1
|
Castañeda V, Haro-Vinueza A, Salinas I, Caicedo A, Méndez MÁ. The MitoAging Project: Single nucleotide polymorphisms (SNPs) in mitochondrial genes and their association to longevity. Mitochondrion 2022; 66:13-26. [PMID: 35817296 DOI: 10.1016/j.mito.2022.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 11/26/2022]
Abstract
Mitochondrial dysfunction is a major hallmark of aging. Mitochondrial DNA (mtDNA) mutations (inherited or acquired) may cause a malfunction of the respiratory chain (RC), and thus negatively affect cell metabolism and function. In contrast, certain mtDNA single nucleotide polymorphisms (SNPs) may be beneficial to mitochondrial electron transport chain function and the extension of cellular health as well as lifespan. The goal of the MitoAging project is to detect key physiological characteristics and mechanisms that improve mitochondrial function and use them to develop therapies to increase longevity and a healthy lifespan. We chose to perform a systematic literature review (SLR) as a tool to collect key mtDNA SNPs associated with an increase in lifespan. Then validated our results by comparing them to the MitoMap database. Next, we assessed the effect of relevant SNPs on protein stability. A total of 28 SNPs were found in protein coding regions. These SNPs were reported in Japan, China, Turkey, and India. Among the studied SNPs, the C5178A mutation in the ND2 gene of Complex I of the RC was detected in all the reviewed reports except in Uygur Chinese centenarians. Then, we found that G9055A (ATP6 gene) and A10398G (ND3 gene) polymorphisms have been associated with a protective effect against Parkinson's disease (PD). Additionally, C8414T in ATP8 was significantly associated with longevity in three Japanese reports. Interestingly, using MitoMap we found that G9055A (ATP6 gene) was the only SNP promoting longevity not associated with any pathology. The identification of SNPs associated with an increase in lifespan opens the possibility to better understand individual differences regarding a decrease in illness susceptibility and find strategies that contribute to healthy aging.
Collapse
Affiliation(s)
- Verónica Castañeda
- PhD Program in Biomedicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile; Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Biología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Alissen Haro-Vinueza
- Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Biología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Ivonne Salinas
- Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Escuela de Medicina, Colegio de Ciencias de la Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Andrés Caicedo
- Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Escuela de Medicina, Colegio de Ciencias de la Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador.
| | - Miguel Ángel Méndez
- Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Grupo de Química Computacional y Teórica, Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías, Politécnico, Universidad San Francisco de Quito, Quito, Ecuador.
| |
Collapse
|
2
|
Tzeng IS. Role of mitochondria DNA A10398G polymorphism on development of Parkinson's disease: A PRISMA-compliant meta-analysis. J Clin Lab Anal 2022; 36:e24274. [PMID: 35146807 PMCID: PMC8906025 DOI: 10.1002/jcla.24274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by memory loss and multiple cognitive disorders caused primarily by neurodegeneration. However, the preventative effects of the mitochondrial A10398G DNA polymorphism remain controversial. This meta-analysis comprehensively assessed evidence on the influence of the mitochondrial DNA A10398G variant on PD development. METHODS The PubMed, EMBASE, EBSCO, Springer Link, and Web of Science databases were searched from inception to May 31, 2020. We used a pooled model with random effects to explore the effect of A10398G on the development of PD. Stata MP version 14.0 was used to calculate the odds ratios and 95% confidence intervals (CIs) from the eligible studies to assess the impact of mitochondrial DNA A10398G on PD development. RESULTS The overall survey of the populations showed no significant association between mitochondrial DNA A10398G polymorphism (G allele compared to A allele) and PD (odds ratio = 0.85, 95% CI = 0.70-1.04, p = 0.111); however, a significant association between the mutation and PD was observed in the Caucasian population (odds ratio = 0.71, 95% CI = 0.58-0.87, p = 0.001). A neutral effect was observed in the Asian population (odds ratio = 1.10, 95% CI = 0.94-1.28, p = 0.242). CONCLUSIONS The results of this meta-analysis showed the potential protective effect of the mitochondrial DNA A10398G polymorphism on the risk of developing PD in the Caucasian population. Studies with better designs and larger samples with intensive work are required to validate these results.
Collapse
Affiliation(s)
- I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| |
Collapse
|
3
|
Saha SK, Akther J, Huda N, Yasmin T, Alam MS, Hosen MI, Hasan AM, Nabi AN. Genetic association study of C5178A and G10398A mitochondrial DNA variants with type 2 diabetes in Bangladeshi population. Meta Gene 2019. [DOI: 10.1016/j.mgene.2018.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
4
|
Hua F, Zhang X, Hou B, Xue L, Xie A. Relationship between mitochondrial DNA A10398G polymorphism and Parkinson's disease: a meta-analysis. Oncotarget 2017; 8:78023-78030. [PMID: 29100444 PMCID: PMC5652833 DOI: 10.18632/oncotarget.20920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/29/2017] [Indexed: 01/04/2023] Open
Abstract
Many studies have researched the mitochondrial DNA (mtDNA) A10398G in Parkinson's disease (PD) to determine the association between mtDNA A10398G and PD, but the results of their research were not consistent. Therefore, we performed a meta-analysis to demonstrate the connection between mtDNA A10398G and the susceptibility of PD. We searched PubMed, Web of Science, Springer Link, EMBASE and EBSCO databases up to identify relevant studies. Through strict inclusion and exclusion criteria, at last, 9 studies (total 3381 cases and 2810 controls) were included in our meta-analysis. We used the STATA 12.0 statistics software to calculate the pooled odds ratios (ORs) and 95% confidence intervals (CIs) to evaluate the genetic association between mtDNA A10398G and the risk of PD. We performed subgroup analysis to clarify the possible roles of the mtDNA A10398G polymorphism in the aetiology of PD in different ethnicities. Our meta-analysis indicates that although there was no significant association between mtDNA A10398G and PD in the Asian population (G vs. A: OR = 1.090, 95% CI = 0.939–1.284, P = 0.242), in the Caucasian population the G allele of mtDNA A10398G mutations may be a potential protective factor of PD (G vs. A: OR = 0.699, 95% CI = 0.546–0.895, P = 0.005). Further well-designed studies with larger samples are needed to validate these results.
Collapse
Affiliation(s)
- Feifei Hua
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaona Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Binghui Hou
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Xue
- Department of Rehabilitation, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Association of PGC-1alpha polymorphisms with age of onset and risk of Parkinson's disease. BMC MEDICAL GENETICS 2011; 12:69. [PMID: 21595954 PMCID: PMC3112073 DOI: 10.1186/1471-2350-12-69] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 05/19/2011] [Indexed: 01/15/2023]
Abstract
Background Peroxisome proliferator-activated receptor-γ co-activator (PGC)-1α is a transcriptional co-activator of antioxidant genes and a master regulator of mitochondrial biogenesis. Parkinson's disease (PD) is associated with oxidative stress and mitochondrial dysfunction and recent work suggests a role for PGC-1α. We hypothesized that the rs8192678 PGC-1α single nucleotide polymorphism (SNP) may influence risk or age of onset of PD. The A10398G mitochondrial SNP has been inversely associated with risk of PD in some studies. In the current study we analyzed whether rs8192678 or other PGC-1α SNPs affect PD risk or age of onset, singularly or in association with the A10398G SNP. Methods Genomic DNA samples from 378 PD patients and 173 age-matched controls were analyzed by multiplexed probe sequencing, followed by statistical analyses of the association of each SNP, alone or in combination, with risk or age of onset of PD. Adjustments were made for age of onset being less than the age of sampling, and for the observed dependence between these two ages. The PD samples were obtained as two separate cohorts, therefore statistical methods accounted for different sampling methods between the two cohorts, and data were analyzed using Cox regression adjusted for sampling in the risk set definition and in the model. Results The rs8192678 PGC-1α SNP was not associated with the risk of PD. However, an association of the PGC-1α rs8192678 GG variant with longevity was seen in control subjects (p = 0.019). Exploratory studies indicated that the CC variant of rs6821591 was associated with risk of early onset PD (p = 0.029), with PD age of onset (p = 0.047), and with longevity (p = 0.022). The rs2970848 GG allele was associated with risk of late onset PD (p = 0.027). Conclusions These data reveal possible associations of the PGC-1α SNPs rs6821591 and rs2970848 with risk or age of onset of PD, and of the PGC-1α rs8192678 GG and the rs6821591 CC variants with longevity. If replicated in other datasets, these findings may have important implications regarding the role of PGC-1α in PD and longevity.
Collapse
|
6
|
Abstract
Freeze-substitution is a physicochemical process in which biological specimens are immobilized and stabilized for microscopy. Water frozen within cells is replaced by organic solvents at subzero temperatures. Freeze-substitution is widely used for ultrastructural and immunocytochemical analyses of cells by transmission and scanning electron microscopy. Less well recognized is its superiority over conventional chemical fixation in preserving labile and rare tissue antigens for immunocytochemistry by light microscopy. In the postgenome era, the focus of molecular genetics will shift from analyzing DNA sequence structure to elucidating the function of gene networks, the intercellular effects of polygenetic diseases, and the conformational rearrangements of proteins in situ. Novel strategies will be needed to integrate knowledge of chemical structures of normal and abnormal macromolecules with the physiology and developmental biology of cells and tissues from whole organisms. This review summarizes the progress and future prospects of freeze-substitution for such explorations.
Collapse
Affiliation(s)
- R Shiurba
- Misato Inc., Satte-shi, Saitama, Japan
| |
Collapse
|
7
|
Enríquez JA, Cabezas-Herrera J, Bayona-Bafaluy MP, Attardi G. Very rare complementation between mitochondria carrying different mitochondrial DNA mutations points to intrinsic genetic autonomy of the organelles in cultured human cells. J Biol Chem 2000; 275:11207-15. [PMID: 10753928 DOI: 10.1074/jbc.275.15.11207] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present work, a large scale investigation was done regarding the capacity of cultured human cell lines (carrying in homoplasmic form either the mitochondrial tRNA(Lys) A8344G mutation associated with the myoclonic epilepsy and ragged red fiber (MERRF) encephalomyopathy or a frameshift mutation, isolated in vitro, in the gene for the ND4 subunit of NADH dehydrogenase) to undergo transcomplementation of their recessive mitochondrial DNA (mtDNA) mutations after cell fusion. The presence of appropriate nuclear drug resistance markers in the two cell lines allowed measurements of the frequency of cell fusion in glucose-containing medium, non-selective for respiratory capacity, whereas the frequency of transcomplementation of the two mtDNA mutations was determined by growing the same cell fusion mixture in galactose-containing medium, selective for respiratory competence. Transcomplementation of the two mutations was revealed by the re-establishment of normal mitochondrial protein synthesis and respiratory activity and by the relative rates synthesis of two isoforms of the ND3 subunit of NADH dehydrogenase. The results of several experiments showed a cell fusion frequency between 1.4 and 3.4% and an absolute transcomplementation frequency that varied between 1.2 x 10(-5) and 5.5 x 10(-4). Thus, only 0.3-1.6% of the fusion products exhibited transcomplementation of the two mutations. These rare transcomplementing clones were very sluggish in developing, grew very slowly thereafter, and showed a substantial rate of cell death (22-28%). The present results strongly support the conclusion that the capacity of mitochondria to fuse and mix their contents is not a general intrinsic property of these organelles in mammalian cells, although it may become activated in some developmental or physiological situations.
Collapse
Affiliation(s)
- J A Enríquez
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
8
|
Li J, Kelly JF, Chernushevich I, Harrison DJ, Thibault P. Separation and identification of peptides from gel-isolated membrane proteins using a microfabricated device for combined capillary electrophoresis/nanoelectrospray mass spectrometry. Anal Chem 2000; 72:599-609. [PMID: 10695148 DOI: 10.1021/ac990986z] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The coupling of microfabricated devices to nanoelectrospray mass spectrometers using both a triple quadrupole and a quadrupole time-of-flight mass spectrometer (QqTOF MS) is presented for the analysis of trace-level membrane proteins. Short disposable nanoelectrospray emitters were directly coupled to the chip device via a low dead volume connection. The analytical performance of this integrated device in terms of sensitivity and reproducibility was evaluated for standard peptide mixtures. A concentration detection limit ranging from 3.2 to 43.5 nM for different peptides was achieved in selected ion monitoring, thus representing a 10-fold improvement in sensitivity compared to that of microelectrospray using the same chip/mass spectrometer. Replicate injections indicated that reproducibility of migration time was typically less than 3.1% RSD whereas RSD values of 6-13% were observed on peak areas. Although complete resolution of individual components is not typically achieved for complex digests, the present chip capillary electrophoresis (chip-CE) device enabled proper sample cleanup and partial separation of multicomponent samples prior to mass spectral identification. Analyses of protein digests were typically achieved in less than 1.5 min with peak widths of 1.8-2.5 s (half-height definition) as indicated from individual reconstructed ion electropherograms. The application of this chip-CE/QqTOF MS system is further demonstrated for the identification of membrane proteins which form a subset of the Haemophilus influenzae proteome. Bands first separated by 1D-gel electrophoresis were excised and digested, and extracted tryptic peptides were loaded on the chip without any further sample cleanup or on-line adsorption preconcentration. Accurate molecular mass determination (< 5 ppm) in peptide-mapping experiments was obtained by introducing an internal standard via a postseparation channel. The analytical potential of this integrated device for the identification of trace-level proteins from different strains of H. influenzae is demonstrated using both peptide mass-fingerprint database searching and on-line tandem mass spectrometry.
Collapse
Affiliation(s)
- J Li
- Institute for Biological Sciences, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
9
|
Wang C, Oleschuk R, Ouchen F, Li J, Thibault P, Harrison DJ. Integration of immobilized trypsin bead beds for protein digestion within a microfluidic chip incorporating capillary electrophoresis separations and an electrospray mass spectrometry interface. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2000; 14:1377-83. [PMID: 10920358 DOI: 10.1002/1097-0231(20000815)14:15<1377::aid-rcm31>3.0.co;2-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A microfluidic device is described in which an electrospray interface to a mass spectrometer is integrated with a capillary electrophoresis channel, an injector and a protein digestion bed on a monolithic substrate. A large channel, 800 microm wide, 150 microm deep and 15 mm long, was created to act as a reactor bed for trypsin immobilized on 40-60 microm diameter beads. Separation was performed in channels etched 10 microm deep, 30 microm wide and about 45 mm long, feeding into a capillary, attached to the chip with a low dead volume coupling, that was 30 mm in length, with a 50 microm i.d. and 180 microm o.d. Sample was pumped through the reactor bed at flow rates between 0.5 and 60 microL/min. The application of this device for rapid digestion, separation and identification of proteins is demonstrated for melittin, cytochrome c and bovine serum albumin (BSA). The rate and efficiency of digestion was related to the flow rate of the substrate solution through the reactor bed. A flow rate of 1 or 0.5 microL/min was found adequate for complete consumption of cytochrome c or BSA, corresponding to a digestion time of 3-6 min at room temperature. Coverage of the amino acid sequence ranged from 92% for cytochrome c to 71% for BSA, with some missed cleavages observed. Melittin was consumed within 5 s. In contrast, a similar extent of digestion of melittin in a cuvet took 10-15 min. The kinetic limitations associated with the rapid digestion of low picomole levels of substrate were minimized using an integrated digestion bed with hydrodynamic flow to provide an increased ratio of trypsin to sample. This chip design thus provides a convenient platform for automated sample processing in proteomics applications.
Collapse
Affiliation(s)
- C Wang
- Dept. of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 Canada
| | | | | | | | | | | |
Collapse
|
10
|
Guan MX, Enriquez JA, Fischel-Ghodsian N, Puranam RS, Lin CP, Maw MA, Attardi G. The deafness-associated mitochondrial DNA mutation at position 7445, which affects tRNASer(UCN) precursor processing, has long-range effects on NADH dehydrogenase subunit ND6 gene expression. Mol Cell Biol 1998; 18:5868-79. [PMID: 9742104 PMCID: PMC109173 DOI: 10.1128/mcb.18.10.5868] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/1998] [Accepted: 07/11/1998] [Indexed: 11/20/2022] Open
Abstract
The pathogenetic mechanism of the deafness-associated mitochondrial DNA (mtDNA) T7445C mutation has been investigated in several lymphoblastoid cell lines from members of a New Zealand pedigree exhibiting the mutation in homoplasmic form and from control individuals. We show here that the mutation flanks the 3' end of the tRNASer(UCN) gene sequence and affects the rate but not the sites of processing of the tRNA precursor. This causes an average reduction of approximately 70% in the tRNASer(UCN) level and a decrease of approximately 45% in protein synthesis rate in the cell lines analyzed. The data show a sharp threshold in the capacity of tRNASer(UCN) to support the wild-type protein synthesis rate, which corresponds to approximately 40% of the control level of this tRNA. Strikingly, a 7445 mutation-associated marked reduction has been observed in the level of the mRNA for the NADH dehydrogenase (complex I) ND6 subunit gene, which is located approximately 7 kbp upstream and is cotranscribed with the tRNASer(UCN) gene, with strong evidence pointing to a mechanistic link with the tRNA precursor processing defect. Such reduction significantly affects the rate of synthesis of the ND6 subunit and plays a determinant role in the deafness-associated respiratory phenotype of the mutant cell lines. In particular, it accounts for their specific, very significant decrease in glutamate- or malate-dependent O2 consumption. Furthermore, several homoplasmic mtDNA mutations affecting subunits of NADH dehydrogenase may play a synergistic role in the establishment of the respiratory phenotype of the mutant cells.
Collapse
Affiliation(s)
- M X Guan
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Takai D, Inoue K, Goto YI, Nonaka I, Hayashi JI. The interorganellar interaction between distinct human mitochondria with deletion mutant mtDNA from a patient with mitochondrial disease and with HeLa mtDNA. J Biol Chem 1997; 272:6028-33. [PMID: 9038225 DOI: 10.1074/jbc.272.9.6028] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
For the examination of possible intermitochondrial interaction of human mitochondria from different cells, cybrids were constructed by introducing HeLa mitochondria into cells with respiration-deficient (rho-) mitochondria. Respiration deficiency was due to the predominance of mutant mtDNA with a 5,196-base pair deletion including five tRNA genes (DeltamtDNA5196). The HeLa mtDNA and DeltamtDNA5196 encoded chloramphenicol-resistant (CAPr) and chloramphenicol-sensitive (CAPs) 16 S rRNA, respectively. The first evidence for the interaction was that polypeptides exclusively encoded by DeltamtDNA5196 were translated on the introduction of HeLa mitochondria, suggesting supplementation of the missing tRNAs by rho- mitochondria from HeLa mitochondria. Second, the exchange of mitochondrial rRNAs was observed; even in the presence of CAP, CAPs DeltamtDNA5196-specific polypeptides as well as those encoded by CAPr HeLa mtDNA were translated in the cybrids. These phenomena can be explained assuming that the translation in rho- mitochondria was restored by tRNAs and CAPr 16 S rRNA supplied from HeLa mitochondria, unambiguously indicating interorganellar interaction. These observations introduce a new concept of the dynamics of the mitochondrial genetic system and help in understanding the relationship among mtDNA mutations and expression of human mitochondrial diseases and aging.
Collapse
Affiliation(s)
- D Takai
- Institute of Biological Sciences, University of Tsukuba, Ibaraki 305, Japan
| | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- A Chomyn
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| |
Collapse
|
13
|
Attardi G, Yoneda M, Chomyn A. Complementation and segregation behavior of disease-causing mitochondrial DNA mutations in cellular model systems. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1271:241-8. [PMID: 7599215 DOI: 10.1016/0925-4439(95)00034-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The recent development of cellular models of mitochondrial DNA-linked diseases by transfer of patient-derived mitochondria into human mtDNA-less (rho o) cells has provided a valuable tool for investigating the complementation and segregation of mtDNA mutations. In transformants carrying in heteroplasmic form the mitochondrial tRNA(Lys) gene 8344 mutation or tRNA(Leu(UUR)) gene 3243 mutation associated, respectively, with the MERRF or the MELAS encephalomyopathy, full protection of the cells against the protein synthesis and respiration defects caused by the mutations was observed when the wild-type mtDNA exceeded 10% of the total complement. In the MERRF transformants, the protective effect of wild-type mtDNA was shown to involve interactions of the mutant and wild-type gene products, probably coexisting within the same organelle from the time of the mutation event. In striking contrast, in experiments in which two mtDNAs carrying either the MERRF or the MELAS mutation were sequentially introduced within distinct organelles into the same rho o cells, no evidence of cooperation between their products was observed. These results pointed to the phenotypic independence of the two genomes. A similar conclusion was reached in experiments in which a chloramphenicol (CAP) resistance-conferring mtDNA mutation was introduced into CAP-sensitive cells. In the area of segregation of mtDNA mutations, in unstable heteroplasmic MELAS transformants, observations were made which pointed to a replicative advantage of mutant molecules, leading to a rapid shift of the genome towards the mutant type. These results are consistent with a model in which the mitochondrion, rather than the mtDNA molecule, is the segregating unit.
Collapse
Affiliation(s)
- G Attardi
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | | | |
Collapse
|
14
|
Abstract
Leber's hereditary optic neuropathy is a maternally inherited disease associated with the late onset of bilateral loss of central vision and cardiac dysrhythmias. The maternal inheritance is explained by the mitochondrial origin of the disease. Analysis of the sequence of a mitochondrial DNA has indicated that a single nucleotide change at position 11778 is associated with this disease. This mutation converts the 340th amino acid of NADH dehydrogenase subunit 4 from an arginine to a histidine and eliminates an SfaNI endonuclease restriction site. A survey of restriction-fragment-length polymorphisms in the mitochondrial DNA of three independent families with this disease (an American black and two white European families) and 10 controls confirmed that this SfaNI site is associated with the disease. A phylogenetic tree for mitochondrial DNA polymorphism and sequence variants from three probands with Leber's disease and four controls was constructed, and the mutation at position 11778 was found to be associated with two mitochondrial DNA backgrounds--an American black mitochondrial DNA and a European mitochondrial DNA. Thus, this mutation must have arisen twice independently. Since the mutation correlated with symptoms of Leber's disease in both cases, these findings indicate that the mutation is a cause of the disease. This genetic analysis has identified the specific point mutation in the mitochondrial DNA that results in Leber's hereditary optic neuropathy.
Collapse
Affiliation(s)
- G Singh
- Department of Biochemistry, Emory University, Atlanta, GA
| | | | | |
Collapse
|
15
|
Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AM, Elsas LJ, Nikoskelainen EK. Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science 1988; 242:1427-30. [PMID: 3201231 DOI: 10.1126/science.3201231] [Citation(s) in RCA: 1553] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Leber's hereditary optic neuropathy is a maternally inherited disease resulting in optic nerve degeneration and cardiac dysrhythmia. A mitochondrial DNA replacement mutation was identified that correlated with this disease in multiple families. This mutation converted a highly conserved arginine to a histidine at codon 340 in the NADH dehydrogenase subunit 4 gene and eliminated an Sfa NI site, thus providing a simple diagnostic test. This finding demonstrated that a nucleotide change in a mitochondrial DNA energy production gene can result in a neurological disease.
Collapse
Affiliation(s)
- D C Wallace
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Variation in the human mitochondrial DNA (mtDNA) sequence has been extensively analysed using restriction fragment length polymorphisms (RFLPs). MtDNA RFLPs have previously been attributed to nucleotide changes within restriction endonuclease recognition sites or to small insertion-deletion mutations. We now report that RFLPs detected by polyacrylamide gel electrophoresis can also result from single nucleotide substitutions which alter the mobility of small- to medium-sized restriction fragments that incorporate the sequence. We have defined the mutation responsible at two loci and have identified several possible additional loci. When screening human mtDNAs with multiple restriction endonucleases, such mutations can be misidentified as insertion-deletion mutations or counted as multiple polymorphic restriction sites. This can lead to errors in constructing restriction maps and estimating sequence diversity.
Collapse
|
17
|
Biogenesis of Mammalian Mitochondria. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/b978-0-12-152515-6.50012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
Cantatore P, Saccone C. Organization, structure, and evolution of mammalian mitochondrial genes. INTERNATIONAL REVIEW OF CYTOLOGY 1987; 108:149-208. [PMID: 3312065 DOI: 10.1016/s0074-7696(08)61438-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- P Cantatore
- Department of Biochemistry and Molecular Biology, University of Bari, Italy
| | | |
Collapse
|
19
|
Chomyn A, Cleeter MW, Ragan CI, Riley M, Doolittle RF, Attardi G. URF6, last unidentified reading frame of human mtDNA, codes for an NADH dehydrogenase subunit. Science 1986; 234:614-8. [PMID: 3764430 DOI: 10.1126/science.3764430] [Citation(s) in RCA: 262] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The polypeptide encoded in URF6, the last unassigned reading frame of human mitochondrial DNA, has been identified with antibodies to peptides predicted from the DNA sequence. Antibodies prepared against highly purified respiratory chain NADH dehydrogenase from beef heart or against the cytoplasmically synthesized 49-kilodalton iron-sulfur subunit isolated from this enzyme complex, when added to a deoxycholate or a Triton X-100 mitochondrial lysate of HeLa cells, specifically precipitated the URF6 product together with the six other URF products previously identified as subunits of NADH dehydrogenase. These results strongly point to the URF6 product as being another subunit of this enzyme complex. Thus, almost 60% of the protein coding capacity of mammalian mitochondrial DNA is utilized for the assembly of the first enzyme complex of the respiratory chain. The absence of such information in yeast mitochondrial DNA dramatizes the variability in gene content of different mitochondrial genomes.
Collapse
|
20
|
Wallace DC. Mitotic segregation of mitochondrial DNAs in human cell hybrids and expression of chloramphenicol resistance. SOMATIC CELL AND MOLECULAR GENETICS 1986; 12:41-9. [PMID: 3003930 DOI: 10.1007/bf01560726] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The relationship between the chloramphenicol (CAP)-resistant phenotype and the mtDNA genotype was investigated in segregating human, HeLa X HT1080, somatic cell hybrids. The parental mtDNAs were quantitated in heteroplasmic cells by using restriction fragment length polymorphisms (RFLPs) detected in Southern blots. CAP-resistant (R) X CAP-sensitive (S) hybrids selected and grown in CAP for brief periods had as little as 25% CAP-R mtDNA. With prolonged selection, the CAP-R mtDNA increased to 90-95%. Hybrids selected and passaged without CAP either retained both mtDNAs or progressively lost one mtDNA (mitotic segregation). The CAP-resistance phenotype of these hybrids changed abruptly when the proportion of CAP-R mtDNAs fluctuated around approximately 10% (threshold effect). Hybrids with greater than 25% HT1080 mtDNA had an additional characteristic. They cloned better with CAP than without. The cloning efficiency in CAP of hybrids having 90% HT1080 mtDNA was more than fivefold greater than the control.
Collapse
|
21
|
Bhat KS, Bhat NK, Kulkarni GR, Iyengar A, Avadhani NG. Expression of the cytochrome b-URF6-URF5 region of the mouse mitochondrial genome. Biochemistry 1985; 24:5818-25. [PMID: 3002424 DOI: 10.1021/bi00342a020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The nature of RNA coded by the only light-strand (L-strand) open-reading frame unidentified reading frame 6 (URF6) was studied by using a variety of single- and double-strand DNA subclones derived from the 3.6-kilobase (kb) cytochrome b (cyt b)-URF5 coding region of the mouse mitochondrial genome. Northern blot experiments using single-strand-specific M13 clones indicate that both the heavy (H) and L strands of this genomic region are symmetrically transcribed and processed into poly(adenylic acid) [poly(A)] RNAs of comparable size. The 1.2- and 2.4-kb RNAs coded by the H strand, putative mRNAs for cyt b and URF5 reading frames, respectively, are derived from a common precursor of 3.6-kb RNA. The L-strand-coded 1.15-kb RNA, on the other hand, is derived from a short-lived precursor of 3.6-kb RNA by a multiple-step processing involving a 2.4-kb intermediate RNA. The S1 nuclease protection experiments using both the 3'- or 5'-end-labeled DNA probes and also affinity-purified 32P-labeled RNA probes indicate that the 1.15-kb RNA maps between the start of the URF6 reading frame (3' end) and a region 590-600 nucleotides to the 5' end of this reading frame. The 1.15-kb RNA thus contains the entire URF6 coding sequence and an about 590-nucleotide-long 3' untranslated region. The molar abundance of the three mRNAs in the steady-state mitochondrial RNA varies markedly. The 1.15-kb URF6 mRNA is only one-tenth the level of 1.2-kb cyt b mRNA, although it is nearly as abundant as the 2.4-kb URF5 mRNA.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
22
|
Schieber GL, O'Brien TW. Site of synthesis of the proteins of mammalian mitochondrial ribosomes. Evidence from cultured bovine cells. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)88981-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Attardi G. Animal mitochondrial DNA: an extreme example of genetic economy. INTERNATIONAL REVIEW OF CYTOLOGY 1985; 93:93-145. [PMID: 3891661 DOI: 10.1016/s0074-7696(08)61373-x] [Citation(s) in RCA: 221] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
|
25
|
Oliver N, McCarthy J, Wallace DC. Comparison of mitochondrially synthesized polypeptides of human, mouse, and monkey cell lines by a two-dimensional protease gel system. SOMATIC CELL AND MOLECULAR GENETICS 1984; 10:639-43. [PMID: 6438810 DOI: 10.1007/bf01535230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mitochondrially synthesized polypeptides of human, monkey, and mouse cells were compared using SDS-polyacrylamide gel electrophoresis (SDS-PAGE). A single molecular weight variant, the major interspecific variant (MIV), was identified in human cells as compared to monkey and mouse. The peptide maps of MIV were compared between the three species using a two-dimensional proteolytic digest (2D-PD) gel system. A number of conserved peptides were found, indicating that the MIVs have a common function. Other MIV peptides were species specific. These results confirm the conserved nature of mitochondrial polypeptides and demonstrate the utility of 2D-PD gels in testing for protein alleles and detecting subtle protein variants.
Collapse
|
26
|
A novel mutation selectively decreases complex I and cytochrome c oxidase subunits in Chinese hamster mitochondria. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)90628-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|