1
|
Humayun A, Lin LYT, Li HH, Fornace AJ. FAILLA MEMORIAL LECTURE How We Got Here: One Laboratory's Odyssey in the Field of Radiation-Inducible Genes. Radiat Res 2024; 201:617-627. [PMID: 38573158 DOI: 10.1667/rade-23-00205.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
This review focuses on early discoveries that contributed to our understanding and the scope of transcriptional responses after radiation damage. Before the development of modern approaches to assess overall global transcriptomic responses, the idea that mammalian cells could respond to DNA-damaging agents in a manner analogous to bacteria was not generally accepted. To investigate this possibility, the development of technology to identify differentially expressed low-abundance transcripts substantially facilitated our appreciation that DNA damaging agents like UV radiation and subsequently ionizing radiation did in fact produce robust transcriptional responses. Here we focus on our identification and characterization of radiation-inducible genes, and how even early studies on stress gene signaling highlighted the broad scope of transcriptional responses to radiation damage. Since then, the central role of transcriptional responses to radiation injury in maintaining genome integrity has been highlighted in many processes, including cell cycle checkpoint control, resistance to cancer by p53 and other key factors, cell senescence, and metabolism.
Collapse
Affiliation(s)
- Arslon Humayun
- Department of Oncology, Lombardi Comprehensive Cancer Center, Washington, DC
| | | | - Heng-Hong Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Washington, DC
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Washington, DC
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
2
|
Vellichirammal NN, Sethi S, Pandey S, Singh J, Wise SY, Carpenter AD, Fatanmi OO, Guda C, Singh VK. Lung transcriptome of nonhuman primates exposed to total- and partial-body irradiation. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:584-598. [PMID: 36090752 PMCID: PMC9418744 DOI: 10.1016/j.omtn.2022.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/01/2022] [Indexed: 12/25/2022]
Abstract
The focus of radiation biodosimetry has changed recently, and a paradigm shift for using molecular technologies of omic platforms in addition to cytogenetic techniques has been observed. In our study, we have used a nonhuman primate model to investigate the impact of a supralethal dose of 12 Gy radiation on alterations in the lung transcriptome. We used 6 healthy and 32 irradiated animal samples to delineate radiation-induced changes. We also used a medical countermeasure, γ-tocotrienol (GT3), to observe any changes. We demonstrate significant radiation-induced changes in the lung transcriptome for total-body irradiation (TBI) and partial-body irradiation (PBI). However, no major influence of GT3 on radiation was noted in either comparison. Several common signaling pathways, including PI3K/AKT, GADD45, and p53, were upregulated in both exposures. TBI activated DNA-damage-related pathways in the lungs, whereas PTEN signaling was activated after PBI. Our study highlights the various transcriptional profiles associated with γ- and X-ray exposures, and the associated pathways include LXR/RXR activation in TBI, whereas pulmonary wound-healing and pulmonary fibrosis signaling was repressed in PBI. Our study provides important insights into the molecular pathways associated with irradiation that can be further investigated for biomarker discovery.
Collapse
Affiliation(s)
| | - Sahil Sethi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sanjit Pandey
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jatinder Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Stephen Y. Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Alana D. Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Oluseyi O. Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
3
|
Harant H. Selective Inhibition of Murine Cytomegalovirus Viral Gene Expression by the Antiviral Peptide TAT-I24. Int J Mol Sci 2022; 23:ijms23137246. [PMID: 35806257 PMCID: PMC9267059 DOI: 10.3390/ijms23137246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 12/04/2022] Open
Abstract
The effect of the antiviral peptide TAT-I24 on viral gene expression in cells infected with murine cytomegalovirus (MCMV) was investigated. The expression of immediate-early, early and late genes was highly induced upon infection with MCMV. In the presence of the peptide, the expression of all tested genes was sustainably reduced to a similar extent, independent of whether they were immediate-early, early or late genes. In contrast, the expression of host genes, such as NF-κB inhibitor alpha (Nfkbia), interferon-induced protein with tetratricopeptide repeats 1 (Ifit1), chemokine (C-X-C motif) ligand 10 (Cxcl10), chemokine (C-C motif) ligand 7 (Ccl7) and chemokine (C-C motif) ligand 5 (Ccl5), which are induced early upon virus infection, was only transiently suppressed in peptide-treated cells. The expression of other host genes which are affected by MCMV infection and play a role in endoplasmic reticulum stress or DNA-damage repair was not inhibited by the peptide. A combination of TAT-I24 with the nucleoside analogue cidofovir showed enhancement of the antiviral effect, demonstrating that viral replication can be more efficiently inhibited with a combination of drugs acting at different stages of the viral life-cycle.
Collapse
|
4
|
Pinter E, Friedl C, Irnesberger A, Czerny T, Piwonka T, Peñarroya A, Tacker M, Riegel E. HepGentox: a novel promising HepG2 reportergene-assay for the detection of genotoxic substances in complex mixtures. PeerJ 2021; 9:e11883. [PMID: 34395098 PMCID: PMC8323594 DOI: 10.7717/peerj.11883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/09/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND In risk assessment, genotoxicity is a key factor to determine the safety for the consumer. Most in vitro genotoxicity assays were developed for the assessment of pure substances. However, in recent years more attention has been given to complex mixtures, where usually low amounts of a substance are present. For high-throughput screening, a toxicologically sensitive assay should be used, covering a broad range of genotoxic substances and detecting them at low concentrations. HepG2 cells have been recommended as one of the prime candidates for genotoxicity testing, as they are p53 competent, less prone towards cytotoxic effects and tend to have some metabolic activity. METHODS A HepG2 liver cell line was characterized for its suitability for genotoxicity assessment. For this, a luciferase based reporter gene assay revolving around the p53 pathway was validated for the analysis of pure substances and of complex mixtures. Further, the cell's capability to detect genotoxins correctly with and without an exogenous metabolizing system, namely rat liver S9, was assessed. RESULTS The assay proved to have a high toxicological sensitivity (87.5%) and specificity (94%). Further, the endogenous metabolizing system of the HepG2 cells was able to detect some genotoxins, which are known to depend on an enzymatic system. When complex mixtures were added this did not lead to any adverse effects concerning the assays performance and cytotoxicity was not an issue. DISCUSSION The HepGentox proved to have a high toxicological sensitivity and specificity for the tested substances, with similar or even lower lowest effective concentration (LEC) values, compared to other regulatory mammalian assays. This combines some important aspects in one test system, while also being less time and material consuming and covering several genotoxicity endpoints. As the assay performs well with and without an exogenous metabolizing system, no animal liver fractions have to be used, which application is discussed controversially and is considered to be expensive and laborious in sample testing. Because of this, the HepGentox is suitable for a cost-efficient first screening approach to obtain important information with human cells for further approaches, with a relatively fast and easy method. Therefore, the HepGentox is a promising assay to detect genotoxic substances correctly in complex mixtures even at low concentrations, with the potential for a high throughput application. In a nutshell, as part of an in vitro bioassay test battery, this assay could provide valuable information for complex mixtures.
Collapse
Affiliation(s)
- Elisabeth Pinter
- Departement of Applied Life Sciences, University of Applied Sciences Vienna, FH Campus Wien, Vienna, Austria
| | - Christina Friedl
- Departement of Applied Life Sciences, University of Applied Sciences Vienna, FH Campus Wien, Vienna, Austria
| | - Alexandra Irnesberger
- Departement of Applied Life Sciences, University of Applied Sciences Vienna, FH Campus Wien, Vienna, Austria
| | - Thomas Czerny
- Departement of Applied Life Sciences, University of Applied Sciences Vienna, FH Campus Wien, Vienna, Austria
| | - Tina Piwonka
- Departement of Applied Life Sciences, University of Applied Sciences Vienna, FH Campus Wien, Vienna, Austria
| | - Alfonso Peñarroya
- Departement of Applied Life Sciences, University of Applied Sciences Vienna, FH Campus Wien, Vienna, Austria
| | - Manfred Tacker
- Departement of Applied Life Sciences, University of Applied Sciences Vienna, FH Campus Wien, Vienna, Austria
| | - Elisabeth Riegel
- Departement of Applied Life Sciences, University of Applied Sciences Vienna, FH Campus Wien, Vienna, Austria
| |
Collapse
|
5
|
Loss of p53 Sensitizes Cells to Palmitic Acid-Induced Apoptosis by Reactive Oxygen Species Accumulation. Int J Mol Sci 2019; 20:ijms20246268. [PMID: 31842349 PMCID: PMC6941153 DOI: 10.3390/ijms20246268] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 01/02/2023] Open
Abstract
Palmitic acid, the most common saturated free fatty acid, can lead to lipotoxicity and apoptosis when overloaded in non-fat cells. Palmitic acid accumulation can induce pancreatic β-cell dysfunction and cardiac myocyte apoptosis. Under various cellular stresses, the activation of p53 signaling can lead to cell cycle arrest, DNA repair, senescence, or apoptosis, depending on the severity/type of stress. Nonetheless, the precise role of p53 in lipotoxicity induced by palmitic acid is not clear. Here, our results show that palmitic acid induces p53 activation in a dose- and time-dependent manner. Furthermore, loss of p53 makes cells sensitive to palmitic acid-induced apoptosis. These results were demonstrated in human colon carcinoma cells (HCT116) and primary mouse embryo fibroblasts (MEF) through analysis of DNA fragmentation, flow cytometry, colony formation, and Western blots. In the HCT116 p53−/− cell line, palmitic acid induced greater reactive oxygen species formation compared to the p53+/+ cell line. The reactive oxygen species (ROS) scavengers N-acetyl cysteine (NAC) and reduced glutathione (GSH) partially attenuated apoptosis in the HCT116 p53−/− cell line but had no obvious effect on the p53+/+ cell line. Furthermore, p53 induced the expression of its downstream target genes, p21 and Sesn2, in response to ROS induced by palmitic acid. Loss of p21 also leads to more palmitic acid-induced cell apoptosis in the HCT116 cell line compared with HCT116 p53+/+ and HCT116 p53−/−. In a mouse model of obesity, glucose tolerance test assays showed higher glucose levels in p53−/− mice that received a high fat diet compared to wild type mice that received the same diet. There were no obvious differences between p53−/− and p53+/+ mice that received a regular diet. We conclude that p53 may provide some protection against palmitic acid- induced apoptosis in cells by targeting its downstream genes in response to this stress.
Collapse
|
6
|
Ghandhi SA, Shuryak I, Morton SR, Amundson SA, Brenner DJ. New Approaches for Quantitative Reconstruction of Radiation Dose in Human Blood Cells. Sci Rep 2019; 9:18441. [PMID: 31804590 PMCID: PMC6895166 DOI: 10.1038/s41598-019-54967-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022] Open
Abstract
In the event of a nuclear attack or large-scale radiation event, there would be an urgent need for assessing the dose to which hundreds or thousands of individuals were exposed. Biodosimetry approaches are being developed to address this need, including transcriptomics. Studies have identified many genes with potential for biodosimetry, but, to date most have focused on classification of samples by exposure levels, rather than dose reconstruction. We report here a proof-of-principle study applying new methods to select radiation-responsive genes to generate quantitative, rather than categorical, radiation dose reconstructions based on a blood sample. We used a new normalization method to reduce effects of variability of signal intensity in unirradiated samples across studies; developed a quantitative dose-reconstruction method that is generally under-utilized compared to categorical methods; and combined these to determine a gene set as a reconstructor. Our dose-reconstruction biomarker was trained using two data sets and tested on two independent ones. It was able to reconstruct dose up to 4.5 Gy with root mean squared error (RMSE) of ± 0.35 Gy on a test dataset using the same platform, and up to 6.0 Gy with RMSE of ± 1.74 Gy on a test set using a different platform.
Collapse
Affiliation(s)
- Shanaz A Ghandhi
- Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY, 10032, USA.
| | - Igor Shuryak
- Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY, 10032, USA
| | - Shad R Morton
- Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY, 10032, USA
| | - Sally A Amundson
- Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY, 10032, USA
| | - David J Brenner
- Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY, 10032, USA
| |
Collapse
|
7
|
Kaina B, Christmann M. DNA repair in personalized brain cancer therapy with temozolomide and nitrosoureas. DNA Repair (Amst) 2019; 78:128-141. [PMID: 31039537 DOI: 10.1016/j.dnarep.2019.04.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/11/2019] [Accepted: 04/14/2019] [Indexed: 12/16/2022]
Abstract
Alkylating agents have been used since the 60ties in brain cancer chemotherapy. Their target is the DNA and, although the DNA of normal and cancer cells is damaged unselectively, they exert tumor-specific killing effects because of downregulation of some DNA repair activities in cancer cells. Agents exhibiting methylating properties (temozolomide, procarbazine, dacarbazine, streptozotocine) induce at least 12 different DNA lesions. These are repaired by damage reversal mechanisms involving the alkyltransferase MGMT and the alkB homologous protein ALKBH2, and through base excision repair (BER). There is a strong correlation between the MGMT expression level and therapeutic response in high-grade malignant glioma, supporting the notion that O6-methylguanine and, for nitrosoureas, O6-chloroethylguanine are the most relevant toxic damages at therapeutically relevant doses. Since MGMT has a significant impact on the outcome of anti-cancer therapy, it is a predictive marker of the effectiveness of methylating anticancer drugs, and clinical trials are underway aimed at assessing the influence of MGMT inhibition on the therapeutic success. Other DNA repair factors involved in methylating drug resistance are mismatch repair, DNA double-strand break (DSB) repair by homologous recombination (HR) and DSB signaling. Base excision repair and ALKBH2 might also contribute to alkylating drug resistance and their downregulation may have an impact on drug sensitivity notably in cells expressing a high amount of MGMT and at high doses of temozolomide, but the importance in a therapeutic setting remains to be shown. MGMT is frequently downregulated in cancer cells (up to 40% in glioblastomas), which is due to CpG promoter methylation. Astrocytoma (grade III) are frequently mutated in isocitrate dehydrogenase (IDH1). These tumors show a surprisingly good therapeutic response. IDH1 mutation has an impact on ALKBH2 activity thus influencing DNA repair. A master switch between survival and death is p53, which often retains transactivation activity (wildtype) in malignant glioma. The role of p53 in regulating survival via DNA repair and the routes of death are discussed and conclusions as to cancer therapeutic options were drawn.
Collapse
Affiliation(s)
- Bernd Kaina
- Institute of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | - Markus Christmann
- Institute of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| |
Collapse
|
8
|
Macaeva E, Mysara M, De Vos WH, Baatout S, Quintens R. Gene expression-based biodosimetry for radiological incidents: assessment of dose and time after radiation exposure. Int J Radiat Biol 2018; 95:64-75. [PMID: 30247087 DOI: 10.1080/09553002.2018.1511926] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE In order to ensure efficient use of medical resources following a radiological incident, there is an urgent need for high-throughput time-efficient biodosimetry tools. In the present study, we tested the applicability of a gene expression signature for the prediction of exposure dose as well as the time elapsed since irradiation. MATERIALS AND METHODS We used whole blood samples from seven healthy volunteers as reference samples (X-ray doses: 0, 25, 50, 100, 500, 1000, and 2000 mGy; time points: 8, 12, 24, 36 and 48 h) and samples from seven other individuals as 'blind samples' (20 samples in total). RESULTS Gene expression values normalized to the reference gene without normalization to the unexposed controls were sufficient to predict doses with a correlation coefficient between the true and the predicted doses of 0.86. Importantly, we could also classify the samples according to the time since exposure with a correlation coefficient between the true and the predicted time point of 0.96. Because of the dynamic nature of radiation-induced gene expression, this feature will be of critical importance for adequate gene expression-based dose prediction in a real emergency situation. In addition, in this study we also compared different methodologies for RNA extraction available on the market and suggested the one most suitable for emergency situation which does not require on-spot availability of any specific reagents or equipment. CONCLUSIONS Our results represent an important advancement in the application of gene expression for biodosimetry purposes.
Collapse
Affiliation(s)
- Ellina Macaeva
- a Interdisciplinary Biosciences Group, Belgian Nuclear Research Centre, SCK•CEN, Mol , Belgium.,b Department of Molecular Biotechnology , Ghent University , Ghent , Belgium
| | - Mohamed Mysara
- a Interdisciplinary Biosciences Group, Belgian Nuclear Research Centre, SCK•CEN, Mol , Belgium
| | - Winnok H De Vos
- b Department of Molecular Biotechnology , Ghent University , Ghent , Belgium.,c Department of Veterinary Sciences , University of Antwerp , Belgium
| | - Sarah Baatout
- a Interdisciplinary Biosciences Group, Belgian Nuclear Research Centre, SCK•CEN, Mol , Belgium.,b Department of Molecular Biotechnology , Ghent University , Ghent , Belgium
| | - Roel Quintens
- a Interdisciplinary Biosciences Group, Belgian Nuclear Research Centre, SCK•CEN, Mol , Belgium
| |
Collapse
|
9
|
Elkin ER, Harris SM, Loch-Caruso R. Trichloroethylene metabolite S-(1,2-dichlorovinyl)-l-cysteine induces lipid peroxidation-associated apoptosis via the intrinsic and extrinsic apoptosis pathways in a first-trimester placental cell line. Toxicol Appl Pharmacol 2018; 338:30-42. [PMID: 29129777 PMCID: PMC5741094 DOI: 10.1016/j.taap.2017.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/31/2022]
Abstract
Trichloroethylene (TCE), a prevalent environmental contaminant, is a potent renal and hepatic toxicant through metabolites such as S-(1, 2-dichlorovinyl)-l-cysteine (DCVC). However, effects of TCE on other target organs such as the placenta have been minimally explored. Because elevated apoptosis and lipid peroxidation in placenta have been observed in pregnancy morbidities involving poor placentation, we evaluated the effects of DCVC exposure on apoptosis and lipid peroxidation in a human extravillous trophoblast cell line, HTR-8/SVneo. We exposed the cells in vitro to 10-100μM DCVC for various time points up to 24h. Following exposure, we measured apoptosis using flow cytometry, caspase activity using luminescence assays, gene expression using qRT-PCR, and lipid peroxidation using a malondialdehyde quantification assay. DCVC significantly increased apoptosis in time- and concentration-dependent manners (p<0.05). DCVC also significantly stimulated caspase 3, 7, 8 and 9 activities after 12h (p<0.05), suggesting that DCVC stimulates the activation of both the intrinsic and extrinsic apoptotic signaling pathways simultaneously. Pre-treatment with the tBID inhibitor Bl-6C9 partially reduced DCVC-stimulated caspase 3 and 7 activity, signifying crosstalk between the two pathways. Additionally, DCVC treatment increased lipid peroxidation in a concentration-dependent manner. Co-treatment with the antioxidant peroxyl radical scavenger (±)-α-tocopherol attenuated caspase 3 and 7 activity, suggesting that lipid peroxidation mediates DCVC-induced apoptosis in extravillous trophoblasts. Our findings suggest that DCVC-induced apoptosis and lipid peroxidation in extravillous trophoblasts could contribute to poor placentation if similar effects occur in vivo in response to TCE exposure, indicating that further studies into this mechanism are warranted.
Collapse
Affiliation(s)
- Elana R Elkin
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA.
| | - Sean M Harris
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA.
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA.
| |
Collapse
|
10
|
Brook L, Whitfield GK, Hsieh D, Bither RD, Hsieh JC. The Mammalian Hairless Protein as a DNA Binding Phosphoprotein. J Cell Biochem 2016; 118:341-350. [PMID: 27355563 DOI: 10.1002/jcb.25641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/28/2016] [Indexed: 11/08/2022]
Abstract
The mammalian hairless (Hr) protein plays critical roles in skin and brain tissues, but how it interacts with DNA and partner protein is only now being defined. Our initial tests of four consensus response elements, revealed that rat Hr can specifically bind to a consensus p53 response element (p53RE), 5'-AGACATGCCTAGACATGCCT-3', but not to response elements for NF-κB, TCF4 or Sp1. We then employed ChIP assays which verified that human HR binds to a p53RE of the GADD45A gene in both HEK293 (embryonic kidney) and U87 (glioblastoma) cells. Further, HR was shown to interact directly with the p53 protein in a co-immunoprecipitation assay. Cotransfections with p53RE reporter gene constructs revealed that rat Hr can boost p53-mediated transactivation of a reporter gene linked to the GADD45A p53RE, but blunts p53-mediated transactivation when the reporter gene is linked to a p21 promoter fragment containing a p53RE, with implications for the regulation of these two cell cycle control genes. Finally, our investigations of HR phosphorylation revealed that rat Hr is a substrate for PKC, but not PKA, and that human HR is phosphorylated in intact U87 cells at Ser-416, located in a highly conserved region which partially fulfills the criteria of a PKC site. We propose that mammalian Hr is a phosphoprotein which can exert cross-talk with the p53 pathway with important implications for the regulation of cell proliferation and differentiation in tissues such as skin and brain where Hr is highly expressed. J. Cell. Biochem. 118: 341-350, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lemlem Brook
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | - G Kerr Whitfield
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | - David Hsieh
- Mount Auburn Hospital, 330 Mt Auburn St, Cambridge, Massachusetts
| | - Ryan D Bither
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | - Jui-Cheng Hsieh
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| |
Collapse
|
11
|
Srivastava AK, Mishra S, Ali W, Shukla Y. Protective effects of lupeol against mancozeb-induced genotoxicity in cultured human lymphocytes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:714-724. [PMID: 27235710 DOI: 10.1016/j.phymed.2016.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Lup-20(29)-en-3H-ol (Lupeol), a dietary pentacyclic triterpenoid has been shown to possess multiple medicinal activities including anti-inflammatory, anti-oxidant and anti-carcinogenic effects. Mancozeb is a widely used broad-spectrum fungicide with well-known carcinogenic hazards in rodents. PURPOSE The present study has been designed to investigate the protective effects of lupeol against mancozeb-induced genotoxicity and apoptosis in cultured human lymphocytes (CHLs). METHODS The genotoxic effect of mancozeb was evaluated by chromosomal aberration and micronucleus assays. The cell cycle kinetics and intracellular reactive oxygen species (ROS) generation was measured by flow cytometry. The levels of anti-oxidant enzymes and lipid peroxidation (LPO) were estimated by enzymatic assays. The localization of p65NF-κB was measured by immunocytochemical analysis. The differential expression of genes associated with genotoxicity was measured by qRT-PCR. RESULTS Mancozeb exposure (5µg/ml) for 24h caused significant induction of chromosomal aberrations (CAs) and micronuclei (MN) formation in CHLs. Pre-and post-treatment (25 and 50µg/ml) of lupeol for 24h significantly (p<0.05) reduced the frequency of CAs and MN induction, in a dose-dependent manner in mancozeb treated CHLs. Concomitantly, lupeol pre-treatment for 24h significantly increased the levels of anti-oxidant enzymes, superoxide dismutase (SOD) and catalase and decreased ROS generation and LPO. Additionally, lupeol pre-treatment significantly reduced mancozeb-induced apoptosis as shown by Sub-G1 peak analysis and annexin V-PI assay, in a dose dependent manner. Moreover, pre-treatment with lupeol attenuated mancozeb-induced NF-κB activation in CHLs. Furthermore, the results of qRT-PCR showed that lupeol pre-treatment significantly (p<0.05) decreased mancozeb-induced expression of DNA damage (p53, MDM2, COX-2, GADD45α and p21) and increased expression of DNA repair responsive genes (hOGG1 and XRCC1) in CHLs. CONCLUSION Taken together, our findings suggest that lupeol could attenuate mancozeb-induced oxidative stress, which in turn could inhibit NF-κB activation and thus provide protection against mancozeb-induced genotoxicity and apoptosis. So, lupeol could be used as a potent anti-oxidant regimen against pesticide induced genotoxicity in agricultural farm workers.
Collapse
Affiliation(s)
- Amit Kumar Srivastava
- Proteomics & Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | - Sanjay Mishra
- Proteomics & Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | - Wahid Ali
- Department of Pathology, Chatrapati Shahuji Maharaj Medical University, Lucknow Chowk, Lucknow U.P. India- 226003
| | - Yogeshwer Shukla
- Proteomics & Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India.
| |
Collapse
|
12
|
Wachter A, Beißbarth T. Decoding Cellular Dynamics in Epidermal Growth Factor Signaling Using a New Pathway-Based Integration Approach for Proteomics and Transcriptomics Data. Front Genet 2016; 6:351. [PMID: 26779252 PMCID: PMC4703778 DOI: 10.3389/fgene.2015.00351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/03/2015] [Indexed: 12/15/2022] Open
Abstract
Identification of dynamic signaling mechanisms on different cellular layers is now facilitated as the increased usage of various high-throughput techniques goes along with decreasing costs for individual experiments. A lot of these signaling mechanisms are known to be coordinated by their dynamics, turning time-course data sets into valuable information sources for inference of regulatory mechanisms. However, the combined analysis of parallel time-course measurements from different high-throughput platforms still constitutes a major challenge requiring sophisticated bioinformatic tools in order to ease biological interpretation. We developed a new pathway-based integration approach for the analysis of coupled omics time-series data, which we implemented in the R package pwOmics. Unlike many other approaches, our approach acknowledges the role of the different cellular layers of measurement and infers consensus profiles and time profile clusters for further biological interpretation. We investigated a time-course data set on epidermal growth factor stimulation of human mammary epithelial cells generated on the two layers of RNA and proteins. The data was analyzed using our new approach with a focus on feedback signaling and pathway crosstalk. We could confirm known regulatory patterns relevant in the physiological cellular response to epidermal growth factor stimulation as well as identify interesting new interactions in this signaling context, such as the regulatory influence of the connective tissue growth factor on transferrin receptor or the influence of growth arrest and DNA-damage-inducible alpha on the connective tissue growth factor. Thus, we show that integrated cross-platform analysis provides a deeper understanding of regulatory signaling mechanisms. Combined with time-course information it enables the characterization of dynamic signaling processes and leads to the identification of important regulatory interactions which might be dysregulated in disease with adverse effects.
Collapse
Affiliation(s)
- Astrid Wachter
- Department of Medical Statistics, University Medical Center Göttingen, Germany
| | - Tim Beißbarth
- Department of Medical Statistics, University Medical Center Göttingen, Germany
| |
Collapse
|
13
|
Mathew B, Takekoshi D, Sammani S, Epshtein Y, Sharma R, Smith BD, Mitra S, Desai AA, Weichselbaum RR, Garcia JGN, Jacobson JR. Role of GADD45a in murine models of radiation- and bleomycin-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1420-9. [PMID: 26498248 DOI: 10.1152/ajplung.00146.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/25/2015] [Indexed: 11/22/2022] Open
Abstract
We previously reported protective effects of GADD45a (growth arrest and DNA damage-inducible gene 45 alpha) in murine ventilator-induced lung injury (VILI) via effects on Akt-mediated endothelial cell signaling. In the present study we investigated the role of GADD45a in separate murine models of radiation- and bleomycin-induced lung injury. Initial studies of wild-type mice subjected to single-dose thoracic radiation (10 Gy) confirmed a significant increase in lung GADD45a expression within 24 h and persistent at 6 wk. Mice deficient in GADD45a (GADD45a(-/-)) demonstrated increased susceptibility to radiation-induced lung injury (RILI, 10 Gy) evidenced by increased bronchoalveolar lavage (BAL) fluid total cell counts, protein and albumin levels, and levels of inflammatory cytokines compared with RILI-challenged wild-type animals at 2 and 4 wk. Furthermore, GADD45a(-/-) mice had decreased total and phosphorylated lung Akt levels both at baseline and 6 wk after RILI challenge relative to wild-type mice while increased RILI susceptibility was observed in both Akt(+/-) mice and mice treated with an Akt inhibitor beginning 1 wk prior to irradiation. Additionally, overexpression of a constitutively active Akt1 transgene reversed RILI-susceptibility in GADD45a(-/-) mice. In separate studies, lung fibrotic changes 2 wk after treatment with bleomycin (0.25 U/kg IT) was significantly increased in GADD45a(-/-) mice compared with wild-type mice assessed by lung collagen content and histology. These data implicate GADD45a as an important modulator of lung inflammatory responses across different injury models and highlight GADD45a-mediated signaling as a novel target in inflammatory lung injury clinically.
Collapse
Affiliation(s)
- Biji Mathew
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois
| | - Daisuke Takekoshi
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois; Department of Respiratory Medicine, Tohoku University Hospital, Miyagi, Japan
| | - Saad Sammani
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois
| | - Yulia Epshtein
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois
| | - Rajesh Sharma
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois
| | - Brett D Smith
- Department of Radiation Oncology, University of Chicago, Chicago, Illinois; and
| | - Sumegha Mitra
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois
| | - Ankit A Desai
- Arizona Health Sciences Center, University of Arizona, Tucson, Arizona
| | | | - Joe G N Garcia
- Arizona Health Sciences Center, University of Arizona, Tucson, Arizona
| | - Jeffrey R Jacobson
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois;
| |
Collapse
|
14
|
Wu Y, Xia P, Zheng C. Bioinformatics analysis of transcription profiling of sepsis. EUR J INFLAMM 2015. [DOI: 10.1177/1721727x15590946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sepsis is a fatal whole-body inflammatory response that complicates a serious infection. To elucidate the molecular mechanism of sepsis, transcription profile data of GSE12624 which included a total of 70 samples (34 sepsis samples and 36 non-sepsis samples) was downloaded. The t test based on Bayes method in limma package was used to identify differentially expressed genes (DEGs) between sepsis and non-sepsis samples (criterion: P value <0.05). Gene Ontology (GO) enrichment analysis was conducted to investigate the biological processes involved DEGs. Protein-protein interaction (PPI) network and sub-network analysis were conducted to investigate the interactions between DEGs. A total of 894 DEGs, including 479 downregulated DEGs and 415 upregulated DEGs, were identified in sepsis samples comparing with non-sepsis samples. GO enrichment analysis showed that DEGs mainly involved in cellular metabolic process, primary metabolic process, and response to organic cyclic compound. In the PPI network, four genes of CDC2, GTF2F2, PCNA, and SMAD4 with degrees more than 10 were identified. Subsequently, four sub-networks, in which genes of PTBP1, PSMA3, PSMA6, PSMB9, PSMB10, and GADD45 had relative high degrees were identified from the PPI network. After the discussion referring to previous studies, we suggested that CDC2, GTF2F2, PCNA, SMAD4 PSMA3, PTBP1, and GADD45 might be used as new therapeutic targets for sepsis. However, experiments should be further performed to prove the practical utility of these candidates.
Collapse
Affiliation(s)
- Yanfeng Wu
- The Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun 130041, PR China
| | - Peng Xia
- The Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun 130041, PR China
| | - Changjun Zheng
- The Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun 130041, PR China
| |
Collapse
|
15
|
Thomas AD, Fahrer J, Johnson GE, Kaina B. Theoretical considerations for thresholds in chemical carcinogenesis. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 765:56-67. [PMID: 26281768 DOI: 10.1016/j.mrrev.2015.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 02/08/2023]
Abstract
There is increasing evidence for non-linear relationships for gene mutations, chromosomal aberrations and even tumor incidences in response to low doses of genotoxic carcinogens. To attain the biological relevance of such non-linear responses, there is a need to identify the underlying defense mechanisms that allow tolerance to low doses of genotoxicants. This communication discusses presumptive cancer prevention mechanisms that may contribute to thresholds, i.e. points of departure, for each endpoint, from initial DNA lesion to tumor formation. We discuss a sequential order of genome protection during carcinogenesis where genotoxicant scavenging, cellular efflux, DNA repair, elimination of damaged cells by apoptosis, autophagy, silencing by DNA damage-triggered replicative senescence, and finally, elimination of transformed (premalignant) cells by the immune system are thought to be responsible for a threshold in tumor formation. We highlight DNA repair, for which experimental evidence has been recently provided to dictate a role in PoDs. In conclusion, from a theoretical perspective it is reasonable to posit that tolerance to low dose levels exists for each requisite step of tumor formation and these tolerance mechanisms are critical in determining thresholds in chemical carcinogenesis.
Collapse
Affiliation(s)
- Adam D Thomas
- Institute of Toxicology, University Medical Centre, Mainz, Germany
| | - Jörg Fahrer
- Institute of Toxicology, University Medical Centre, Mainz, Germany
| | - George E Johnson
- Institue of Life Science, College of Medicine, Swansea, Wales, United Kingdom
| | - Bernd Kaina
- Institute of Toxicology, University Medical Centre, Mainz, Germany.
| |
Collapse
|
16
|
Chang BH, Johnson K, LaTocha D, Rowley JSJ, Bryant J, Burke R, Smith RL, Loriaux M, Müschen M, Mullighan C, Druker BJ, Tyner JW. YM155 potently kills acute lymphoblastic leukemia cells through activation of the DNA damage pathway. J Hematol Oncol 2015; 8:39. [PMID: 25895498 PMCID: PMC4408565 DOI: 10.1186/s13045-015-0132-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/26/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Novel-targeted therapies are in rapid development for the treatment of acute lymphoblastic leukemia (ALL) to overcome resistance and decrease toxicity. Survivin, a member of the inhibitor of apoptosis gene family and chromosome passenger complex, is critical in a variety of human cancers, including ALL. A well-established suppressor of survivin has been the small molecule, YM155. Reports are identifying other mechanisms of action for YM155. Therefore, we sought to investigate the mode of action and role of YM155 for therapeutic use in the context of ALL. METHODS Primary ALL samples and ALL cell lines were interrogated with YM155 to identify drug sensitivity. Ph(+)ALL harboring the BCR-ABL1 oncogene were tested for any interaction with YM155 and the multi-kinase inhibitor dasatinib. Representative ALL cell lines were tested to identify the response to YM155 using standard biochemical assays as well as RNA expression and phosphorylation arrays. RESULTS ALL samples exhibited significant sensitivity to YM155, and an additive response was observed with dasatinib in the setting of Ph(+)ALL. ALL cells were more sensitive to YM155 during S phase during DNA replication. YM155 activates the DNA damage pathway leading to phosphorylation of Chk2 and H2AX. Interestingly, screening of primary patient samples identified unique and exquisite YM155 sensitivity in some but not all ALL specimens. CONCLUSION These results are the first to have screened a large number of primary patient leukemic samples to identify individual variations of response to YM155. Our studies further support that YM155 in ALL induces DNA damage leading to S phase arrest. Finally, only subsets of ALL have exquisite sensitivity to YM155 presumably through both suppression of survivin expression and activation of the DNA damage pathway underscoring its potential for therapeutic development.
Collapse
Affiliation(s)
- Bill H Chang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA.
- OHSU Knight Cancer Institute, Portland, OR, 97239, USA.
| | - Kara Johnson
- OHSU Knight Cancer Institute, Portland, OR, 97239, USA.
| | | | | | - Jade Bryant
- OHSU Knight Cancer Institute, Portland, OR, 97239, USA.
| | - Russell Burke
- OHSU Knight Cancer Institute, Portland, OR, 97239, USA.
| | | | - Marc Loriaux
- OHSU Knight Cancer Institute, Portland, OR, 97239, USA.
- Department of Pathology, Oregon Health & Science University, Portland, OR, 97239, USA.
| | - Markus Müschen
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Charles Mullighan
- Department of Oncology, St Jude Children's Research Hospital and University of Tennessee Health Science Center, Memphis, TN, 38105, USA.
| | - Brian J Druker
- OHSU Knight Cancer Institute, Portland, OR, 97239, USA.
- Howard Hughes Medical Institute, Portland, OR, 97239, USA.
| | - Jeffrey W Tyner
- OHSU Knight Cancer Institute, Portland, OR, 97239, USA.
- Department Cell & Developmental Biology, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
17
|
Abstract
The transcriptional coactivator YAP1 is a critical effector of the human Salvador-Warts-Hippo pathway. Literature data report apparently discrepant results on the carcinogenic role of YAP1, which acts either as oncogene or as tumor suppressor in different in vitro and in vivo models. Furthermore, genomic amplification events of 11q22 locus encompassing YAP1 gene have been detected in multiple tumor types but there is limited direct evidence about the oncogenic role of endogenous YAP1 within in the amplicon. We screened a panel of human tumor samples and cancer cell lines and identified that the YAP1 amplification event is actually present in up to 23% of the cases. We exploited EKVX (lung cancer), CaSki (cervical cancer) and RO82 (thyroid cancer) cell lines harboring both genomic YAP1 amplification and YAP1 protein overexpression, in order to study the effects of downregulation of endogenous YAP1 by RNA-interference strategies. Class comparison analysis of gene expression profiling data identified 707 statistically significantly modulated genes (multivariable global test p-value = 0.002) that were functionally annotated for cell proliferation and cellular movement ontologies. Mechanistic studies of the identified perturbed pathways revealed that YAP1 silencing significantly decreased cell proliferation and cell cycle perturbation associated with upregulation of p21 and p27 cell-cycle inhibitors, reduced cell migration (p<0.048) and anchorage-independent growth (p<0.02). In CaSki cell line, YAP1 silencing induced significantly increased sensitivity and cell-death response to cisplatin treatment (p=0.011) as well as reduction of in-vivo tumorigenic potential (p=0.027). Overall, these results establish that YAP1 is a direct oncogenic target of the 11q22 amplicon in previously unreported cancer types and support the relevance of such genetic aberration in carcinogenesis in a fraction of multiple tumor types.
Collapse
|
18
|
Xin L, Wang J, Wu Y, Guo S. The development ofGADD45αluciferase reporter assays in human cells for assessing the genotoxicity of environmental pollutants. Toxicol Mech Methods 2015; 25:136-42. [DOI: 10.3109/15376516.2014.1003357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Association between SNPs in P53 binding regions and risk of esophageal squamous cell carcinoma. Int J Biol Markers 2014; 29:e160-8. [PMID: 24474449 DOI: 10.5301/jbm.5000061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND The tumor protein 53 (TP53 or p53) plays an important role in tumor suppression by binding to the regulatory region of its target genes. Single nucleotide polymorphisms (SNP) located in the p53 binding regions are likely to affect the expression of p53 target genes and may contribute to susceptibility to common diseases. The role of the genetic variations in esophageal squamous cell carcinoma (ESCC) has been well explored. However, the role of p53 binding region variations in esophageal cancer is poorly understood. METHODS We investigated the association of 6 p53 binding region polymorphisms with susceptibility of 400 ESCC cases and 400 cancer-free controls in a Southwest Chinese population using the SNapShot assay. Differences in frequencies of the SPNs genotypes between cases and controls were evaluated using the chi-square test. RESULTS We found that the C allele of rs1009316 in Bax and rs762624 in CDKN1A can decrease the risk of ESCC. In the multiple genetic model, we found that the rs2395655 in CDKN1A is related with the risk of ESCC, and that the G allele increases the susceptibility to ESCC (OR: 1.364; 95% CI: 1.104-1.685). We carried out a stratification analysis between alleles and risk of ESCC according to clinical stage. There was no relationship between these SNPs and clinical stage. CONCLUSION SNPs in the p53 binding region may modulate the risk of ESCC in the Southwest Chinese population.
Collapse
|
20
|
Chiou HYC, Liu SY, Lin CH, Lee EH. Hes-1 SUMOylation by protein inhibitor of activated STAT1 enhances the suppressing effect of Hes-1 on GADD45α expression to increase cell survival. J Biomed Sci 2014; 21:53. [PMID: 24894488 PMCID: PMC4071220 DOI: 10.1186/1423-0127-21-53] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/22/2014] [Indexed: 01/18/2023] Open
Abstract
Background Hairy and Enhancer of split 1 (Hes-1) is a transcriptional repressor that plays an important role in neuronal differentiation and development, but post-translational modifications of Hes-1 are much less known. In the present study, we aimed to investigate whether Hes-1 could be SUMO-modified and identify the candidate SUMO acceptors on Hes-1. We also wished to examine the role of the SUMO E3 ligase protein inhibitor of activated STAT1 (PIAS1) in SUMOylation of Hes-1 and the molecular mechanism of Hes-1 SUMOylation. Further, we aimed to identify the molecular target of Hes-1 and examine how Hes-1 SUMOylation affects its molecular target to affect cell survival. Results In this study, by using HEK293T cells, we have found that Hes-1 could be SUMO-modified and Hes-1 SUMOylation was greatly enhanced by the SUMO E3 ligase PIAS1 at Lys8, Lys27 and Lys39. Furthermore, Hes-1 SUMOylation stabilized the Hes-1 protein and increased the transcriptional suppressing activity of Hes-1 on growth arrest and DNA damage-inducible protein alpha (GADD45α) expression. Overexpression of GADD45α increased, whereas knockdown of GADD45αα expression decreased cell apoptosis. In addition, H2O2 treatment increased the association between PIAS1 and Hes-1 and enhanced the SUMOylation of Hes-1 for endogenous protection. Overexpression of Hes-1 decreased H2O2-induced cell death, but this effect was blocked by transfection of the Hes-1 triple sumo-mutant (Hes-1 3KR). Overexpression of PIAS1 further facilitated the anti-apoptotic effect of Hes-1. Moreover, Hes-1 SUMOylation was independent of Hes-1 phosphorylation and vice versa. Conclusions The present results revealed, for the first time, that Hes-1 could be SUMO-modified by PIAS1 and GADD45α is a novel target of Hes-1. Further, Hes-1 SUMOylation mediates cell survival through enhanced suppression of GADD45α expression. These results revealed a novel role of Hes-1 in addition to its involvement in Notch signaling. They also implicate that SUMOylation could be an important posttranslational modification that regulates cell survival.
Collapse
Affiliation(s)
| | | | | | - Eminy Hy Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
21
|
Hsieh JC, Kuta R, Armour CR, Boehmer PE. Identification of two novel functional p53 responsive elements in the herpes simplex virus-1 genome. Virology 2014; 460-461:45-54. [PMID: 25010269 DOI: 10.1016/j.virol.2014.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/17/2013] [Accepted: 04/14/2014] [Indexed: 12/19/2022]
Abstract
Analysis of the herpes simplex virus-1 (HSV-1) genome reveals two candidate p53 responsive elements (p53RE), located in proximity to the replication origins oriL and oriS, referred to as p53RE-L and p53RE-S, respectively. The sequences of p53RE-L and p53RE-S conform to the p53 consensus site and are present in HSV-1 strains KOS, 17, and F. p53 binds to both elements in vitro and in virus-infected cells. Both p53RE-L and p53RE-S are capable of conferring p53-dependent transcriptional activation onto a heterologous reporter gene. Importantly, expression of the essential immediate early viral transactivator ICP4 and the essential DNA replication protein ICP8, that are adjacent to p53RE-S and p53RE-L, are repressed in a p53-dependent manner. Taken together, this study identifies two novel functional p53RE in the HSV-1 genome and suggests a complex mechanism of viral gene regulation by p53 which may determine progression of the lytic viral replication cycle or the establishment of latency.
Collapse
Affiliation(s)
- Jui-Cheng Hsieh
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, 425 North 5th Street, Phoenix, AZ 85004-2157, USA.
| | - Ryan Kuta
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, 425 North 5th Street, Phoenix, AZ 85004-2157, USA
| | - Courtney R Armour
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, 425 North 5th Street, Phoenix, AZ 85004-2157, USA
| | - Paul E Boehmer
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, 425 North 5th Street, Phoenix, AZ 85004-2157, USA
| |
Collapse
|
22
|
Mruthyunjaya S, Parveen D, Shah RD, Manchanda R, Godbole R, Vasudevan M, Shastry P. Gene expression analysis of laminin-1-induced neurite outgrowth in human mesenchymal stem cells derived from bone marrow. J Biomed Mater Res A 2014; 103:746-61. [DOI: 10.1002/jbm.a.35221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/15/2014] [Accepted: 05/02/2014] [Indexed: 11/06/2022]
Affiliation(s)
- S. Mruthyunjaya
- National centre for Cell Science (NCCS); University of Pune; Ganeshkhind Pune 411007 India
| | - D. Parveen
- National centre for Cell Science (NCCS); University of Pune; Ganeshkhind Pune 411007 India
| | - Reecha D. Shah
- National centre for Cell Science (NCCS); University of Pune; Ganeshkhind Pune 411007 India
| | | | | | | | - Padma Shastry
- National centre for Cell Science (NCCS); University of Pune; Ganeshkhind Pune 411007 India
| |
Collapse
|
23
|
MacLeod AS, Rudolph R, Corriden R, Ye I, Garijo O, Havran WL. Skin-resident T cells sense ultraviolet radiation-induced injury and contribute to DNA repair. THE JOURNAL OF IMMUNOLOGY 2014; 192:5695-702. [PMID: 24808367 DOI: 10.4049/jimmunol.1303297] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Skin-resident T cells have been shown to play important roles in tissue homeostasis and wound repair, but their role in UV radiation (UVR)-mediated skin injury and subsequent tissue regeneration is less clear. In this study, we demonstrate that acute UVR rapidly activates skin-resident T cells in humans and dendritic epidermal γδ T cells (DETCs) in mice through mechanisms involving the release of ATP from keratinocytes. Following UVR, extracellular ATP leads to an increase in CD69 expression, proliferation, and IL-17 production, and to changes in DETC morphology. Furthermore, we find that the purinergic receptor P2X7 and caspase-1 are necessary for UVR-induced IL-1 production in keratinocytes, which increases IL-17 secretion by DETCs. IL-17, in turn, induces epidermal TNF-related weak inducer of apoptosis and growth arrest and DNA damage-associated gene 45, two molecules linked to the DNA repair response. Finally, we demonstrate that DETCs and human skin-resident T cells limit DNA damage in keratinocytes. Taken together, our findings establish a novel role for skin-resident T cells in the UVR-associated DNA repair response and underscore the importance of skin-resident T cells to overall skin regeneration.
Collapse
Affiliation(s)
- Amanda S MacLeod
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Ross Rudolph
- Division of Plastic Surgery, Scripps Clinic Torrey Pines, La Jolla, CA 92037; Division of Plastic Surgery, University of California San Diego, La Jolla, CA 92037; and
| | - Ross Corriden
- Division of Pharmacology and Drug Discovery, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
| | - Ivan Ye
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Olivia Garijo
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Wendy L Havran
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037;
| |
Collapse
|
24
|
Genome-wide identification of molecular pathways and biomarkers in response to arsenic exposure in zebrafish liver. PLoS One 2013; 8:e68737. [PMID: 23922661 PMCID: PMC3726666 DOI: 10.1371/journal.pone.0068737] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/31/2013] [Indexed: 12/20/2022] Open
Abstract
Inorganic arsenic is a worldwide metalloid pollutant in environment. Although extensive studies on arsenic-induced toxicity have been conducted using in vivo and in vitro models, the exact molecular mechanism of arsenate toxicity remains elusive. Here, the RNA-SAGE (serial analysis of gene expression) sequencing technology was used to analyse hepatic response to arsenic exposure at the transcriptome level. Based on more than 12 million SAGE tags mapped to zebrafish genes, 1,444 differentially expressed genes (750 up-regulated and 694 down-regulated) were identified from a relatively abundant transcripts (>10 TPM [transcripts per million]) based on minimal two-fold change. By gene ontology analyses, these differentially expressed genes were significantly enriched in several major biological processes including oxidation reduction, translation, iron ion transport, cell redox, homeostasis, etc. Accordingly, the main pathways disturbed include metabolic pathways, proteasome, oxidative phosphorylation, cancer, etc. Ingenity Pathway Analysis further revealed a network with four important upstream factors or hub genes, including Jun, Kras, APoE and Nr2f2. The network indicated apparent molecular events involved in oxidative stress, carcinogenesis, and metabolism. In order to identify potential biomarker genes for arsenic exposure, 27 out of 29 up-regulated transcripts were validated by RT-qPCR analysis in pooled RNA samples. Among these, 14 transcripts were further confirmed for up-regulation by a lower dosage of arsenic in majority of individual zebrafish. Finally, at least four of these genes, frh3 (ferrintin H3), mgst1 (microsomal glutathione S-transferase-like), cmbl (carboxymethylenebutenolidase homolog) and slc40a1 (solute carrier family 40 [iron-regulated transporter], member 1) could be confirmed in individual medaka fish similarly treated by arsenic; thus, these four genes might be robust arsenic biomarkers across species. Thus, our work represents the first comprehensive investigation of molecular mechanism of asenic toxicity and genome-wide search for potential biomarkers for arsenic exposure.
Collapse
|
25
|
Changes in expression profiles of genes associated with DNA repair following induction of DNA damage in larval zebrafish Danio rerio. Mutagenesis 2013; 28:601-8. [DOI: 10.1093/mutage/get038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
26
|
Jacobi A, Rauh J, Bernstein P, Liebers C, Zou X, Stiehler M. Comparative analysis of reference gene stability in human mesenchymal stromal cells during osteogenic differentiation. Biotechnol Prog 2013; 29:1034-42. [PMID: 23674393 DOI: 10.1002/btpr.1747] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 03/27/2013] [Indexed: 01/07/2023]
Abstract
Mesenchymal stromal cells (MSCs) are one of the most frequently used cell sources for tissue engineering strategies. Cultivation of osteogenic MSCs is a prerequisite for cell-based concepts that aim at bone regeneration. Quantitative real time reverse transcription polymerase chain reaction (qRT-PCR) analysis is a commonly used method for the examination of mRNA expression levels. However, data on suitable reference genes for osteogenically cultivated MSCs is scarce. Hence, the aim of the study was to compare the regulation of different potential reference genes in osteogenically stimulated MSCs. Human MSCs were isolated from bone marrow aspirates of N = 6 hematologically healthy individuals, expanded by polystyrene-adherence, and maintained with and without osteogenic supplements for 14 days. Cellular proliferation and osteogenic differentiation were assessed by total DNA quantification, cell-specific alkaline phosphatase (ALP) activity and by qualitative staining for ALP and alizarin red, respectively. mRNA expression levels of N = 32 potential reference genes were quantified using the human Endogenous Control TaqMan® assays. mRNA expression stability was calculated using geNorm. The combined use of the most stable reference genes and DNA-damage-inducible alpha, Pumilio homolog 1, and large ribosomal protein P0 significantly improved gene expression accuracy as compared to the use of the commonly used reference genes beta actin and glyceraldehyde-3-phosphate dehydrogenase during qRT-PCR-based target gene expression analysis of osteogenically stimulated MSCs.
Collapse
Affiliation(s)
- Angela Jacobi
- Dept. of Orthopaedics and Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, 01307, Dresden, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Tavakoli H, Manoochehri M, Modarres Mosalla SM, Ghafori M, Karimi AA. Dose-dependent and gender-related radiation-induced transcription alterations of Gadd45a and Ier5 inhuman lymphocytes exposed to gamma ray emitted by (60)Co. RADIATION PROTECTION DOSIMETRY 2013; 154:37-44. [PMID: 22923252 DOI: 10.1093/rpd/ncs164] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Growth arrest DNA damage-inducible 45a gene (Gadd45a) and immediate early response gene 5 (Ier5) have been emphasised as ideal radiation biomarkers in several reports. However, some aspects of radiation-induced transcriptional alterations of these genes are unknown. In this study, gender-dependency and dose-dependency as two factors that may affect radiation-induced transcription of Gadd45a and Ier5 genes were investigated. Human lymphocyte cells from six healthy voluntary blood donors (three women and three men) were irradiated in vitro with doses of 0.5-4.0 Gy from a (60)Co source and RNA isolated 4 h later using the High Pure RNA Isolation Kit. Dose and gender dependency of radiation-induced transcriptional alterations of Gadd45a and Ier5 genes were studied by quantitative real-time polymerase chain reaction. The results showed that as a whole, Gadd45a and Ier5 gave responses to gamma rays, while the responses were independent of radiation doses. Therefore, regardless of radiation dose, Gadd45a and Ier5 can be considered potential radiation biomarkers. Besides, although radiation-induced transcriptional alterations of Gadd45a in female and male lymphocyte samples were insignificant at 0.5 Gy, at other doses, their quantities in female samples were at a significantly higher level than in male samples. Radiation-induced transcription of Ier5 of females samples had a reduction in comparison with male samples at 1 and 2 Gy, but at doses of 0.5 and 4 Gy, females were significantly more susceptible to radiation-induced transcriptional alteration of Ier5.
Collapse
Affiliation(s)
- Hassan Tavakoli
- Applied Neuroscience Research Center, Department of Physiology and Biophysics, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | | | | | | | | |
Collapse
|
28
|
Mitterberger MC, Zwerschke W. Mechanisms of Resveratrol-Induced Inhibition of Clonal Expansion and Terminal Adipogenic Differentiation in 3T3-L1 Preadipocytes. ACTA ACUST UNITED AC 2013; 68:1356-76. [DOI: 10.1093/gerona/glt019] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Cheng D, Zhao L, Zhang L, Jiang Y, Tian Y, Xiao X, Gong G. p53 controls hepatitis C virus non-structural protein 5A-mediated downregulation of GADD45α expression via the NF-κB and PI3K-Akt pathways. J Gen Virol 2012; 94:326-335. [PMID: 23114628 PMCID: PMC3709614 DOI: 10.1099/vir.0.046052-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Growth arrest and DNA-damage-inducible gene 45-α (GADD45α) protein has been shown to be a tumour suppressor and is implicated in cell-cycle arrest and suppression of cell growth. The hepatitis C virus (HCV) non-structural 5A (NS5A) protein plays an important role in cell survival and is linked to the development of hepatocellular carcinoma (HCC). However, the role of HCV NS5A in the development of HCC remains to be clarified. This study sought to determine whether GADD45α mediates HCV NS5A-induced cellular survival and to elucidate the molecular mechanism of GADD45α expression regulated by HCV NS5A. It was found that HCV NS5A downregulated GADD45α expression at the transcriptional level by decreasing promoter activity, mRNA transcription and protein levels. Knockdown of p53 resulted in a similar decrease in GADD45α expression to that caused by HCV NS5A, whilst overexpression of p53 reversed the HCV NS5A-mediated downregulation of GADD45α. HCV NS5A repressed p53 expression, which was followed by a subsequent decrease in GADD45α expression. Further evidence was provided showing that HCV NS5A led to increases of phosphorylated nuclear factor-κB and Akt levels. Inhibition of these pathways using pharmacological inhibitors or specific small interfering RNAs rescued HCV NS5A-mediated downregulation of p53 and GADD45α. It was also found that HCV NS5A protein and depletion of GADD45α increased cell growth, whereas ectopic expression of GADD45α eliminated HCV NS5A-induced cell proliferation. These results indicated that HCV NS5A downregulates GADD45α expression and subsequently triggers cellular proliferation. These findings provide new insights suggesting that HCV NS5A could contribute to the occurrence of HCV-related HCC.
Collapse
Affiliation(s)
- Du Cheng
- Liver Diseases Center, Department of Infectious Diseases, Second Xiangya Hospital, Xiangya Medical School, Central South University, Changsha 410011, PR China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Leiliang Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100176, PR China
| | - Yongfang Jiang
- Liver Diseases Center, Department of Infectious Diseases, Second Xiangya Hospital, Xiangya Medical School, Central South University, Changsha 410011, PR China
| | - Yi Tian
- Liver Diseases Center, Department of Infectious Diseases, Second Xiangya Hospital, Xiangya Medical School, Central South University, Changsha 410011, PR China
| | - Xinqiang Xiao
- Liver Diseases Center, Department of Infectious Diseases, Second Xiangya Hospital, Xiangya Medical School, Central South University, Changsha 410011, PR China
| | - Guozhong Gong
- Liver Diseases Center, Department of Infectious Diseases, Second Xiangya Hospital, Xiangya Medical School, Central South University, Changsha 410011, PR China
| |
Collapse
|
30
|
Srivastava AK, Srivastava PK, Al-Khedhairy AA, Musarrat J, Shukla Y. Allethrin-induced genotoxicity and oxidative stress in Swiss albino mice. Mutat Res 2012; 747:22-28. [PMID: 22475934 DOI: 10.1016/j.mrgentox.2012.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 03/01/2012] [Accepted: 03/11/2012] [Indexed: 11/16/2022]
Abstract
Allethrin (C(19)H(26)O(3)) is non-cyano-containing pyrethroid insecticide that is used extensively for controlling flies and mosquitoes. Apart from its neurotoxic effects in non-target species, allethrin is reported to be mutagenic in bacterial systems. In this study, we observed oxidative damage-mediated genotoxicity caused by allethrin in Swiss albino mice. The genotoxic potential of allethrin was evaluated using chromosome aberrations (CAs) and a micronuclei (MN) induction assay as genetic end-points. The oral intubation of allethrin (25 and 50mg/kg b.wt.) significantly induces CAs and MN in mouse bone marrow cells. The DNA-damaging potential of allethrin was estimated in mouse liver using the DNA alkaline unwinding assay (DAUA) and by measuring the levels of 8-hydroxy-2'-deoxy-guanosine (8-OH-dG). Furthermore, a dose-dependent increase in reactive oxygen species (ROS) generation and lipid peroxidation (LPO), with a concurrent decrease in superoxide dismutase (SOD) and catalase, confirm its pro-oxidant potential. The DNA-damaging potential of allethrin was found to be mediated through the modulation of p53, p21, GADD45α and MDM-2. These results confirm the genotoxic and the pro-oxidant potential of allethrin in Swiss albino mice.
Collapse
Affiliation(s)
- Amit Kumar Srivastava
- Proteomics Laboratory, Indian Institute of Toxicology Research (CSIR), P.O. Box 80, M.G. Marg, Lucknow 226001, UP, India; Department of Biochemistry, Banaras Hindu University, Varanasi 221005, UP, India
| | | | | | - Javed Musarrat
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Yogeshwer Shukla
- Proteomics Laboratory, Indian Institute of Toxicology Research (CSIR), P.O. Box 80, M.G. Marg, Lucknow 226001, UP, India.
| |
Collapse
|
31
|
Baron Y, Corre S, Mouchet N, Vaulont S, Prince S, Galibert MD. USF-1 is critical for maintaining genome integrity in response to UV-induced DNA photolesions. PLoS Genet 2012; 8:e1002470. [PMID: 22291606 PMCID: PMC3266871 DOI: 10.1371/journal.pgen.1002470] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 11/17/2011] [Indexed: 02/02/2023] Open
Abstract
An important function of all organisms is to ensure that their genetic material remains intact and unaltered through generations. This is an extremely challenging task since the cell's DNA is constantly under assault by endogenous and environmental agents. To protect against this, cells have evolved effective mechanisms to recognize DNA damage, signal its presence, and mediate its repair. While these responses are expected to be highly regulated because they are critical to avoid human diseases, very little is known about the regulation of the expression of genes involved in mediating their effects. The Nucleotide Excision Repair (NER) is the major DNA–repair process involved in the recognition and removal of UV-mediated DNA damage. Here we use a combination of in vitro and in vivo assays with an intermittent UV-irradiation protocol to investigate the regulation of key players in the DNA–damage recognition step of NER sub-pathways (TCR and GGR). We show an up-regulation in gene expression of CSA and HR23A, which are involved in TCR and GGR, respectively. Importantly, we show that this occurs through a p53 independent mechanism and that it is coordinated by the stress-responsive transcription factor USF-1. Furthermore, using a mouse model we show that the loss of USF-1 compromises DNA repair, which suggests that USF-1 plays an important role in maintaining genomic stability. UV is responsible for DNA damage and genetic alterations of key players of the Nucleotide Excision Repair (NER) machinery promote the development of UV-induced skin cancers. The NER is the major DNA–repair process involved in the recognition and removal of UV-mediated DNA damage. Different factors participating in this DNA repair are essential, and their mutations are associated with severe genetic diseases such as Cockayne Syndrome and Xeroderma Pigmentosum. Here, we show for the first time that the specific regulation of expression in response to UV of two NER factors CSA and HR23A is required to efficiently remove DNA lesions and to maintain genomic stability. We also implicate the USF-1 transcription factor in the regulation of the expression of these factors using in vitro and in vivo models. This finding is particularly important because UV is the major cause of skin cancers and dramatically compromises patients with highly sensitive genetic diseases.
Collapse
Affiliation(s)
- Yorann Baron
- CNRS-UMR6061 Genetic and Development Institute of Rennes, RTO Team, Rennes, France
- Université de Rennes 1, UEB, IFR140, Rennes, France
| | - Sébastien Corre
- CNRS-UMR6061 Genetic and Development Institute of Rennes, RTO Team, Rennes, France
- Université de Rennes 1, UEB, IFR140, Rennes, France
| | - Nicolas Mouchet
- CNRS-UMR6061 Genetic and Development Institute of Rennes, RTO Team, Rennes, France
- Université de Rennes 1, UEB, IFR140, Rennes, France
- The Proclaim Company, Saint-Gregoire, France
| | - Sophie Vaulont
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
- Inserm, U1016, Paris, France
| | - Sharon Prince
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Marie-Dominique Galibert
- CNRS-UMR6061 Genetic and Development Institute of Rennes, RTO Team, Rennes, France
- Université de Rennes 1, UEB, IFR140, Rennes, France
- CHU Rennes, Laboratoire de Génomique Médicale, Rennes, France
- * E-mail:
| |
Collapse
|
32
|
Davies C, Hogarth LA, Dietrich PA, Bachmann PS, Mackenzie KL, Hall AG, Lock RB. p53-independent epigenetic repression of the p21(WAF1) gene in T-cell acute lymphoblastic leukemia. J Biol Chem 2011; 286:37639-50. [PMID: 21903579 DOI: 10.1074/jbc.m111.272336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The p53 protein is a primary mediator of cellular apoptosis and growth arrest after exposure to DNA-damaging agents. Previous work has shown that the majority of childhood acute lymphoblastic leukemia (ALL) cases express a wild type p53 gene, although the functionality of the p53 pathway has rarely been validated. In the present study, the integrity of the p53 pathway was investigated in a panel of ALL cell lines and xenografts established from direct patient explants in immune-deficient mice. A focused real-time quantitative reverse transcription PCR array of known p53-regulated genes identified p21(WAF1) (CDKN1A) as the highest ranked gene to be differentially expressed between B-cell precursor (BCP)-ALL and T-ALL xenografts following exposure to the DNA-damaging drug etoposide. Lack of p21(WAF1) induction was observed in six of seven T-ALL xenograft lines, as well as primary T-ALL cells following irradiation exposure, despite an otherwise functional p53 response. Repression of p21(WAF1) in T-ALL cells was associated with decreased acetylated H3K9 localized at its promoter compared with BCP-ALL cells, together with increased CpG methylation within the first exon and intron. Although the histone deacetylase inhibitor vorinostat failed to induce p21(WAF1) in T-ALL samples, the combination of vorinostat and the demethylating agent decitabine reactivated expression of the silenced p21(WAF1) gene in the Molt-4 T-ALL cell line. Considering the known anti-apoptotic function of p21(WAF1), our findings have significant implications for the responses of T- versus BCP-ALL cells to chemotherapeutic drugs that induce p21(WAF1).
Collapse
Affiliation(s)
- Carwyn Davies
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | | | | | | | | | |
Collapse
|
33
|
Satoh Y, Matsumura I, Tanaka H, Harada H, Harada Y, Matsui K, Shibata M, Mizuki M, Kanakura Y. C-terminal mutation of RUNX1 attenuates the DNA-damage repair response in hematopoietic stem cells. Leukemia 2011; 26:303-11. [DOI: 10.1038/leu.2011.202] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
34
|
Chander H, Halpern M, Resnick-Silverman L, Manfredi JJ, Germain D. Skp2B overexpression alters a prohibitin-p53 axis and the transcription of PAPP-A, the protease of insulin-like growth factor binding protein 4. PLoS One 2011; 6:e22456. [PMID: 21829624 PMCID: PMC3150379 DOI: 10.1371/journal.pone.0022456] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 06/24/2011] [Indexed: 11/25/2022] Open
Abstract
Background We previously reported that the degradation of prohibitin by the SCFSkp2B ubiquitin ligase results in a defect in the activity of p53. We also reported that MMTV-Skp2B transgenic mice develop mammary gland tumors that are characterized by an increased proteolytic cleavage of the insulin-like growth factor binding protein 4 (IGFBP-4), an inhibitor of IGF signaling. However, whether a link exists between a defect in p53 activity and proteolysis of IGFBP-4 was not established. Methods and Results We analyzed the levels of pregnancy-associated plasma protein A (PAPP-A), the protease of IGFBP-4, in MMTV-Skp2B transgenic mice and found that PAPP-A levels are elevated. Further, we found a p53 binding site in intron 1 of the PAPP-A gene and that both wild type and mutant p53 bind to this site. However, binding of wild type p53 results in the transcriptional repression of PAPP-A, while binding of mutant p53 results in the transcriptional activation of PAPP-A. Since MMTV-Skp2B mice express wild type p53 and yet show elevated levels of PAPP-A, at first, these observations appeared contradictory. However, further analysis revealed that the defect in p53 activity in Skp2B overexpressing cells does not only abolish the activity of wild type of p53 but actually mimics that of mutant p53. Our results suggest that in absence of prohibitin, the half-life of p53 is increased and like mutant p53, the conformation of p53 is denatured. Conclusions These observations revealed a novel function of prohibitin as a chaperone of p53. Further, they suggest that binding of denatured p53 in intron 1 causes an enhancer effect and increases the transcription of PAPP-A. Therefore, these findings indicate that the defect in p53 function and the increased proteolysis of IGFBP-4, we had observed, represent two components of the same pathway, which contributes to the oncogenic function of Skp2B.
Collapse
Affiliation(s)
- Harish Chander
- Division of Hematology/Oncology, Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Max Halpern
- Division of Hematology/Oncology, Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Lois Resnick-Silverman
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - James J. Manfredi
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Doris Germain
- Division of Hematology/Oncology, Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
35
|
Wu JC, Hseu YC, Tsai JS, Chen LC, Chye SM, Chen CH, Ching Chen S. Fenthion and terbufos induce DNA damage, the expression of tumor-related genes, and apoptosis in HEPG2 cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:529-37. [PMID: 21538558 DOI: 10.1002/em.20652] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 02/08/2011] [Indexed: 05/04/2023]
Abstract
This study investigates the effects of fenthion and terbufos, two organophosphorous pesticides, on DNA damage, tumor-related gene expression, and apoptosis in HepG2 cells. We found that exposure to concentrations ranging from 50 to 200 μM of fenthion and terbufos for 2 hr caused significant death in HepG2 cells. Both compounds induced DNA damage in a concentration-dependent manner as measured using the alkaline comet assay. Tumor-related genes (jun, myc, and fos) and apoptosis-related genes (socs3, tnfaip3, ppp1r15a, and nr4a1) were up-regulated by both compounds. Finally, both compounds induced apoptosis. The results demonstrate that both terbufos and fenthion induce DNA damage and should be considered potentially hazardous to humans.
Collapse
Affiliation(s)
- Jong-C Wu
- Department of Applied Chemistry, Fooyin University, Kaohsiung, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
36
|
Xu Z, Chou L, Sun J. Effects of SiO2 nanoparticles on HFL-I activating ROS-mediated apoptosis via p53 pathway. J Appl Toxicol 2011; 32:358-64. [DOI: 10.1002/jat.1710] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/16/2011] [Accepted: 05/16/2011] [Indexed: 11/10/2022]
Affiliation(s)
| | - Laisheng Chou
- Laboratory of Molecular Biocompatibility,; Goldman School of Dental Medicine; Boston University; Boston; MA02118; USA
| | | |
Collapse
|
37
|
Li G, He S, Chang L, Lu H, Zhang H, Zhang H, Chiu J. GADD45α and annexin A1 are involved in the apoptosis of HL-60 induced by resveratrol. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:704-9. [PMID: 21277758 DOI: 10.1016/j.phymed.2010.11.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 10/15/2010] [Accepted: 11/29/2010] [Indexed: 02/05/2023]
Abstract
Resveratrol (3,4',5-trihydroxy-trans-stilbene), one of secondary metabolites of low molecular weight present in plant, has various important biological effects. It can induce apoptosis in human leukemia cell types in vitro, although the mechanism is not fully understood. In the present study, we demonstrated reduced viability and DNA synthesis, as well as increased proportion of the subdiploid cell population, in HL-60 cells as determined by cell cycle analysis with resveratrol. Resveratrol treatment resulted in a gradual time-dependent decrease in the expression of anti-apoptotic Bcl-2 and increase in that of Bax, annexin A1, growth arrest- and DNA damage-induced gene 45α (GADD45α), and cleaved caspase-3. In addition, resveratrol markedly increased caspase-3 activity in cells. Our results suggest that resveratrol could inhibit the proliferation and induce apoptosis of HL-60 cells through a GADD45α and annexin A1/caspase-3 pathway.
Collapse
Affiliation(s)
- Guanwu Li
- Open Laboratory for Tumor Molecular Biology/Department of Biochemistry, Shantou University Medical College, Shantou, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Kim SH, Dass CR. p53-targeted cancer pharmacotherapy: move towards small molecule compounds. ACTA ACUST UNITED AC 2011; 63:603-10. [PMID: 21492161 DOI: 10.1111/j.2042-7158.2010.01248.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES For the past three decades of research, p53 has been identified as one of the most targetable molecules for developing anticancer treatments. This tumour suppressor protein is involved in apoptosis, cell cycle arrest and senescence. A wide range of pharmaceutical drugs and radiotherapy treatments activate this protein and rely on p53 signalling for therapeutic outcome. Promising small molecular weight compounds, some of which are undergoing clinical trials, are discussed in this review. KEY FINDINGS The spectrum of potential therapeutic approaches trialled for p53 stretch from gene therapy to the more recent development of small molecules capable of activating wild-type p53 or reactivating mutant p53. SUMMARY Our ever-growing knowledge leads us to better understand this protein, from its structure and activities to its potential therapeutic application, firstly for cancer and then for other diseases and maybe even for reversal of ageing.
Collapse
Affiliation(s)
- Soo-Hyun Kim
- Department of Biomedical Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | |
Collapse
|
39
|
Lin CR, Yang CH, Huang CE, Wu CH, Chen YS, Sheen-Chen SM, Huang HW, Chen KH. GADD45A protects against cell death in dorsal root ganglion neurons following peripheral nerve injury. J Neurosci Res 2011; 89:689-99. [PMID: 21337369 DOI: 10.1002/jnr.22589] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 10/28/2010] [Accepted: 12/03/2010] [Indexed: 11/06/2022]
Abstract
A significant loss of neurons in the dorsal root ganglia (DRG) has been reported in animal models of peripheral nerve injury. Neonatal sensory neurons are more susceptible than adult neurons to axotomy- or nerve growth factor (NGF) withdrawal-induced cell death. To develop therapies for preventing irreversible sensory cell loss, it is essential to understand the molecular mechanisms responsible for DRG cell death and survival. Here we describe how the expression of the growth arrest- and DNA damage-inducible gene 45α (GADD45A) is correlated with neuronal survival after axotomy in vivo and after NGF withdrawal in vitro. GADD45A expression is low at birth and does not change significantly after spinal nerve ligation (SNL). In contrast, GADD45A is robustly up-regulated in the adult rat DRG 24 hr after SNL, and this up-regulation persists as long as the injured fibers are prevented from regenerating. In vitro delivery of GADD45A protects neonatal rat DRG neurons from NGF withdrawal-induced cytochrome c release and cell death. In addition, in vivo knockdown of GADD45A expression in adult injured DRG by small hairpin RNA increased cell death. Our results indicate that GADD45A protects neuronal cells from SNL-induced cell death.
Collapse
Affiliation(s)
- Chung-Ren Lin
- Department of Anesthesiology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Chopra M, Schrenk D. Dioxin toxicity, aryl hydrocarbon receptor signaling, and apoptosis-persistent pollutants affect programmed cell death. Crit Rev Toxicol 2011; 41:292-320. [PMID: 21323611 DOI: 10.3109/10408444.2010.524635] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exogenous ligands of the aryl hydrocarbon receptor (AhR) such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related substances are highly toxic pollutants ubiquitously present in the environment. They cause a variety of toxic effects to different organs and tissues. Among other effects, TCDD exposure to laboratory animals leads to thymus atrophy and immunosuppression on the one hand, and to tumor formation on the other. Apoptosis appears to be involved in both these toxic effects: AhR activation by TCDD was discussed to induce apoptosis of immune cells, leading to the depletion of thymocytes and ultimately immunosuppression. This mechanism could help to explain the highly immunotoxic actions of TCDD but it is nevertheless under debate whether this is the mode of action for immunosuppression by this class of chemical substances. In other cell types, especially liver cells, TCDD inhibits apoptosis induced by genotoxic treatment. In initiation-promotion studies, TCDD was shown to be a potent liver tumor promoter. Among other theories it was hypothesized that TCDD acts as a tumor promoter by preventing initiated cells from undergoing apoptosis. The exact mechanisms of apoptosis inhibition by TCDD are not fully understood, but both in vivo and in vitro studies consistently showed an involvement of the tumor suppressor p53 in this effect. Various strings of evidence have been established linking apoptosis to the detrimental effects of exogenous activation of the AhR. Within this article, studies elucidating the effects of TCDD and related substances on apoptosis signaling, be it inducing or repressing, is to be reviewed.
Collapse
Affiliation(s)
- Martin Chopra
- Institute of Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany
| | | |
Collapse
|
41
|
Zhang XY, Qu X, Wang CQ, Zhou CJ, Liu GX, Wei FC, Sun SZ. Over-expression of Gadd45a enhances radiotherapy efficacy in human Tca8113 cell line. Acta Pharmacol Sin 2011; 32:253-8. [PMID: 21293478 DOI: 10.1038/aps.2010.208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AIM To investigate the effect of the growth arrest- and DNA damage-inducible Gadd45a gene on the radiosensitivity of human tongue squamous cell carcinoma cell line to ionizing radiation (IR). METHODS Short interfering ribonucleic acid (si-RNA) targeting Gadd45a or an irrelevant mRNA (nonsense si-RNA) was chemically synthesized. The constructed si-RNAs were transfected into Tca8113 cells and Gadd45a expression was determined using quantitative real-time PCR and Western-blot. After 24-h exposure to IR at a dose rate of 4 Gy/min, apoptosis of Tca8113 cells was detected using flow cytometry, and radiosensitivity was measured using MTT assays. RESULTS IR apparently increased the expression of Gadd45a at mRNA and protein levels in Tca8113 cells. The effect was efficiently inhibited by transfection with Gadd45a si-RNA (P<0.01). Furthermore, silencing Gadd45a gene significantly increased cell viability and decreased the percentage of apoptotic cells during irradiation, which indicated that IR-induced Gadd45a over-expression could increase the radiosensitivity of Tca8113 cells. CONCLUSION These results indicated that targeting Gadd45a may have important therapeutic implications in sensitizing Tca8113 cells to IR.
Collapse
|
42
|
Stegh AH, Brennan C, Mahoney JA, Forloney KL, Jenq HT, Luciano JP, Protopopov A, Chin L, Depinho RA. Glioma oncoprotein Bcl2L12 inhibits the p53 tumor suppressor. Genes Dev 2010; 24:2194-204. [PMID: 20837658 DOI: 10.1101/gad.1924710] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Glioblastoma multiforme (GBM) is a lethal brain tumor characterized by intense apoptosis resistance and extensive necrosis. Bcl2L12 (for Bcl2-like 12) is a cytoplasmic and nuclear protein that is overexpressed in primary GBM and functions to inhibit post-mitochondrial apoptosis signaling. Here, we show that nuclear Bcl2L12 physically and functionally interacts with the p53 tumor suppressor, as evidenced by the capacity of Bcl2L12 to (1) enable bypass of replicative senescence without concomitant loss of p53 or p19 (Arf), (2) inhibit p53-dependent DNA damage-induced apoptosis, (3) impede the capacity of p53 to bind some of its target gene promoters, and (4) attenuate endogenous p53-directed transcriptomic changes following genotoxic stress. Correspondingly, The Cancer Genome Atlas profile and tissue protein analyses of human GBM specimens show significantly lower Bcl2L12 expression in the setting of genetic p53 pathway inactivation. Thus, Bcl2L12 is a multifunctional protein that contributes to intense therapeutic resistance of GBM through its ability to operate on two key nodes of cytoplasmic and nuclear signaling cascades.
Collapse
Affiliation(s)
- Alexander H Stegh
- Belfer Institute for Applied Cancer Science, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Salicylate-induced degeneration of cochlea spiral ganglion neurons-apoptosis signaling. Neuroscience 2010; 168:288-99. [PMID: 20298761 DOI: 10.1016/j.neuroscience.2010.03.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 03/06/2010] [Accepted: 03/08/2010] [Indexed: 12/23/2022]
Abstract
Aspirin, whose active ingredient is sodium salicylate, is the most widely used drug worldwide, but it is not recommended for children because it may cause Reye's syndrome. High doses of salicylate also induce temporary hearing loss and tinnitus; while these disorders are believed to disappear when treatment is discontinued some data suggest that prolonged treatment may be neurotoxic. To investigate its ototoxicity, immature, postnatal day 3 rat cochlear organotypic cultures were treated with salicylate. Salicylate did not damage the sensory hair cells, but instead damaged the spiral ganglion neurons (SGN) and their peripheral fibers in a dose-dependent manner. The cross-sectional area of SGN decreased from 205 microm(2) in controls to 143, 116, and 91 microm(2) in cultures treated with 1, 3, or 5 mM salicylate, respectively. Morphological changes and caspase upregulation were indicative of caspase-mediated apoptosis. A quantitative RT-PCR apoptosis array identified a subset of genes up- or down regulated by salicylate. Eight genes showed a biologically relevant change (P<0.05, > or =2 fold change) after 3 h treatment with salicylate; seven genes (Tp53, Birc3, Tnfrsf5, Casp7, Nfkb1, Fas, Lta, Tnfsf10) were upregulated and one gene (Pycard) was downregulated. After 6 h treatment, only one gene (Nol3) was upregulated and two genes were downregulated (Cideb and Lhx4) while after 12 h treatment, two genes (Il10, Gadd45a) were upregulated and 4 (Prok2, Card10, Ltbr, Dapk1) were downregulated. High doses of salicylate in a physiologically relevant range can induce caspase-mediated cell death in immature SGN; changes in the expression of apoptotic genes particularly among members of the tumor necrosis factor (TNF) family appear to play an important role in the degeneration.
Collapse
|
44
|
Duale N, Olsen AK, Christensen T, Butt ST, Brunborg G. Octyl methoxycinnamate modulates gene expression and prevents cyclobutane pyrimidine dimer formation but not oxidative DNA damage in UV-exposed human cell lines. Toxicol Sci 2010; 114:272-84. [PMID: 20071424 PMCID: PMC2840218 DOI: 10.1093/toxsci/kfq005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Octyl methoxycinnamate (OMC) is one of the most widely used sunscreen ingredients. To analyze biological effects of OMC, an in vitro approach was used implying ultraviolet (UV) exposure of two human cell lines, a primary skin fibroblast (GM00498) and a breast cancer (MCF-7) cell lines. End points include cell viability assessment, assay of cyclobutane pyrimidine dimers (CPDs) and oxidated DNA lesions using alkaline elution and lesion-specific enzymes, and gene expression analysis of a panel of 17 DNA damage–responsive genes. We observed that OMC provided protection against CPDs, and the degree of protection correlated with the OMC-mediated reduction in UV dose. No such protection was found with respect to oxidative DNA lesions. Upon UV exposure in the presence of OMC, the gene expression studies showed significant differential changes in some of the genes studied and the expression of p53 protein was also changed. For some genes, the change in expression seemed to be delayed in time by OMC. The experimental approach applied in this study, using a panel of 17 genes in an in vitro cellular system together with genotoxicity assays, may be useful in the initial screening of active ingredients in sunscreens.
Collapse
Affiliation(s)
- Nur Duale
- Department of Chemical Toxicology, Division of Environmental Medicine, Norwegian Institute of Public Health, Nydalen, NO-0403 Oslo, Norway
| | | | | | | | | |
Collapse
|
45
|
Genetic contribution of GADD45A to susceptibility to sporadic and non-BRCA1/2 familial breast cancers: a systematic evaluation in Chinese populations. Breast Cancer Res Treat 2009; 121:157-67. [DOI: 10.1007/s10549-009-0516-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 08/12/2009] [Indexed: 12/14/2022]
|
46
|
Abstract
Long interspersed nuclear elements-1 (L1s) are highly repetitive DNA elements that are capable of altering the human genome through retrotransposition. To protect against L1 retroposition, the cell downregulates the expression of L1 proteins by various mechanisms, including high-density cytosine methylation of L1 promoters and DICER-dependent destruction of L1 mRNAs. In this report, a large number of p53 responsive elements, or p53 DNA binding sites, were detected in L1 elements within the human genome. At least some of these p53 responsive elements are functional and can act to increase the levels of L1 mRNA expression. The p53 protein can directly bind to a short 15-nucleotide sequence within the L1 promoter. This p53 responsive element within L1 is a recent addition to evolution, appearing approximately 20 million years ago. This suggests an interplay between L1 elements, which have a rich history of causing changes in the genome, and the p53 protein, the function of which is to protect against genomic changes. To understand these observations, a model is proposed in which the increased expression of L1 mRNAs by p53 actually increases, rather than decreases, the genomic stability through amplification of p53-dependent processes for genomic protection.
Collapse
|
47
|
Concomitant exposure of ovarian cancer cells to docetaxel, CPT-11 or SN-38 and adenovirus-mediated p53 gene therapy. Anticancer Drugs 2009; 20:589-600. [DOI: 10.1097/cad.0b013e32832dad3d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Warters RL, Gaffney DK, Kramer GF, Martinez JD, Cress AE. Transient dephosphorylation of p53 serine 376 as an early response to ionizing radiation. Radiat Res 2009; 171:725-34. [PMID: 19580479 DOI: 10.1667/rr1576.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In a previous paper we reported that the cytoplasmic sequestered p53 in cells of the SK-N-SH neuroblastoma cell line could be induced to translocate to the nucleus by exposure to ionizing radiation. We have extended these studies to determine the fate of p53 in HCT116 colorectal carcinoma cells where constitutive p53 protein resides in the nucleus. A continuous increase in the nuclear p53 protein was observed in irradiated cells beginning 1 h after irradiation that persisted for 8 h. Surprisingly, immunofluorescence microscopy revealed a transient, rapid and sensitive increase in a radiation-induced nuclear dephosphorylated p53 using antibody PAb421, which detects p53 when serine 376 is dephosphorylated. The PAb421 epitope was detectable after exposure to radiation doses as low as 0.5 cGy and was 10 to 20 times more sensitive compared to detection of p53 protein levels. The results are consistent with a radiation-induced, sensitive and rapid dephosphorylation of p53 at serine 376. The rapid increase in the nuclear PAb421 epitope was blocked by the protein serine phosphatase inhibitor calyculin A but was not blocked by the protein synthesis inhibitor cycloheximide, suggesting that serine 376 was dephosphorylated by protein serine phosphatase 1 or 2A acting on pre-existing p53 protein. The data suggest that dephosphorylation of serine 376 on constitutive nuclear p53 is a sensitive and early signaling event in the response of cells to DNA damage induced by ionizing radiation.
Collapse
Affiliation(s)
- Raymond L Warters
- Department of Radiation Oncology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA.
| | | | | | | | | |
Collapse
|
49
|
Activation of ERK and JNK signaling pathways by mycotoxin citrinin in human cells. Toxicol Appl Pharmacol 2009; 237:281-7. [DOI: 10.1016/j.taap.2009.03.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 03/18/2009] [Accepted: 03/26/2009] [Indexed: 11/21/2022]
|
50
|
Ellinger-Ziegelbauer H, Fostel JM, Aruga C, Bauer D, Boitier E, Deng S, Dickinson D, Le Fevre AC, Fornace AJ, Grenet O, Gu Y, Hoflack JC, Shiiyama M, Smith R, Snyder RD, Spire C, Tanaka G, Aubrecht J. Characterization and interlaboratory comparison of a gene expression signature for differentiating genotoxic mechanisms. Toxicol Sci 2009; 110:341-52. [PMID: 19465456 DOI: 10.1093/toxsci/kfp103] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The genotoxicity testing battery is highly sensitive for detection of chemical carcinogens. However, it features a low specificity and provides only limited mechanistic information required for risk assessment of positive findings. This is especially important in case of positive findings in the in vitro chromosome damage assays, because chromosome damage may be also induced secondarily to cell death. An increasing body of evidence indicates that toxicogenomic analysis of cellular stress responses provides an insight into mechanisms of action of genotoxicants. To evaluate the utility of such a toxicogenomic analysis we evaluated gene expression profiles of TK6 cells treated with four model genotoxic agents using a targeted high density real-time PCR approach in a multilaboratory project coordinated by the Health and Environmental Sciences Institute Committee on the Application of Genomics in Mechanism-based Risk Assessment. We show that this gene profiling technology produced reproducible data across laboratories allowing us to conclude that expression analysis of a relevant gene set is capable of distinguishing compounds that cause DNA adducts or double strand breaks from those that interfere with mitotic spindle function or that cause chromosome damage as a consequence of cytotoxicity. Furthermore, our data suggest that the gene expression profiles at early time points are most likely to provide information relevant to mechanisms of genotoxic damage and that larger gene expression arrays will likely provide richer information for differentiating molecular mechanisms of action of genotoxicants. Although more compounds need to be tested to identify a robust molecular signature, this study confirms the potential of toxicogenomic analysis for investigation of genotoxic mechanisms.
Collapse
|