibly due to the absence of a ligand in the active site. These findings improve our understanding of the structural diversity of SpdS and provide a missing link that expands our knowledge of the structural features of SpdS in fungal species.
Collapse
Affiliation(s)
- Seongjin Kim
- Department of Biology Education, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Science Education Research Institute, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| |
Collapse
|
2
|
Crystal structure of thermospermine synthase from Medicago truncatula and substrate discriminatory features of plant aminopropyltransferases. Biochem J 2018; 475:787-802. [PMID: 29367265 DOI: 10.1042/bcj20170900] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 01/06/2023]
Abstract
Polyamines are linear polycationic compounds that play a crucial role in the growth and development of higher plants. One triamine (spermidine, SPD) and two tetraamine isomers (spermine, SPM, and thermospermine, TSPM) are obtained by the transfer of the aminopropyl group from decarboxylated S-adenosylmethionine to putrescine and SPD. These reactions are catalyzed by the specialized aminopropyltransferases. In that respect, plants are unique eukaryotes that have independently evolved two enzymes, thermospermine synthase (TSPS), encoded by the gene ACAULIS5, and spermine synthase, which produce TSPM and SPM, respectively. In this work, we structurally characterize the ACAULIS5 gene product, TSPS, from the model legume plant Medicago truncatula (Mt). Six crystal structures of MtTSPS - one without ligands and five in complexes with either reaction substrate (SPD), reaction product (TSPM), or one of three cofactor analogs (5'-methylthioadenosine, S-adenosylthiopropylamine, and adenosine) - give detailed insights into the biosynthesis of TSPM. Combined with small-angle X-ray scattering data, the crystal structures show that MtTSPS is a symmetric homotetramer with an interdomain eight-stranded β-barrel. Such an assembly and the presence of a hinge-like feature between N-terminal and C-terminal domains give the protein additional flexibility which potentially improves loading substrates and discarding products after the catalytic event. We also discuss the sequence and structural features around the active site of the plant aminopropyltransferases that distinguish them from each other and determine their characteristic substrate discrimination.
Collapse
|
3
|
Lee MJ, Yang YT, Lin V, Huang H. Site-directed mutations of the gatekeeping loop region affect the activity of Escherichia coli spermidine synthase. Mol Biotechnol 2012; 54:572-80. [PMID: 23001854 DOI: 10.1007/s12033-012-9599-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Spermidine synthase catalyzes the production of spermidine from putrescine and decarboxylated S-adenosylmethionine (dcSAM), and plays a crucial role in cell proliferation and differentiation. The gatekeeping loop identified in the structure of spermidine synthase was predicted to contain residues important for substrate binding, but its correlation with enzyme catalysis has not been fully understood. In this study, recombinant Escherichia coli spermidine synthase (EcSPDS) was produced and its enzyme kinetics was characterized. Site-directed mutants of EcSPDS were obtained to demonstrate the importance of the amino acid residues in the gatekeeping loop. Substitution of Asp158 and Asp161 with alanine completely abolished EcSPDS activity, suggesting that these residues are absolutely required for substrate interaction. Reduction in enzyme activity was observed in the C159A, T160A, and P165Q variants, indicating that hydrophobic interactions contributed by Cys159, Thr160, and Pro165 are important for enzyme catalysis as well. On the other hand, replacement of Pro162 and Ile163 had no influence on EcSDPS activity. These results indicate that residues in the gatekeeping loop of spermidine synthase are indispensable for the catalytic reaction of EcSPDS. To the best of our knowledge, this is the first functional study on the gatekeeping loop of EcSPDS by site-directed mutagenesis.
Collapse
Affiliation(s)
- Mon-Juan Lee
- Department of Bioscience Technology, Chang Jung Christian University, Tainan, Taiwan
| | | | | | | |
Collapse
|
4
|
Biastoff S, Brandt W, Dräger B. Putrescine N-methyltransferase--the start for alkaloids. PHYTOCHEMISTRY 2009; 70:1708-18. [PMID: 19651420 DOI: 10.1016/j.phytochem.2009.06.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 06/08/2009] [Accepted: 06/12/2009] [Indexed: 05/08/2023]
Abstract
Putrescine N-methyltransferase (PMT) catalyses S-adenosylmethionine (SAM) dependent methylation of the diamine putrescine. The product N-methylputrescine is the first specific metabolite on the route to nicotine, tropane, and nortropane alkaloids. PMT cDNA sequences were cloned from tobacco species and other Solanaceae, also from nortropane-forming Convolvulaceae and enzyme proteins were synthesised in Escherichia coli. PMT activity was measured by HPLC separation of polyamine derivatives and by an enzyme-coupled colorimetric assay using S-adenosylhomocysteine. PMT cDNA sequences resemble those of plant spermidine synthases (putrescine aminopropyltransferases) and display little similarity to other plant methyltransferases. PMT is likely to have evolved from the ubiquitous enzyme spermidine synthase. PMT and spermidine synthase proteins share the same overall protein structure; they bind the same substrate putrescine and similar co-substrates, SAM and decarboxylated S-adenosylmethionine. The active sites of both proteins, however, were shaped differentially in the course of evolution. Phylogenetic analysis of both enzyme groups from plants revealed a deep bifurcation and confirmed an early descent of PMT from spermidine synthase in the course of angiosperm development.
Collapse
Affiliation(s)
- Stefan Biastoff
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | | | | |
Collapse
|
5
|
Dufe VT, Qiu W, Müller IB, Hui R, Walter RD, Al-Karadaghi S. Crystal structure of Plasmodium falciparum spermidine synthase in complex with the substrate decarboxylated S-adenosylmethionine and the potent inhibitors 4MCHA and AdoDATO. J Mol Biol 2007; 373:167-77. [PMID: 17822713 DOI: 10.1016/j.jmb.2007.07.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/11/2007] [Accepted: 07/21/2007] [Indexed: 10/23/2022]
Abstract
Plasmodium falciparum is the causative agent of the most severe type of malaria, a life-threatening disease affecting the lives of over three billion people. Factors like widespread resistance against available drugs and absence of an effective vaccine are seriously compounding control of the malaria parasite. Thus, there is an urgent need for the identification and validation of new drug targets. The enzymes of the polyamine biosynthesis pathway have been suggested as possible targets for the treatment of malaria. One of these enzymes is spermidine synthase (SPDS, putrescine aminopropyltransferase), which catalyzes the transfer of an aminopropyl moiety from decarboxylated S-adenosylmethionine (dcAdoMet) to putrescine, leading to the formation of spermidine and 5'-methylthioadenosine. Here we present the three-dimensional structure of P. falciparum spermidine synthase (pfSPDS) in apo form, in complex with dcAdoMet and two inhibitors, S-adenosyl-1,8-diamino-3-thio-octane (AdoDATO) and trans-4-methylcyclohexylamine (4MCHA). The results show that binding of dcAdoMet to pfSPDS stabilizes the conformation of the flexible gatekeeper loop of the enzyme and affects the conformation of the active-site amino acid residues, preparing the protein for binding of the second substrate. The complexes of AdoDATO and 4MCHA with pfSPDS reveal the mode of interactions of these compounds with the enzyme. While AdoDATO essentially fills the entire active-site pocket, 4MCHA only occupies part of it, which suggests that simple modifications of this compound may yield more potent inhibitors of pfSPDS.
Collapse
Affiliation(s)
- Veronica Tamu Dufe
- Department of Molecular Biophysics, Center for Molecular Protein Science, Lund University, S-221 00 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
6
|
Schlenk F. Methylthioadenosine. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 54:195-265. [PMID: 6405586 DOI: 10.1002/9780470122990.ch4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Haider N, Eschbach ML, Dias SDS, Gilberger TW, Walter RD, Lüersen K. The spermidine synthase of the malaria parasite Plasmodium falciparum: Molecular and biochemical characterisation of the polyamine synthesis enzyme. Mol Biochem Parasitol 2005; 142:224-36. [PMID: 15913804 DOI: 10.1016/j.molbiopara.2005.04.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 03/24/2005] [Accepted: 04/18/2005] [Indexed: 10/25/2022]
Abstract
The gene encoding spermidine synthase was cloned from the human malaria parasite Plasmodium falciparum. Northern and Western blot analyses revealed a stage specific expression during the erythrocytic schizogony with the maximal amount of transcript and protein in mature trophozoites. Immunofluorescence assays (IFAs) suggest a cytoplasmatic localisation of the spermidine synthase in P. falciparum. The spermidine synthase polypeptide of 321 amino acids has a molecular mass of 36.6kDa and contains an N-terminal extension of unknown function that, similarly, is also found in certain plants but not in animal or bacterial orthologues. Omitting the first 29 amino acids, a truncated form of P. falciparum spermidine synthase has been recombinantly expressed in Escherichia coli. The enzyme catalyses the transfer of an aminopropyl group from decarboxylated S-adenosylmethionine (dcAdoMet) onto putrescine with Km values of 35 and 52microM, respectively. In contrast to mammalian spermidine synthases, spermidine can replace to some extent putrescine as the aminopropyl acceptor. Hence, P. falciparum spermidine synthase has the capacity to catalyse the formation of spermine that is found in small amounts in the erythrocytic stages of the parasite. Among the spermidine synthase inhibitors tested against P. falciparum spermidine synthase, trans-4-methylcyclohexylamine (4MCHA) was found to be most potent with a Ki value of 0.18microM. In contrast to the situation in mammals, where inhibition of spermidine synthase has no or only little effect on cell proliferation, 4MCHA was an efficient inhibitor of P. falciparum cell growth in vitro with an IC50 of 35microM, indicating that P. falciparum spermidine synthase represents a putative drug target.
Collapse
Affiliation(s)
- Nashya Haider
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, D-20359 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Morana A, Stiuso P, Colonna G, Lamberti M, Cartenì M, De Rosa M. Stabilization of S-adenosyl-L-methionine promoted by trehalose. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1573:105-8. [PMID: 12399019 DOI: 10.1016/s0304-4165(02)00333-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
S-adenosyl-L-methionine (SAM), an important metabolic intermediate of mammals, is a well-known therapeutic agent. The molecule is chemically unstable, both in solution and in dry state, and forms different degradation products. Because the chemical instability represents a real problem during the preparation of therapeutic formulations, we investigated the capacity of some sugars to improve the SAM stability over time. In the present work, we demonstrated that the disaccharide trehalose exercises a protective effect towards the lyophilized SAM slackening its degradation (65% of SAM was detected after 50 days at 37 degrees C). A parallel study, performed to stabilize the SAM into lyophilized yeast cells enriched in the sulfonium compound, assessed the positive effect of trehalose also in whole cells, but in lesser measure.
Collapse
Affiliation(s)
- Alessandra Morana
- Istituto di Biochimica delle Proteine, CNR, via P. Castellino 111, 80131 Naples, Italy.
| | | | | | | | | | | |
Collapse
|
9
|
Morana A, De Rosa A, Cartenì M, Parlato M, De Rosa M. S-adenosyl-L-methionine N-ole-1-oyltaurate: pharmacokinetic of the orally administered salt in rats. Int J Pharm 2001; 230:47-55. [PMID: 11672955 DOI: 10.1016/s0378-5173(01)00858-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A pharmacokinetic study based on the distribution of radioactivity from the double labelled S-adenosyl-L-methionine (SAM) has been carried out by oral administration of the liposoluble stable salt [methyl-(14)C, 8-(3)H]SAM N-ole-1-oyltaurate to rats. The SAM sulfate p-toluensulfonate salt, the only SAM salt at present commercialized as drug, was chosen as reference compound to have a comparative pharmacokinetic analysis. The metabolism of the SAM is characterised by a differential use of the two labelled moieties by the various organs, liver being the most active in metabolizing the sulfonium compound with a preferential uptake of the methyl-(14)C fragment. The radioactivity detected after the administration of [methyl-(14)C, 8-(3)H]SAM N-ole-1-oyltaurate is, in all the organs examined, two times higher than the [methyl-(14)C, 8-(3)H]SAM sulfate p-toluensulfonate compound, attesting that the liposoluble [methyl-(14)C, 8-(3)H]SAM N-ole-1-oyltaurate is provided with better bioavailability.
Collapse
Affiliation(s)
- A Morana
- Istituto di Scienze dell' Alimentazione, CNR, via Roma 52 A/C, 83100 Avellino, Italy.
| | | | | | | | | |
Collapse
|
10
|
Yoon SO, Lee YS, Lee SH, Cho YD. Polyamine synthesis in plants: isolation and characterization of spermidine synthase from soybean (Glycine max) axes. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1475:17-26. [PMID: 10806333 DOI: 10.1016/s0304-4165(00)00039-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Spermidine synthase (EC 2.5.1.16) was purified to homogeneity for the cytosol of soybean (Glycine max) axes using ammonium sulfate fractionation and chromatography on DEAE-Sephacel, Sephacryl S-300, omega-aminooctyl-Sepharose and ATPA-Sepharose. The molecular mass of the enzyme estimated by gel filtration and SDS-PAGE is 74 kDa. Cadaverin and 1,6-diaminohexane could not replace putrescine as the aminopropyl acceptor. Kinetic behaviors of the substrate are consistent with a ping pong mechanism. The kinetic mechanism is further supported by direct evidence confirming the presence of an aminopropylated enzyme and identification of product, 5'-deoxy-5'-methylthioadenosine, prior to adding putrescine. The Km values for decarboxylated S-adenosylmethionine and putrescine are 0.43 microM and 32.45 microM, respectively. Optimum pH and temperature for the enzyme reaction are 8.5 and 37 degrees C, respectively. The enzyme activity is inhibited by N-ethylmaleimide and DTNB, but stimulated by Co2+, Cu2+ and Ca2+ significantly, suggesting that these metal ions could be the cellular regulators in polyamine biosynthesis.
Collapse
Affiliation(s)
- S O Yoon
- Department of Biochemistry, College of Science, Yonsei University, Seoul, South Korea
| | | | | | | |
Collapse
|
11
|
Reeve AM, Breazeale SD, Townsend CA. Purification, characterization, and cloning of an S-adenosylmethionine-dependent 3-amino-3-carboxypropyltransferase in nocardicin biosynthesis. J Biol Chem 1998; 273:30695-703. [PMID: 9804844 DOI: 10.1074/jbc.273.46.30695] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S-Adenosylmethionine:nocardicin 3-amino-3-carboxypropyltransferase catalyzes the biosynthetically rare transfer of the 3-amino-3-carboxypropyl moiety from S-adenosylmethionine to a phenolic site in the beta-lactam substrates nocardicin E, F, and G, a late step of the biosynthesis of the monocyclic beta-lactam antibiotic nocardicin A. Whereas a number of conventional methods were ineffective in purifying the transferase, it was successfully obtained by two complementary affinity chromatography steps that took advantage of the two substrate-two product reaction scheme. S-Adenosylhomocysteine-agarose selected enzymes that utilize S-adenosylmethionine, and a second column, nocardicin A-agarose, specifically bound the desired transferase to yield the enzyme as a single band of 38 kDa on a silver-stained SDS-polyacrylamide gel. The transferase is active as a monomer and exhibits sequential kinetics. Further kinetic characterization of this protein is described and its role in the biosynthesis of nocardicin A discussed. The gene encoding this transferase was cloned from a sublibrary of Nocardia uniformis DNA. Translation gave a protein of deduced mass 32,386 Da which showed weak homology to small molecule methyltransferases. However, three correctly disposed signature motifs characteristic of these enzymes were observed.
Collapse
Affiliation(s)
- A M Reeve
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
12
|
Pontoni G, Lopalco L, De Maria S, Zambardino U, Carteni-Farina M, Siccardi AG, Zappia V. Studies on propylamine transfer activity in anti-AdoDATO antibodies. Amino Acids 1997. [DOI: 10.1007/bf01373010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Cacciapuoti G, Porcelli M, Cartenì-Farina M, Gambacorta A, Zappia V. Purification and characterization of propylamine transferase from Sulfolobus solfataricus, an extreme thermophilic archaebacterium. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 161:263-71. [PMID: 3096734 DOI: 10.1111/j.1432-1033.1986.tb10442.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The enzyme propylamine transferase, catalyzing the transfer of the propylamine moiety from S-adenosyl(5')-3-methylthiopropylamine to several amine acceptors, has been purified 643-fold in 20% yield from Sulfolobus solfataricus, an extreme thermophilic archaebacterium optimally growing at 87 degrees C. The purified enzyme (specific activity 2.05 units/mg protein), is homogeneous by criteria of gel electrophoresis, gel filtration, isoelectric focusing and ultracentrifugation analysis. The molecular mass of the native enzyme was estimated to be about 110 kDa by gel permeation and ultracentrifugation analysis. The protein migrates on SDS/polyacrylamide gel electrophoresis as a single band of 35 kDa, suggesting that the enzyme is a trimer composed by identical subunits. An optimum pH of 7.5 and an acidic isoelectric point of 5.3 have been calculated. The optimum temperature was 90 degrees C and no loss of activity is observable even after exposure of the purified enzyme to 100 degrees C for 1 h. No reducing agents are required for enzymatic activity. Substrate specificity towards the amine acceptors is rather broad in that 1,3-diaminopropane (Km = 1675 microM), putrescine (Km = 3850 microM), sym-norspermidine (Km = 954 microM) and spermidine (Km = 1539 microM) are recognized as substrates. Conversely S-adenosyl(5')-3-methylthiopropylamine is the only propylamine donor (Km = 7.9 microM) and the deamination of the sulfonium compound prevents the recognition by the enzyme. The reaction is irreversible and initial-rate kinetic studies indicate that the propylamine transfer is operated through a sequential mechanism. 5'-Methylthioadenosine, a product of the reaction, acts as a powerful competitive inhibitor with a Ki of 3.7 microM. Enzyme-substrate binding sites have been investigated with the aid of several substrate analogs and products. Among the compounds assayed, 5'-methylthiotubercidin, S-adenosyl(5')-3-thiopropylamine and S-adenosyl-3-thio-1,8-diaminooctane are the most active inhibitors.
Collapse
|
14
|
Cartenì-Farina M, Cacciapuoti G, Porcelli M, Della Ragione F, Lancieri M, Geraci G, Zappia V. Studies on the metabolic effects of methylthioformycin. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 805:158-64. [PMID: 6435689 DOI: 10.1016/0167-4889(84)90163-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
5'-Methylthioformycin, a structural analog of 5'-methylthioadenosine in which the N-C glycosidic bond is substituted by a C-C bond, has been synthesized by a newly developed procedure. Membrane permeability of the molecule has been compared to that of methylthioadenosine in intact human erythrocytes and Friend erythroleukemia cells. The formycinyl compound is taken up with a rate significantly lower than that of 5'-methylthioadenosine and is not metabolized by the cells. 5'-Methylthioformycin inhibits Friend erythroleukemia cells' growth: the effect is dose-dependent, fully reversible and not caused by cytotoxicity. Several enzymes related to methylthioadenosine metabolism are inhibited by methylthioformycin. Rat liver methylthioadenosine phosphorylase is competitively inhibited with a Ki value of 2 microM. Among the propylamine transferases tested only rat brain spermine synthase is significantly inhibited, while rat brain spermidine synthase is less sensitive. Rat liver S-adenosylhomocysteine hydrolase is irreversibly inactivated with 50% inhibition at 400 microM methylthioformycin. 5'-Methylthioformycin does not exert any significant effect on protein carboxyl-O-methyltransferase. Inferences about the mechanism of the antiproliferative effect of the drug have been drawn from the above results.
Collapse
|
15
|
Zappia V, Cartenì-Farina M, Galletti P, Della Ragione F, Cacciapuoti G. High-performance liquid chromatographic analysis of adenosyl-sulfur compounds related to polyamine biosynthesis. Methods Enzymol 1983; 94:57-66. [PMID: 6621402 DOI: 10.1016/s0076-6879(83)94010-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Pontoni G, Coward JK, Orr GR, Gould SJ. Stereochemical studies of enzyme-catalyzed alkyl-transfer reactions. An NMR method for distinguishing between the two prochiral hydrogens at C-1′ of spermidine. Tetrahedron Lett 1983. [DOI: 10.1016/s0040-4039(00)81352-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
[11] Methods for the preparation and assay of S-adenosyl-(5′)-3-methylthiopropylamine (decarboxylated adenosylmethionine). Methods Enzymol 1983. [DOI: 10.1016/s0076-6879(83)94013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
Hibasami H, Tanaka M, Nagai J. Kinetic studies on inhibition of aminopropyltransferases by aurintricarboxylic acid in vitro. Chem Biol Interact 1982; 40:319-23. [PMID: 7083397 DOI: 10.1016/0009-2797(82)90154-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Activities of aminopropyltransferases (spermidine synthase and spermine synthase) were inhibited by aurintricarboxylic acid (ATA). Spermidine synthase was slightly more sensitive to the inhibitor than spermine synthase. These inhibitions were not prevented by 0.15 M NaCl. Inhibition by ATA of spermidine synthase was 'uncompetitive' with respect to putrescine and that of spermine synthase was 'non-competitive' with respect to spermidine. When the amount of spermidine synthase or spermine synthase was varied, inhibition ratio hardly changed on either case implying no appreciable interaction between ATA and these enzymes.
Collapse
|
19
|
Samejima K, Yamanoha B. Purification of spermidine synthase from rat ventral prostate by affinity chromatography on immobilized S-adenosyl(5')-3-thiopropylamine. Arch Biochem Biophys 1982; 216:213-22. [PMID: 7103507 DOI: 10.1016/0003-9861(82)90206-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
Chapter 25. Polyamine Metabolism - Recent Developments and Implications for the Design of New Chemotherapeutic Agents. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1982. [DOI: 10.1016/s0065-7743(08)60507-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
21
|
Porta R, Esposito C, Sellinger OZ. Rapid assay of spermidine synthase activity for high-performance liquid chromatography. JOURNAL OF CHROMATOGRAPHY 1981; 226:208-12. [PMID: 7320144 DOI: 10.1016/s0378-4347(00)84223-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|