1
|
Shuman S. RNA Repair: Hiding in Plain Sight. Annu Rev Genet 2023; 57:461-489. [PMID: 37722686 DOI: 10.1146/annurev-genet-071719-021856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Enzymes that phosphorylate, dephosphorylate, and ligate RNA 5' and 3' ends were discovered more than half a century ago and were eventually shown to repair purposeful site-specific endonucleolytic breaks in the RNA phosphodiester backbone. The pace of discovery and characterization of new candidate RNA repair activities in taxa from all phylogenetic domains greatly exceeds our understanding of the biological pathways in which they act. The key questions anent RNA break repair in vivo are (a) identifying the triggers, agents, and targets of RNA cleavage and (b) determining whether RNA repair results in restoration of the original RNA, modification of the RNA (by loss or gain at the ends), or rearrangements of the broken RNA segments (i.e., RNA recombination). This review provides a perspective on the discovery, mechanisms, and physiology of purposeful RNA break repair, highlighting exemplary repair pathways (e.g., tRNA restriction-repair and tRNA splicing) for which genetics has figured prominently in their elucidation.
Collapse
Affiliation(s)
- Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA;
| |
Collapse
|
2
|
Liang X, Chen H, Li L, An R, Komiyama M. Ring-Structured DNA and RNA as Key Players In Vivoand In Vitro. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Hui Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Lin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
3
|
Petkovic S, Müller S. RNA circularization strategies in vivo and in vitro. Nucleic Acids Res 2015; 43:2454-65. [PMID: 25662225 PMCID: PMC4344496 DOI: 10.1093/nar/gkv045] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 12/30/2022] Open
Abstract
In the plenitude of naturally occurring RNAs, circular RNAs (circRNAs) and their biological role were underestimated for years. However, circRNAs are ubiquitous in all domains of life, including eukaryotes, archaea, bacteria and viruses, where they can fulfill diverse biological functions. Some of those functions, as for example playing a role in the life cycle of viral and viroid genomes or in the maturation of tRNA genes, have been elucidated; other putative functions still remain elusive. Due to the resistance to exonucleases, circRNAs are promising tools for in vivo application as aptamers, trans-cleaving ribozymes or siRNAs. How are circRNAs generated in vivo and what approaches do exist to produce ring-shaped RNAs in vitro? In this review we illustrate the occurrence and mechanisms of RNA circularization in vivo, survey methods for the generation of circRNA in vitro and provide appropriate protocols.
Collapse
Affiliation(s)
- Sonja Petkovic
- Institut für Biochemie, Ernst Moritz Arndt Universität Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Sabine Müller
- Institut für Biochemie, Ernst Moritz Arndt Universität Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| |
Collapse
|
4
|
Transfer RNA post-transcriptional processing, turnover, and subcellular dynamics in the yeast Saccharomyces cerevisiae. Genetics 2013; 194:43-67. [PMID: 23633143 DOI: 10.1534/genetics.112.147470] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transfer RNAs (tRNAs) are essential for protein synthesis. In eukaryotes, tRNA biosynthesis employs a specialized RNA polymerase that generates initial transcripts that must be subsequently altered via a multitude of post-transcriptional steps before the tRNAs beome mature molecules that function in protein synthesis. Genetic, genomic, biochemical, and cell biological approaches possible in the powerful Saccharomyces cerevisiae system have led to exciting advances in our understandings of tRNA post-transcriptional processing as well as to novel insights into tRNA turnover and tRNA subcellular dynamics. tRNA processing steps include removal of transcribed leader and trailer sequences, addition of CCA to the 3' mature sequence and, for tRNA(His), addition of a 5' G. About 20% of yeast tRNAs are encoded by intron-containing genes. The three-step splicing process to remove the introns surprisingly occurs in the cytoplasm in yeast and each of the splicing enzymes appears to moonlight in functions in addition to tRNA splicing. There are 25 different nucleoside modifications that are added post-transcriptionally, creating tRNAs in which ∼15% of the residues are nucleosides other than A, G, U, or C. These modified nucleosides serve numerous important functions including tRNA discrimination, translation fidelity, and tRNA quality control. Mature tRNAs are very stable, but nevertheless yeast cells possess multiple pathways to degrade inappropriately processed or folded tRNAs. Mature tRNAs are also dynamic in cells, moving from the cytoplasm to the nucleus and back again to the cytoplasm; the mechanism and function of this retrograde process is poorly understood. Here, the state of knowledge for tRNA post-transcriptional processing, turnover, and subcellular dynamics is addressed, highlighting the questions that remain.
Collapse
|
5
|
Makino SI, Sawasaki T, Endo Y, Takai K. Use of domain enzymes from wheat RNA ligase for in vitro preparation of RNA molecules. Biochem Biophys Res Commun 2010; 404:1050-4. [PMID: 21187077 DOI: 10.1016/j.bbrc.2010.12.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022]
Abstract
Wheat RNA ligase can be dissected into three isolated domain enzymes that are responsible for its core ligase, 5'-kinase, and 2',3'-cyclic phosphate 3'-phosphodiesterase activities, respectively. In the present study, we pursued a practical strategy using the domain enzymes for in vitro step-by-step ligation of RNA molecules. As a part of it, we demonstrated that a novel side reaction on 5'-tri/diphosphate RNAs is dependent on ATP, a 2'-phosphate-3'-hydroxyl end, and the ligase domain. Mass spectroscopy and RNA cleavage analyses strongly suggested that it is an adenylylation on the 5' terminus. The ligase domain enzyme showed a high productivity for any of the possible 16 combinations of terminal bases and a high selectivity for the 5'-phosphate and 2'-phosphate-3'-hydroxyl ends. Two RNA molecules having 5'-hydroxyl and 2',3'-cyclic monophosphate groups were ligated almost stoichiometrically after separate conversion of respective terminal phosphate states into reactive ones. As the product has the same terminal state as the starting material, the next rounds of ligation are also possible in principle. Thus, we propose a flexible method for in vitro RNA ligation.
Collapse
Affiliation(s)
- Shin-ichi Makino
- Cell-free Science and Technology Research Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | | | | | | |
Collapse
|
6
|
Makino SI, Sawasaki T, Endo Y, Takai K. In vitro dissection revealed that the kinase domain of wheat RNA ligase is physically isolatable from the flanking domains as a non-overlapping domain enzyme. Biochem Biophys Res Commun 2010; 397:762-6. [DOI: 10.1016/j.bbrc.2010.06.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 06/06/2010] [Indexed: 11/24/2022]
|
7
|
|
8
|
Abstract
Trl 1 is an essential 827-amino-acid enzyme that executes the end-healing and end-sealing steps of tRNA splicing in Saccharomyces cerevisiae. Trl1 consists of two catalytic domains--an N-terminal adenylyltransferase/ligase component (amino acids 1-388) and a C-terminal 5'-kinase/cyclic phosphodiesterase component (amino acids 389-827)--that can function in tRNA splicing in vivo when expressed as separate polypeptides. Sedimentation analysis indicates that the ligase and kinase/CPD domains are monomeric proteins that do not form a stable complex in trans. To understand the structural requirements for the RNA ligase component, we performed a mutational analysis of amino acids that are conserved in Trl1 homologs from other fungi. Alanine scanning identified 23 new residues as essential for Trl1-(1-388) activity in vivo. Structure-activity relationships at these positions, and four essential residues defined previously, were clarified by introducing 50 different conservative substitutions. Lethal mutations of Lys114, Glu184, Glu266, and Lys284 abolished Trl1 adenylyltransferase activity in vitro. The essential elements embrace (1) putative equivalents of nucleotidyltransferase motifs I, Ia, III, IV, and V found in DNA ligases, T4 RNA ligase 2, and mRNA capping enzymes; (2) an N-terminal segment shared with the T4 RNA ligase 1 subfamily only; and (3) a constellation of conserved residues specific to fungal tRNA splicing enzymes. We identify yeastlike tRNA ligases in the proteomes of Leishmania and Trypanosoma. These findings recommend tRNA ligase as a target for antifungal and antiprotozoal drug discovery.
Collapse
Affiliation(s)
- Li Kai Wang
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | |
Collapse
|
9
|
Steiger MA, Jackman JE, Phizicky EM. Analysis of 2'-phosphotransferase (Tpt1p) from Saccharomyces cerevisiae: evidence for a conserved two-step reaction mechanism. RNA (NEW YORK, N.Y.) 2005; 11:99-106. [PMID: 15611300 PMCID: PMC1370695 DOI: 10.1261/rna.7194605] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Tpt1p is an essential protein responsible for the 2'-phosphotransferase step of tRNA splicing in Saccharomyces cerevisiae, in which the splice junction 2'-phosphate of ligated tRNA is transferred to NAD to form mature tRNA and ADP-ribose 1''-2'' cyclic phosphate. We showed previously that Tpt1p is a member of a family of functional 2'-phosphotransferases found in eukaryotes, eubacteria, and archaea, that the Escherichia coli protein (KptA) is highly specific for 2'-phosphorylated RNAs despite the lack of obvious natural substrates, and that KptA acts on a trinucleotide substrate through an intermediate in which RNA is ADP-ribosylated at the 2'-phosphate. This mechanism is similar to a proposed mechanism of NAD-dependent histone deacetylases. We present evidence here that this mechanism is conserved in S. cerevisiae, and we identify residues important for the second step of the reaction, during which the intermediate is resolved into products. We examined 21 Tpt1 protein variants mutated in conserved residues or blocks of residues and show that one of them, Tpt1 K69A/R71S protein, accumulates large amounts of intermediate with trinucleotide substrate due to a very slow second step. This intermediate can be trapped on beads when formed with biotin-NAD. We also show that Tpt1 K69A/R71S protein forms an intermediate with the natural ligated tRNA substrate and demonstrate that, as expected, this mutation is lethal in yeast. The high degree of conservation of these residues suggests that the entire Tpt1p family is involved in a similar two-step chemical reaction.
Collapse
Affiliation(s)
- Michelle A Steiger
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, USA
| | | | | |
Collapse
|
10
|
Schwer B, Sawaya R, Ho CK, Shuman S. Portability and fidelity of RNA-repair systems. Proc Natl Acad Sci U S A 2004; 101:2788-93. [PMID: 14973195 PMCID: PMC365698 DOI: 10.1073/pnas.0305859101] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Yeast tRNA ligase (Trl1) is an essential enzyme that converts cleaved tRNA half-molecules into spliced tRNAs containing a 2'-PO(4), 3'-5' phosphodiester at the splice junction. Trl1 also catalyzes splicing of HAC1 mRNA during the unfolded protein response. Trl1 performs three reactions: the 2',3'-cyclic phosphate of the proximal RNA fragment is hydrolyzed to a 3'-OH, 2'-PO(4) by a cyclic phosphodiesterase; the 5'-OH of the distal RNA fragment is phosphorylated by a GTP-dependent polynucleotide kinase; and the 3'-OH, 2'-PO(4), and 5'-PO(4) ends are then sealed by an ATP-dependent RNA ligase. The removal of the 2'-PO(4) at the splice junction is catalyzed by the essential enzyme Tpt1, which transfers the RNA 2'-PO(4) to NAD(+) to form ADP-ribose 1"-2"-cyclic phosphate. Here, we show that the bacteriophage T4 enzymes RNA ligase 1 and polynucleotide kinase/phosphatase can fulfill the tRNA and HAC1 mRNA splicing functions of yeast Trl1 in vivo and bypass the requirement for Tpt1. These results attest to the portability of RNA-repair systems, notwithstanding the significant differences in the specificities, mechanisms, and reaction intermediates of the individual yeast and T4 enzymes responsible for the RNA healing and sealing steps. We surmise that Tpt1 and its unique metabolite ADP-ribose 1"-2"-cyclic phosphate do not play essential roles in yeast independent of the tRNA-splicing reaction. Our finding that one-sixth of spliced HAC1 mRNAs in yeast cells containing the T4 RNA-repair system suffered deletion of a single nucleotide at the 3' end of the splice-donor site suggests a model whereby the yeast RNA-repair system evolved a requirement for the 2'-PO(4) for RNA ligation to suppress inappropriate RNA recombination.
Collapse
Affiliation(s)
- Beate Schwer
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
11
|
Sawaya R, Schwer B, Shuman S. Genetic and biochemical analysis of the functional domains of yeast tRNA ligase. J Biol Chem 2003; 278:43928-38. [PMID: 12933796 DOI: 10.1074/jbc.m307839200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Yeast tRNA ligase (Trl1) converts cleaved tRNA half-molecules into spliced tRNAs containing a 2'-PO4, 3'-5' phosphodiester at the splice junction. Trl1 performs three reactions: (i) the 2',3'-cyclic phosphate of the proximal fragment is hydrolyzed to a 3'-OH, 2'-PO4 by a cyclic phosphodiesterase (CPD); (ii) the 5'-OH of the distal fragment is phosphorylated by an NTP-dependent polynucleotide kinase; and (iii) the 3'-OH, 2'-PO4, and 5'-PO4 ends are sealed by an ATP-dependent RNA ligase. Trl1 consists of an N-terminal adenylyltransferase domain that resembles T4 RNA ligase 1, a central domain that resembles T4 polynucleotide kinase, and a C-terminal CPD domain that resembles the 2H phosphotransferase enzyme superfamily. Here we show that all three domains are essential in vivo, although they need not be linked in the same polypeptide. We identify five amino acids in the adenylyltransferase domain (Lys114, Glu266, Gly267, Lys284, and Lys286) that are essential for Trl1 activity and are located within motifs I (114KANG117), IV (266EGFVI270), and V (282FFKIK286) that comprise the active sites of DNA ligases, RNA capping enzymes, and T4 RNA ligases 1 and 2. Mutations K404A and T405A in the P-loop (401GXGKT405) of the central kinase-like domain had no effect on Trl1 function in vivo. The K404A and T405A mutations eliminated ATP-dependent kinase activity but preserved GTP-dependent kinase activity. A double alanine mutant in the P-loop was lethal in vivo and abolished GTP-dependent kinase activity. These results suggest that GTP is the physiological substrate and that the Trl1 kinase has a single NTP binding site of which the P-loop is a component. Two other mutations in the central domain were lethal in vivo and either abolished (D425A) or severely reduced (R511A) GTP-dependent RNA kinase activity in vitro. Mutations of the signature histidines of the CPD domain were either lethal (H777A) or conferred a ts growth phenotype (H673A).
Collapse
Affiliation(s)
- Rana Sawaya
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | |
Collapse
|
12
|
Reid CE, Lazinski DW. A host-specific function is required for ligation of a wide variety of ribozyme-processed RNAs. Proc Natl Acad Sci U S A 2000; 97:424-9. [PMID: 10618434 PMCID: PMC26679 DOI: 10.1073/pnas.97.1.424] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis delta virus (HDV) replicates its circular RNA genome via a rolling circle mechanism. During this process, cis-acting ribozymes cleave adjacent upstream sequences and thereby resolve replication intermediates to unit-length RNA. The subsequent ligation of these 5'OH and 2',3'-cyclic phosphate termini to form circular RNA is an essential step in the life cycle of the virus. Here we present evidence for the involvement of a host activity in the ligation of HDV RNA. We used both HDV and hammerhead ribozymes to generate a panel of HDV and non-HDV RNA substrates that bear 5' hydroxyl and 2', 3'- cyclic phosphate termini. We found that ligation of these substrates occurred in host cells, but not in vitro or in Escherichia coli. The host-specific ligation activity was capable of joining RNA in both bimolecular and intramolecular reactions and functioned in a sequence-independent manner. We conclude that mammalian cells contain a default pathway that efficiently circularizes ribozyme processed RNAs. This pathway could be exploited in the delivery of stable antisense and decoy RNA to the nucleus.
Collapse
Affiliation(s)
- C E Reid
- Department of Molecular Biology, Raymond and Beverly Sackler Research Foundation Laboratory, Tufts University School of Medicine, Boston, MA 02111, USA
| | | |
Collapse
|
13
|
Genschik P, Drabikowski K, Filipowicz W. Characterization of the Escherichia coli RNA 3'-terminal phosphate cyclase and its sigma54-regulated operon. J Biol Chem 1998; 273:25516-26. [PMID: 9738023 DOI: 10.1074/jbc.273.39.25516] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RNA 3'-terminal phosphate cyclase catalyzes the ATP-dependent conversion of the 3'-phosphate to the 2',3'-cyclic phosphodiester at the end of various RNA substrates. Recent cloning of a cDNA encoding the human cyclase indicated that genes encoding cyclase-like proteins are conserved among Eucarya, Bacteria, and Archaea. The protein encoded by the Escherichia coli gene was overexpressed and shown to have the RNA 3'-phosphate cyclase activity (Genschik, P., Billy, E., Swianiewicz, M., and Filipowicz, W. (1997) EMBO J. 16, 2955-2967). Analysis of the requirements and substrate specificity of the E. coli protein, presented in this work, demonstrates that properties of the bacterial and human enzymes are similar. ATP is the best cofactor (Km = 20 microM), whereas GTP (Km = 100 microM) and other nucleoside triphosphates (NTPs) act less efficiently. The enzyme undergoes nucleotidylation in the presence of [alpha-32P]ATP and, to a lesser extent, also in the presence of other NTPs. Comparison of 3'-phosphorylated oligoribonucleotides and oligodeoxyribonucleotides of identical sequence demonstrated that the latter are at least 300-fold poorer substrates for the enzyme. The E. coli cyclase gene, named rtcA, forms part of an uncharacterized operon containing two additional open reading frames (ORFs). The ORF positioned immediately upstream, named rtcB, encodes a protein that is also highly conserved between Eucarya, Bacteria, and Archaea. Another ORF, called rtcR, is positioned upstream of the rtcA/rtcB unit and is transcribed in the opposite direction. It encodes a protein having features of sigma54-dependent regulators. By overexpressing the N-terminally truncated form of RtcR, we demonstrate that this regulator indeed controls expression of rtcA and rtcB in a sigma54-dependent manner. Also consistent with the involvement of sigma54, the region upstream of the transcription start site of the rtcA/rtcB mRNA contains the -12 and -24 elements, TTGCA and TGGCA, respectively, characteristic of sigma54-dependent promoters. The cyclase gene is nonessential as demonstrated by knockout experiments. Possible functions of the cyclase in RNA metabolism are discussed.
Collapse
Affiliation(s)
- P Genschik
- Friedrich Miescher-Institut, P. O. Box 2543, 4002 Basel, Switzerland
| | | | | |
Collapse
|
14
|
Arn EA, Abelson JN. The 2'-5' RNA ligase of Escherichia coli. Purification, cloning, and genomic disruption. J Biol Chem 1996; 271:31145-53. [PMID: 8940112 DOI: 10.1074/jbc.271.49.31145] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
An RNA ligase previously detected in extracts of Escherichia coli is capable of joining Saccharomyces cerevisiae tRNA splicing intermediates in the absence of ATP to form a 2'-5' phosphodiester linkage (Greer, C., Javor, B., and Abelson, J. (1983) Cell 33, 899-906). This enzyme specifically ligates tRNA half-molecules containing nucleoside base modifications and shows a preference among different tRNA species. In order to investigate the function of this enzyme in RNA metabolism, the ligase was purified to homogeneity from E. coli lysate utilizing chromatographic techniques and separation of proteins by SDS-polyacrylamide gel electrophoresis. A single polypeptide of approximately 20 kilodaltons exhibited RNA ligase activity. The amino terminus of this protein was sequenced, and the open reading frame (ORF) encoding it was identified by a data base search. This ORF, which encodes a novel protein with a predicted molecular mass of 19.9 kDa, was amplified from E. coli genomic DNA and cloned. ORFs coding for highly similar proteins were detected in Methanococcus jannaschii and Bacillus stearothermophilus. The chromosomal gene encoding RNA ligase in E. coli was disrupted, abolishing ligase activity in cell lysates. Cells lacking ligase activity grew normally under laboratory conditions. However, moderate overexpression of the ligase protein led to slower growth rates and a temperature-sensitive phenotype in both wild-type and RNA ligase knockout strains. The RNA ligase reaction was studied in vitro using purified enzyme and was found to be reversible, indicating that this enzyme may perform cleavage or ligation in vivo.
Collapse
Affiliation(s)
- E A Arn
- Division of Biology 147-75, California Institute of Technology, Pasadena, California 91125, USA.
| | | |
Collapse
|
15
|
Atkin AL, Riazi MA, Greer CL, Roy KL, Bell JB. The functional analysis of nonsense suppressors derived from in vitro engineered Saccharomyces cerevisiae tRNA(Trp) genes. Gene 1993; 134:57-65. [PMID: 8244031 DOI: 10.1016/0378-1119(93)90174-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nonsense suppressors derived from Saccharomyces cerevisiae tRNA(Trp) genes have not been identified by classical genetic screens, although one can construct efficient amber (am) suppressors from them by making the appropriate anticodon mutation in vitro. Herein, a series of in vitro constructed putative suppressor genes was produced to test if pre-tRNA(Trp) processing difficulties could help to explain the lack of classical tRNA(Trp)-based suppressors. It is clear that inefficient processing of introns from precursor tRNA(Trp), or inaccurate overall processing, may explain why some of these constructs fail to promote nonsense suppression in vivo. However, deficient processing must be only one of the reasons why classical tRNA(Trp)-based suppressors have not been characterized, as suppression may still be extremely weak or absent in instances where the in vitro construct can lead to an accumulation of mature tRNA(Trp). Furthermore, suppression is also very weak in strains transformed with an intronless derivative of a putative tRNA(Trp) ochre (oc) suppressor gene, wherein intron removal cannot pose a problem.
Collapse
MESH Headings
- Base Sequence
- Blotting, Northern
- Genes, Fungal
- Genes, Suppressor
- Introns
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phenotype
- RNA Processing, Post-Transcriptional
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Trp/chemistry
- RNA, Transfer, Trp/genetics
- Saccharomyces cerevisiae/genetics
- Transformation, Genetic
Collapse
Affiliation(s)
- A L Atkin
- Department of Genetics, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
16
|
Miao F, Abelson J. Yeast tRNA-splicing endonuclease cleaves precursor tRNA in a random pathway. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54204-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
|
18
|
Pick L, Furneaux HM, Hurwitz J. Purification and characterization of wheat germ RNA ligase and associated activities. Methods Enzymol 1990; 181:480-99. [PMID: 2166219 DOI: 10.1016/0076-6879(90)81146-l] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Forster AC, Davies C, Hutchins CJ, Symons RH. Characterization of self-cleavage of viroid and virusoid RNAs. Methods Enzymol 1990; 181:583-607. [PMID: 2199768 DOI: 10.1016/0076-6879(90)81153-l] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
MESH Headings
- Base Sequence
- Cloning, Molecular/methods
- Electrophoresis, Polyacrylamide Gel/methods
- Genetic Vectors
- Molecular Sequence Data
- Nucleic Acid Conformation
- Plant Viruses/genetics
- Plasmids
- RNA Splicing
- RNA, Catalytic
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Viral/genetics
- RNA, Viral/isolation & purification
- RNA, Viral/metabolism
- Templates, Genetic
- Transcription, Genetic
- Viroids/genetics
Collapse
|
20
|
Vicente O, Filipowicz W. Purification of RNA 3'-terminal phosphate cyclase from HeLa cells. Covalent modification of the enzyme with different nucleotides. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 176:431-9. [PMID: 3416880 DOI: 10.1111/j.1432-1033.1988.tb14300.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
RNA 3'-terminal phosphate cyclase has been purified about 6000-fold to near homogeneity from HeLa cells. The purified protein is a single polypeptide with an Mr of 38,000-40,000 and a Stokes radius of 2.66 nm. The cyclase shows a pH optimum of 8.0-9.0. In the presence of Mg2+ and ATP this enzyme catalyzes the conversion of a 3'-phosphate group into the cyclic 2',3'-phosphodiester at the 3' end of RNA, through formation of a covalent cyclase-AMP intermediate. GTP, CTP and UTP (but not dATP or ADP) can also function as cofactors in the cyclization reaction, although less efficiently (apparent Km values for ATP and GTP are 6 microM and 200 microM, respectively). Consistent with this, the enzyme can be covalently labelled with the four [alpha-32P]NTPs.
Collapse
Affiliation(s)
- O Vicente
- Friedrich Miescher-Institut, Basel, Switzerland
| | | |
Collapse
|
21
|
Tyc K, Kellenberger C, Filipowicz W. Purification and characterization of wheat germ 2',3'-cyclic nucleotide 3'-phosphodiesterase. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)45156-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
22
|
|
23
|
Purification of wheat germ RNA ligase. I. Characterization of a ligase-associated 5'-hydroxyl polynucleotide kinase activity. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)62671-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Hutchins CJ, Keese P, Visvader JE, Rathjen PD, McInnes JL, Symons RH. Comparison of multimeric plus and minus forms of viroids and virusoids. PLANT MOLECULAR BIOLOGY 1985; 4:293-304. [PMID: 24310879 DOI: 10.1007/bf02418248] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In order to investigate the mechanism of replication of viroids and virusoids, we have compared the replication intermediates of three members of each group in nucleic acid extracts of infected plants. Viroids were avocado sunblotch viroid (ASBV), citrus exocortis viroid (CEV) and coconut cadang cadang viroid (CCCV). Virusoids were from velvet tobacco mottle virus (VTMoV), solanum nodiflorum mottle virus (SNMV) and lucerne transient streak virus (LTSV). Analysis of intermediates was by the Northern hybridization technique with single-strand DNA and RNA probes prepared from recombinant DNA clones. The results obtained are discussed in terms of current models of viroid and virusoid replication.The plus RNA species consisted of an oligomeric series up to decamers based on the unit of full-length viroid or virusoid, which was always the major component, except for CEV where only monomer and dimer species were found. In the case of ASBV and the virusoids of VTMoV and SNMV, a minor, multimeric series of components (X-bands) was superimposed on the main oligomeric series.The complementary minus species proved more difficult to detect and characterise, with each viroid and virusoid exhibiting a unique pattern on Northern hybridization. However, they all had greater than unit-length minus species. In addition, minus species analogous to the plus X-bands were found in ASBV and CEV. The experimental difficulties encountered in this work are discussed in terms of the problem of detecting minus species by Northern analysis in the presence of excess complementary plus species.
Collapse
Affiliation(s)
- C J Hutchins
- Adelaide University Centre for Gene Technology, Department of Biochemistry, University of Adelaide, 5000, Adelaide, South Australia, Australia
| | | | | | | | | | | |
Collapse
|
25
|
The enzymatic conversion of 3'-phosphate terminated RNA chains to 2',3'-cyclic phosphate derivatives. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)88941-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
Engelke DR, Gegenheimer P, Abelson J. Nucleolytic processing of a tRNAArg-tRNAAsp dimeric precursor by a homologous component from Saccharomyces cerevisiae. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(20)71239-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
27
|
Rogers JH. The origin and evolution of retroposons. INTERNATIONAL REVIEW OF CYTOLOGY 1985; 93:187-279. [PMID: 2409043 DOI: 10.1016/s0074-7696(08)61375-3] [Citation(s) in RCA: 421] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
|
29
|
Deutscher MP. Processing of tRNA in prokaryotes and eukaryotes. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1984; 17:45-71. [PMID: 6094100 DOI: 10.3109/10409238409110269] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Considerable progress has been made in defining the steps in the conversion of a tRNA precursor to a mature tRNA. These steps, which differ in different systems, include removal of precursor-specific residues from the 5' and 3' termini of the initial transcript, addition of the 3'-C-C-A terminus, splicing of intervening sequences, and modification of nucleotide residues. Despite these advances in defining the "pathways" of tRNA processing, relatively little is known about most of the enzymes actually involved in these processing steps. In this article I describe the sequence of reactions needed to convert the initial tRNA transcript to a functional, mature tRNA, and discuss the specificity and properties of enzymes known to be involved in this process. In addition, I speculate on the expected specificities of other enzymes involved in tRNA processing which have not yet been identified, and on the structural organization of the processing machinery.
Collapse
|
30
|
|
31
|
Schwartz RC, Greer CL, Gegenheimer P, Abelson J. Enzymatic mechanism of an RNA ligase from wheat germ. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(20)82075-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|