1
|
XU XU, HU YU, NI JIANLONG, HU SHUIJUN, JIANG ZHI, XU LAN, LIU CHUNLIANG, HUA DONG, WU SHILIANG. 3′-Azidothymidine may potently inhibit the biosynthesis of polylactosamine chains on highly glycosylated-CD147 and reduce matrix metalloproteinase-2 expression in SGC-7901 and U251 cells. Mol Med Rep 2015; 11:4713-9. [DOI: 10.3892/mmr.2015.3241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 01/02/2015] [Indexed: 11/06/2022] Open
|
2
|
Steentoft C, Bennett EP, Schjoldager KTBG, Vakhrushev SY, Wandall HH, Clausen H. Precision genome editing: a small revolution for glycobiology. Glycobiology 2014; 24:663-80. [PMID: 24861053 DOI: 10.1093/glycob/cwu046] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Precise and stable gene editing in mammalian cell lines has until recently been hampered by the lack of efficient targeting methods. While different gene silencing strategies have had tremendous impact on many biological fields, they have generally not been applied with wide success in the field of glycobiology, primarily due to their low efficiencies, with resultant failure to impose substantial phenotypic consequences upon the final glycosylation products. Here, we review novel nuclease-based precision genome editing techniques enabling efficient and stable gene editing, including gene disruption, insertion, repair, modification and deletion. The nuclease-based techniques comprised of homing endonucleases, zinc finger nucleases, transcription activator-like effector nucleases, as well as the RNA-guided clustered regularly interspaced short palindromic repeat/Cas nuclease system, all function by introducing single or double-stranded breaks at a defined genomic sequence. We here compare and contrast the different techniques and summarize their current applications, highlighting cases from the field of glycobiology as well as pointing to future opportunities. The emerging potential of precision gene editing for the field is exemplified by applications to xenotransplantation; to probing O-glycoproteomes, including differential O-GalNAc glycoproteomes, to decipher the function of individual polypeptide GalNAc-transferases, as well as for engineering Chinese Hamster Ovary host cells for production of improved therapeutic biologics.
Collapse
Affiliation(s)
- Catharina Steentoft
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Eric P Bennett
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Katrine T-B G Schjoldager
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| |
Collapse
|
3
|
Kim JW, Glasgow JN, Nakayama M, Ak F, Ugai H, Curiel DT. An adenovirus vector incorporating carbohydrate binding domains utilizes glycans for gene transfer. PLoS One 2013; 8:e55533. [PMID: 23383334 PMCID: PMC3562239 DOI: 10.1371/journal.pone.0055533] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/27/2012] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Vectors based on human adenovirus serotype 5 (HAdV-5) continue to show promise as delivery vehicles for cancer gene therapy. Nevertheless, it has become clear that therapeutic benefit is directly linked to tumor-specific vector localization, highlighting the need for tumor-targeted gene delivery. Aberrant glycosylation of cell surface glycoproteins and glycolipids is a central feature of malignant transformation, and tumor-associated glycoforms are recognized as cancer biomarkers. On this basis, we hypothesized that cancer-specific cell-surface glycans could be the basis of a novel paradigm in HAdV-5-based vector targeting. METHODOLOGY/PRINCIPAL FINDINGS As a first step toward this goal, we constructed a novel HAdV-5 vector encoding a unique chimeric fiber protein that contains the tandem carbohydrate binding domains of the fiber protein of the NADC-1 strain of porcine adenovirus type 4 (PAdV-4). This glycan-targeted vector displays augmented CAR-independent gene transfer in cells with low CAR expression. Further, we show that gene transfer is markedly decreased in cells with genetic glycosylation defects and by inhibitors of glycosylation in normal cells. CONCLUSIONS/SIGNIFICANCE These data provide the initial proof-of-concept for HAdV-5 vector-mediated gene delivery based on the presence of cell-surface carbohydrates. Further development of this new targeting paradigm could provide targeted gene delivery based on vector recognition of disease-specific glycan biomarkers.
Collapse
Affiliation(s)
- Julius W. Kim
- Cancer Biology Division, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Joel N. Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Masaharu Nakayama
- Division of Molecular and Clinical Genetics, Medical Institution of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Ferhat Ak
- Department of Pharmacy, Faculty of Mathematics and Natural Science, University of Groningen, Groningen, The Netherlands
| | - Hideyo Ugai
- Cancer Biology Division, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - David T. Curiel
- Cancer Biology Division, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
4
|
Reddy BVVG, Kalraiya RD. Sialilated β1,6 branched N-oligosaccharides modulate adhesion, chemotaxis and motility of melanoma cells: Effect on invasion and spontaneous metastasis properties. Biochim Biophys Acta Gen Subj 2006; 1760:1393-402. [PMID: 16806716 DOI: 10.1016/j.bbagen.2006.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 04/13/2006] [Accepted: 05/09/2006] [Indexed: 11/30/2022]
Abstract
B16BL6 cells, selected specifically for invasive characteristics from B16F10 mouse melanoma cells, displayed greater ability to metastasize to lungs and produced larger colonies than the parent cells, when injected intravenously. When the two cell lines were compared for surface beta1,6-branched N-oligosaccharides by flow cytometry using Leuco-Phyto-Heam-Agglutinin, B16BL6 were found to express significantly higher levels. Inhibition of the oligosaccharide expression, by treatment of the cells with swainsonine or antisense-N-acetyl glucosaminyl-transferase-V, significantly reduced metastasis and invasion (>50%). Further, inhibition of oligosaccharides on the molecules like beta1 integrin (one of the major carriers) caused 30-45% reduction in their adherence to extra-cellular-matrix components especially collagen IV and laminin, and chemotaxis towards fibronectin and matrigel. The inhibition also decreased haptotaxis by approximately 50% to fibronectin but surprisingly was enhanced towards laminin by approximately 75%. The cells on which the expression of these oligosaccharides was inhibited failed to exhibit the characteristic spontaneous metastasis and adhesion properties of B16BL6 cells. In none of the cases, however, the secretion of matrix-metallo-proteases correlated with oligosaccharide expression. Sialylation of surface oligosaccharides was found to be accompanied by even higher motility and adherence to the substrates. These results strongly support an important role of cell surface beta1,6-linked N-oligosaccharides, especially the sialylated derivatives, in the processes that influence invasion and metastasis.
Collapse
Affiliation(s)
- B V V G Reddy
- Biochemistry and Cell Biology, Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410 208, India
| | | |
Collapse
|
5
|
Krishnan V, Bane SM, Kawle PD, Naresh KN, Kalraiya RD. Altered melanoma cell surface glycosylation mediates organ specific adhesion and metastasis via lectin receptors on the lung vascular endothelium. Clin Exp Metastasis 2005; 22:11-24. [PMID: 16132574 DOI: 10.1007/s10585-005-2036-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Accepted: 01/21/2005] [Indexed: 01/19/2023]
Abstract
Adhesive interactions between the molecules on cancer cells and the target organ are one of the key determinants of the organ specific metastasis. In this communication we show that b1,6 branched N-oligosaccharides which are expressed in a metastasis-dependent manner on B16-melanoma metastatic cell lines, participate in the adhesion process. We demonstrate that high metastatic cells show significantly increased translocation of one of the major carriers of these oligosaccharides, lysosome associated membrane protein (LAMP1), to the cell surface. LAMP1 on high metastatic cells, carry very high levels of these oligosaccharides, which are further substituted with poly N-acetyl lactosamine (polylacNAc), resulting in the expression of high density of very high affinity ligands for galectin-3 on the cell surface. We show that galectin-3 is expressed in highest amount in the lungs as compared to other representative organs. Blocking galectin-3 by pre-incubating the frozen sections of the lungs with 100 mM lactose, substantially inhibited the adhesion of high metastatic cells, while pre-incubation with sucrose had no effect. Finally, by in situ labeling and immunoprecipitation experiment, we demonstrated that the lung vascular endothelial cells express galectin-3 constitutively on their surface. Galectin-3 on the organ endothelium could thus serve as the first anchor for the circulating cancer cells, expressing high density of very high affinity ligands on their surface, and facilitate organ specific metastasis.
Collapse
MESH Headings
- Animals
- Antigens, CD/analysis
- Antigens, CD/metabolism
- Biological Assay
- Cell Adhesion/drug effects
- Cell Membrane/chemistry
- Cell Membrane/metabolism
- Cell Membrane/pathology
- Endothelium, Vascular/metabolism
- Galectin 3/metabolism
- Glycosylation
- Lactose/pharmacology
- Lung/blood supply
- Lung/metabolism
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Lysosomal-Associated Membrane Protein 1
- Lysosomal Membrane Proteins
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Oligosaccharides, Branched-Chain/analysis
- Oligosaccharides, Branched-Chain/metabolism
- Polysaccharides/metabolism
- Protein Transport
- Receptors, Mitogen/metabolism
- Sucrose/pharmacology
- Tissue Adhesions
- Up-Regulation
Collapse
Affiliation(s)
- Vaidehi Krishnan
- Institute of Molecular and Cell Biology, Singapore 117 609, Singapore
| | | | | | | | | |
Collapse
|
6
|
3′-Azidothymidine Potently Inhibits the Biosynthesis of Highly Branched N-Linked Oligosaccharides and Poly-N-acetyllactosamine Chains in Cells. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61448-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Frado LY, Strickler JE. Structural characterization of oligosaccharides in recombinant soluble human interferon receptor 2 using fluorophore-assisted carbohydrate electrophoresis. Electrophoresis 2000; 21:2296-308. [PMID: 10939438 DOI: 10.1002/1522-2683(20000701)21:12<2296::aid-elps2296>3.0.co;2-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The N-linked oligosaccharide profiles (banding patterns in gels) and structures of recombinant soluble human interferon receptor 2 (r-shIFNAR2) were determined using fluorophore-assisted carbohydrate electrophoresis (FACE, Glyko, Novato, CA). The method involves releasing N-linked oligosaccharide moieties from a glycoprotein by digestion with peptide-N glycanase (PNGase F), labeling the released oligosaccharides with the fluorescent dye 8-aminonaphthalene-1,3,6-trisulfonate (ANTS), and separating the labeled oligosaccharides by gel electrophoresis. The isolated oligosaccharides in the bands from the profiling gels can then be sequenced using exoglycosidases to reveal the oligosaccharide structures. The oligosaccharide profile of r-shIFNAR2 consists of at least nine oligosaccharide bands. The relative amount of oligosaccharide in each band can vary, depending on the culture conditions of the source cells. FACE structural analysis shows that r-shIFNAR2 contains only core-fucosylated N-linked oligosaccharides, most of which are fully sialylated (approximately 92%). The major types and relative amounts of the oligosaccharides from a representative sample are: disialylated, galactosylated, biantennary (15%); trisialylated, galactosylated, triantennary (19%), tetrasialylated, galactosylated, tetraantennary (30%), and N-acetyllactosamine-containing higher-order oligosaccharides including tri-, tetra-, and pentaantennary (28%). The remaining oligosaccharides are not fully sialylated and/or not fully galactosylated di-, tri-, and tetraantennary structures (approximately 5%) and unidentified structures (approximately 3%). A method for determining the types and structures of the N-acetyllactosamine containing oligosaccharides is also reported in this study.
Collapse
Affiliation(s)
- L Y Frado
- Department of Biopharmaceutical Sciences, Ares Advanced Technology, Inc., Randolph, MA, USA
| | | |
Collapse
|
8
|
Fukuta K, Abe R, Yokomatsu T, Kono N, Asanagi M, Omae F, Minowa MT, Takeuchi M, Makino T. Remodeling of sugar chain structures of human interferon-gamma. Glycobiology 2000; 10:421-30. [PMID: 10764830 DOI: 10.1093/glycob/10.4.421] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Natural human interferon (IFN)-gamma has mainly biantennary complex-type sugar chains and scarcely has multiantennary structures. We attempted to remodel the sugar chain structures using IFN-gamma as a model glycoprotein. To obtain the branching glycoforms of IFN-gamma, we introduced the genes for GnT-IV (UDP-N-acetylglucosamine:alpha-1,3-D-mannoside beta-1, 4-N-acetylglucosaminyltransferase) and/or GnT-V (UDP-N-acetylglucosamine:alpha-1,6-D-mannoside beta-1, 6-N-acetylglucosaminyltransferase) into Chinese hamster ovary (CHO) cells producing human IFN-gamma. The parental CHO cells produced IFN-gamma with biantennary sugar chains mainly. When the GnT-IV activity was increased, triantennary sugar chains with a branch produced by GnT-IV increased up to 66.9% of the total sugar chains. When the GnT-V activity was increased, triantennary sugar chains with a corresponding branch increased up to 55.7% of the total sugar chains. When the GnT-IV and -V activities were increased at a time, tetraantennary sugar chains increased up to 56.2% of the total sugar chains. The proportion of these multiantennary sugar chains corresponded to the intracellular activities of GnT-IV and -V. What is more, lectin blot and flow cytometric analysis indicated that the multi-branch structure of the sugar chains was increased not only on IFN-gamma, one of the secretory glycoproteins, but also on almost CHO cellular proteins by introducing either or both of the GnT genes. The results suggest that the branching structure of sugar chains of glycoproteins could be controlled by cellular GnT-IV and GnT-V activities. This technology can produce glycoforms out of natural occurrence, which should enlarge the potency of glycoprotein therapeutics.
Collapse
Affiliation(s)
- K Fukuta
- Life Science Laboratory, Mitsui Chemicals Inc., 1144 Togo, Mobara, Chiba 297-0017, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bardoni A, Valli M, Trinchera M. Differential expression of beta1,3galactosyltransferases in human colon cells derived from adenocarcinomas or normal mucosa. FEBS Lett 1999; 451:75-80. [PMID: 10356986 DOI: 10.1016/s0014-5793(99)00547-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Two beta1,3galactosyltransferases are detected in human colon cells: one corresponds to beta3GalT1, the other (beta3GalTx) is found to be different from any cloned beta3GalT since in vitro it utilizes GlcNAc very efficiently under specific reaction conditions. Expression of beta3GalT1 transcript is high in normal colon mucosa and control neuroectodermal cells, which do not express sialyl-Lewis a antigen, and low in colon adenocarcinoma cells, as assessed by competitive RT-PCR. beta3GalTx activity is high in adenocarcinoma cells expressing sialyl-Lewis a and undetectable in all other cells, suggesting differential involvement and opposite regulation of such enzymes during carcinogenesis.
Collapse
Affiliation(s)
- A Bardoni
- Department of Biochemistry, University of Pavia, Italy
| | | | | |
Collapse
|
10
|
Prati EGP, Scheidegger P, Sburlati AR, Bailey JE. Antisense strategies for glycosylation engineering of Chinese hamster ovary (CHO) cells. Biotechnol Bioeng 1998. [DOI: 10.1002/(sici)1097-0290(19980820)59:4<445::aid-bit7>3.0.co;2-g] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Do SI, Lee KY. Jacalin interacts with Asn-linked glycopeptides containing multi-antennary oligosaccharide structure with terminal alpha-linked galactose. FEBS Lett 1998; 421:169-73. [PMID: 9468300 DOI: 10.1016/s0014-5793(97)01539-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The carbohydrate binding properties of jacalin lectin were examined using RAF9 cell-derived D-[6-3H]glucosamine-radiolabeled total glycopeptides containing N-linked and O-linked oligosaccharides. The binding of N-linked glycopeptides to jacalin was abolished by treatment of alpha-galactosidase whereas O-linked glycopeptides were still bound lectin after this treatment. The removal of O-linked oligosaccharides by mild alkaline/borohydride treatment completely eliminated the lectin binding of alpha-galactosidase treated glycopeptides. These results demonstrate that jacalin interacts with cellular glycopeptides containing N-linked oligosaccharides with terminal alpha-galactose residues as well as glycopeptides containing O-linked oligosaccharides.
Collapse
Affiliation(s)
- S I Do
- Korea Research Institute of Bioscience and Biotechnology, Animal Cell and Medical Glycobiology Laboratory, Yusung, Taejon, South Korea.
| | | |
Collapse
|
12
|
Prieto PA, Larsen RD, Cho M, Rivera HN, Shilatifard A, Lowe JB, Cummings RD, Smith DF. Expression of human H-type alpha1,2-fucosyltransferase encoding for blood group H(O) antigen in Chinese hamster ovary cells. Evidence for preferential fucosylation and truncation of polylactosamine sequences. J Biol Chem 1997; 272:2089-97. [PMID: 8999907 DOI: 10.1074/jbc.272.4.2089] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human H(O) blood group is specified by the structure Fucalpha1-2Galbeta1-R, but the factors regulating expression of this determinant on cell surface glycoconjugates are not well understood. To learn more about the regulation of H blood group expression, cDNA encoding the human H-type GDPFuc:beta-D-galactoside alpha1, 2-fucosyltransferase (alpha1,2FT) was stably transfected into Chinese hamster ovary (CHO) cells. The new cell line, designated CHO(alpha1,2)FT, expressed surface neoglycans containing the H antigen. The structures of the fucosylated neoglycans in CHO(alpha1, 2)FT cells and the distribution of these glycans on glycoproteins were characterized. Seventeen percent of the [3H]Gal-labeled glycopeptides from CHO(alpha1,2)FT cells bound to the immobilized H blood group-specific lectin Ulex europaeus agglutinin-I (UEA-I), whereas none from parental CHO cells bound to the lectin. The glycopeptides from CHO(alpha1,2)FT cells binding to UEA-I contained polylactosamine [3Galbeta1-4GlcNAcbeta1-]n with the terminal sequence Fucalpha1-2Galbeta1- 4GlcNAc-R. Fucosylation of the polylactosamine sequences on complex-type N-glycans in CHO(alpha1, 2)FT cells caused a decrease in both sialylation and length of polylactosamine. Unexpectedly, only small amounts of terminal fucosylation was found in diantennary complex-type N-glycans. The O-glycans and glycolipids were not fucosylated by the H-type alpha1, 2FT. Two major high molecular weight glycoproteins, one of which was shown to be the lysosome-associated membrane glycoprotein LAMP-1, preferentially contained the H-type structure and were bound by immobilized UEA-I. These results demonstrate that in CHO cells the expressed H-type alpha1,2FT does not indiscriminately fucosylate terminal galactosyl residues in complex-type N-glycans, but it favors glycans containing polylactosamine and dramatically alters their length and sialylation.
Collapse
Affiliation(s)
- P A Prieto
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Saito H, Gu J, Nishikawa A, Ihara Y, Fujii J, Kohgo Y, Taniguchi N. Organization of the human N-acetylglucosaminyltransferase V gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 233:18-26. [PMID: 7588744 DOI: 10.1111/j.1432-1033.1995.018_1.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
UDP-N-acetylglucosamine: alpha-6-D-mannoside beta-1,6-N-acetylglucosaminyltransferase V (GlcNAc transferase V), which catalyzes the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to alpha-6-D-mannoside, is an important enzyme regulating the branch formation in complex-type, N-linked oligosaccharides. It has been reported that the enzymic activity of GlcNAc transferase V increases after viral transformation and the enzymic product is closely related to the metastasis of tumors. We previously reported the purification, cDNA cloning and chromosomal mapping of human GlcNAc transferase V. In this study, we describe the isolation of genomic clones encoding human GlcNAc transferase V and the structure of the gene. The human GlcNAc transferase V gene is divided into 17 exons, and the open reading frame is encoded by exons 2-17, spanning 155 kb. Analysis of the 5'-untranslated regions of mRNAs from various cells showed multiple sequences depending on the cell types. The promoter region of the GlcNAc transferase V gene was characterized by searching for any consensus sequences matching those for transcription-factor binding. The consensus sequences for a TATA box, AP-1, AP-2, and some other transcription factors were found in the 5'-upstream region of exon 1, and consensus sequences for LF-A1, HNF1-HP1, liver-restricted transcription factors and other factors were also found in intron 1. Chloramphenicol acetyltransferase fusion plasmids with either the 5'-upstream region of exon 1 or intron 1 were constructed and transfected into COS-1 cells. Promoter activities of both DNA fragments were detected, indicating that transcription starts within this region. These data suggest that the human GlcNAc transferase V gene employs a multiple promoter system for its transcription, and gene expression may therefore be regulated in tissue-specific and cell-type-specific manners.
Collapse
Affiliation(s)
- H Saito
- Department of Biochemistry, Osaka University Medical School, Suita, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Tan J, D'Agostaro AF, Bendiak B, Reck F, Sarkar M, Squire JA, Leong P, Schachter H. The human UDP-N-acetylglucosamine: alpha-6-D-mannoside-beta-1,2- N-acetylglucosaminyltransferase II gene (MGAT2). Cloning of genomic DNA, localization to chromosome 14q21, expression in insect cells and purification of the recombinant protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 231:317-28. [PMID: 7635144 DOI: 10.1111/j.1432-1033.1995.tb20703.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
UDP-GlcNAc:alpha-6-D-mannoside [GlcNAc to Man alpha 1-6] beta-1,2-N-acetylglucosaminyltransferase II (GlcNAc-T II, EC 2.4.1.143) is a Golgi enzyme catalyzing an essential step in the conversion of oligomannose to complex N-glycans. A 1.2-kb probe from a rat liver cDNA encoding GlcNAc-T II was used to screen a human genomic DNA library in lambda EMBL3. Southern analysis of restriction endonuclease digests of positive phage clones identified two hybridizing fragments (3.0 and 3.5 kb) which were subcloned into pBlueScript. The inserts of the resulting plasmids (pHG30 and pHG36) are over-lapping clones containing 5.5 kb of genomic DNA. The pHG30 insert (3.0 kb) contains a 1341-bp open reading frame encoding a 447-amino-acid protein, 250 bp of G + C-rich 5'-upstream sequence and 1.4 kb of 3'-downstream sequence. The pHG36 insert (3.5 kb) contains 2.75 kb of 5'-upstream sequence and 750 bp of the 5'-end of the open reading frame. The protein sequence showed the domain structure typical of all previously cloned glycosyltransferases, i.e. a short 9-residue putative cytoplasmic N-terminal domain, a 20-residue hydrophobic non-cleavable putative signal-anchor domain and a 418-residue C-terminal catalytic domain. Northern analysis of human tissues showed a major message at 3 kb and minor signals at 2 and 4.5 kb. There is no sequence similarity to any previously cloned glycosyltransferases including human UDP-GlcNAc:alpha-3-D-mannoside [GlcNAc to Man alpha 1-3] beta-1,2-N-acetylglucosaminyltransferase I (GlcNAc-T I) which has 445 amino acids with a 418-residue C-terminal catalytic domain. The human GlcNAc-T I and II genes (MGAT1 and MGAT2) map to chromosome bands 5q35 and 14q21, respectively, by fluorescence in situ hybridization. The entire coding regions of human GlcNAc-T I and II are each on a single exon. There is 92% identity between the amino acid sequences of the catalytic domains of human and rat GlcNAc-T II. Southern analysis of restriction enzyme digests of human genomic DNA indicates that there is only a single copy of the MGAT2 gene. The full-length coding region of GlcNAc-T II has been expressed in the baculovirus/Sf9 insect cell system, the recombinant enzyme has been purified to near homogeneity with a specific activity of about 20 mumol.min-1.mg-1 and the product synthesized by the recombinant enzyme has been identified by high-resolution 1H-NMR spectroscopy and mass spectrometry.
Collapse
Affiliation(s)
- J Tan
- Research Institute, Hospital for Sick Children, Toronto, Canada
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Charuk JH, Tan J, Bernardini M, Haddad S, Reithmeier RA, Jaeken J, Schachter H. Carbohydrate-deficient glycoprotein syndrome type II. An autosomal recessive N-acetylglucosaminyltransferase II deficiency different from typical hereditary erythroblastic multinuclearity, with a positive acidified-serum lysis test (HEMPAS). EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 230:797-805. [PMID: 7607254 DOI: 10.1111/j.1432-1033.1995.0797h.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Carbohydrate-deficient glycoprotein syndromes (CDGS) are a family of multisystemic congenital diseases resulting in underglycosylated glycoproteins, suggesting defective N-glycan assembly. Fibroblast extracts from two patients with a recently described variant of this disease (CDGS type II) have previously been shown to have over 98% reduced activity of UDP-GlcNAc:alpha-6-D-mannoside beta-1,2-N-acetylglucosaminyltransferase II [GlcNAc-TII; Jaeken, J., Schachter, H., Carchon, H., De Cock, P., Coddeville, B. & Spik, G. (1994) Arch. Dis. Childhood 71, 123-127]. We show in this paper that mononuclear cell extracts from one of these CDGS type-II patients have no detectable GlcNAc-TII activity and that similar extracts from 12 blood relatives of the patient, including his father, mother and brother, have GlcNAc-TII levels 32-67% that of normal levels (average 50.1% +/- 10.7% SD), consistent with an autosomal recessive disease. The poly(N-acetyllactosamine) content of erythrocyte membrane glycoproteins bands 3 and 4.5 of this CDGS patient were estimated, by tomato lectin blotting, to be reduced by 50% relative to samples obtained from blood relatives and normal controls. Similar to patients with hereditary erythroblastic multinuclearity with a positive acidified-serum lysis test (HEMPAS), erythrocyte membrane glycoproteins in the CDGS patient have increased reactivities with concanavalin A, demonstrating the presence of hybrid or oligomannose carbohydrate structures. However, bands 3 and 4.5 in HEMPAS erythrocytes have almost complete lack of poly(N-acetyllactosamine). Furthermore, CDGS type-II patients have a totally different clinical presentation and their erythrocytes do not show the serology typical of HEMPAS, suggesting that the genetic lesions responsible for these two diseases are possibly different.
Collapse
Affiliation(s)
- J H Charuk
- Department of Medicine, University of Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Taverna M, Baillet A, Schlüter M, Baylocq-Ferrier D. N-glycosylation site mapping of recombinant tissue plasminogen activator by micellar electrokinetic capillary chromatography. Biomed Chromatogr 1995; 9:59-67. [PMID: 7795387 DOI: 10.1002/bmc.1130090202] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This report describes the N-glycosylation mapping of recombinant tissue plasminogen activator (rt-PA) using micellar electrokinetic capillary chromatography. The carbohydrate structures were tentatively assigned by comparison with the anion-exchange fractionated oligosaccharides and by a comparison with previously reported data. The separation was shown to rely mainly on the degree of sialylation of the oligosaccharides, allowing a quantitative determination of the proportion of neutral and mono- to tetrasialylated structures. Significant differences in the oligosaccharide distribution of the two variants of rt-PA, which differ by the presence (type I) or the absence (type II) of oligosaccharides at the Asn-184 site, were observed. The distribution of the oligosaccharides at each of the rt-PA glycosylation sites was then determined. Glycopeptides were prepared by tryptic digestion of rt-PA and isolated using two consecutive chromatographic procedures. The glycopeptides were finally treated with N-glycanase, and the resulting oligosaccharides were analysed by capillary electrophoresis. Oligosaccharide mapping revealed that the Asn-448 and Asn-184 sites carry the same population of complex-type oligosaccharides but that the relative amounts of each oligosaccharide vary markedly. High-pH anion-exchange chromatography performed on the desialylated oligosaccharides at each glycosylation site showed that the degree of microheterogeneity was related not only to the degree of sialylation but also to structural differences in the oligosaccharide sequences. From the results as a whole, we concluded that the Asn-448 site contains a greater proportion of heavily sialylated structures and has a higher degree of microheterogeneity.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Taverna
- Faculté de Pharmacie, Laboratoire de Chimie Analytique III, Chatenay-Malabry, France
| | | | | | | |
Collapse
|
17
|
Modification of glycoproteins by N-acetylglucosaminyltransferase V is greatly influenced by accessibility of the enzyme to oligosaccharide acceptors. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31538-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|