1
|
Abed Rabbo M, Khodour Y, Kaguni LS, Stiban J. Sphingolipid lysosomal storage diseases: from bench to bedside. Lipids Health Dis 2021; 20:44. [PMID: 33941173 PMCID: PMC8094529 DOI: 10.1186/s12944-021-01466-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/14/2021] [Indexed: 01/13/2023] Open
Abstract
Johann Ludwig Wilhelm Thudicum described sphingolipids (SLs) in the late nineteenth century, but it was only in the past fifty years that SL research surged in importance and applicability. Currently, sphingolipids and their metabolism are hotly debated topics in various biochemical fields. Similar to other macromolecular reactions, SL metabolism has important implications in health and disease in most cells. A plethora of SL-related genetic ailments has been described. Defects in SL catabolism can cause the accumulation of SLs, leading to many types of lysosomal storage diseases (LSDs) collectively called sphingolipidoses. These diseases mainly impact the neuronal and immune systems, but other systems can be affected as well. This review aims to present a comprehensive, up-to-date picture of the rapidly growing field of sphingolipid LSDs, their etiology, pathology, and potential therapeutic strategies. We first describe LSDs biochemically and briefly discuss their catabolism, followed by general aspects of the major diseases such as Gaucher, Krabbe, Fabry, and Farber among others. We conclude with an overview of the available and potential future therapies for many of the diseases. We strive to present the most important and recent findings from basic research and clinical applications, and to provide a valuable source for understanding these disorders.
Collapse
Affiliation(s)
- Muna Abed Rabbo
- Department of Biology and Biochemistry, Birzeit University, P.O. Box 14, Ramallah, West Bank, 627, Palestine
| | - Yara Khodour
- Department of Biology and Biochemistry, Birzeit University, P.O. Box 14, Ramallah, West Bank, 627, Palestine
| | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, P.O. Box 14, Ramallah, West Bank, 627, Palestine.
| |
Collapse
|
2
|
In silico analysis of the effects of disease-associated mutations of β-hexosaminidase A in Tay‒Sachs disease. J Genet 2020. [DOI: 10.1007/s12041-020-01208-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
3
|
Chaperone therapy for GM2 gangliosidosis: effects of pyrimethamine on β-hexosaminidase activity in Sandhoff fibroblasts. Mol Neurobiol 2013; 50:159-67. [PMID: 24356898 DOI: 10.1007/s12035-013-8605-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/08/2013] [Indexed: 12/20/2022]
Abstract
Sphingolipidoses are inherited genetic diseases due to mutations in genes encoding proteins involved in the lysosomal catabolism of sphingolipids. Despite a low incidence of each individual disease, altogether, the number of patients involved is relatively high and resolutive approaches for treatment are still lacking. The chaperone therapy is one of the latest pharmacological approaches to these storage diseases. This therapy allows the mutated protein to escape its natural removal and to increase its quantity in lysosomes, thus partially restoring the metabolic functions. Sandhoff disease is an autosomal recessive inherited disorder resulting from β-hexosaminidase deficiency and characterized by large accumulation of GM2 ganglioside in brain. No enzymatic replacement therapy is currently available, and the use of inhibitors of glycosphingolipid biosynthesis for substrate reduction therapy, although very promising, is associated with serious side effects. The chaperone pyrimethamine has been proposed as a very promising drug in those cases characterized by a residual enzyme activity. In this review, we report the effect of pyrimethamine on the recovery of β-hexosaminidase activity in cultured fibroblasts from Sandhoff patients.
Collapse
|
4
|
Introduction of an N-glycan sequon into HEXA enhances human beta-hexosaminidase cellular uptake in a model of Sandhoff disease. Mol Ther 2010; 18:1519-26. [PMID: 20571546 DOI: 10.1038/mt.2010.113] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Human lysosomal beta-hexosaminidase A is a heterodimer composed of alpha- and beta-subunits encoded by HEXA and HEXB, respectively. We genetically introduced an additional N-glycosylation sequon into HEXA, which caused amino acid substitutions (S51 to N and A53 to T) at homologous positions to N84 and T86 in the beta-subunit. The mutant HexA (NgHexA) obtained from a Chinese hamster ovary (CHO) cell line co-expressing the mutated HEXA and wild-type HEXB complementary DNAs was demonstrated to contain an additional mannose-6-phosphate (M6P)-type-N-glycan. NgHexA was more efficiently taken up than the wild-type HexA and delivered to lysosomes, where it degraded accumulated substrates including GM2 ganglioside (GM2) when administered to cultured fibroblasts derived from a Sandhoff disease (SD) patient. On intracerebroventricular (i.c.v.) administration of NgHexA to SD model mice, NgHexA more efficiently restored the HexA activity and reduced the GM2 and GA2 (asialoGM2) accumulated in neural cells of the brain parenchyma than the wild-type HexA. These findings indicate that i.c.v. administration of the modified human HexA with an additional M6P-type N-glycan is applicable for enzyme replacement therapy (ERT) involving an M6P-receptor as a molecular target for HexA deficiencies including Tay-Sachs disease and SD.
Collapse
|
5
|
Casal JA, Pérez LF, Tutor JC. Thermodynamic determination of plasma and leukocyte beta-hexosaminidase isoenzymes in homozygote and heterozygote carriers for the GM2 gangliosidosis B1 variant. Am J Clin Pathol 2003; 119:684-8. [PMID: 12760286 DOI: 10.1309/ahtk-lprk-b4nw-0x5m] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
In the GM2 gangliosidosis B1 variant, the mutated isoenzyme A of beta-hexosaminidase (Hex) is incapable of hydrolyzing ganglioside GM2 and negatively charged substrates. Biochemical characterization of this lysosomal disease is carried out using synthetic alpha-subunit-specific sulfated substrates, as heat-inactivation assays are not applicable. The apparent enzyme activation energy of Hex using the chromogenic substrate 3,3'-dichlorophenolsulfonphthaleinyl N-acetyl-beta-D-glucosaminide is related directly to the relative proportions of Hex A and Hex B isoenzymes. This thermodynamic variable was used for the study of Hex enzyme heterogeneity in 3 patients with the GM2 gangliosidosis B1 variant and 6 heterozygote carriers. Hex activity was determined at 25 degrees C, 30 degrees C, 35 degrees C, and 37 degrees C in a Cobas Bio analyzer (Roche Diagnostics, Basel, Switzerland), and Arrhenius plot slopes and apparent activation energies were calculated in plasma samples and mononuclear and polymorphonuclear leukocyte lysates. The determination of the Hex isoenzymes in plasma presented a high discrimination power for B1 variant patients but not for heterozygote carriers, in whom false-negative results may be obtained. However, thermodynamic evaluation of the isoenzyme composition of Hex in leukocyte lysates permits the biochemical identification of patients with the GM2 gangliosidosis B1 variant and of heterozygote carriers.
Collapse
Affiliation(s)
- J Antonio Casal
- Central Laboratory, University Hospital Clinic, Santiago de Compostela, Spain
| | | | | |
Collapse
|
6
|
Mark BL, Mahuran DJ, Cherney MM, Zhao D, Knapp S, James MNG. Crystal structure of human beta-hexosaminidase B: understanding the molecular basis of Sandhoff and Tay-Sachs disease. J Mol Biol 2003; 327:1093-109. [PMID: 12662933 PMCID: PMC2910754 DOI: 10.1016/s0022-2836(03)00216-x] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In humans, two major beta-hexosaminidase isoenzymes exist: Hex A and Hex B. Hex A is a heterodimer of subunits alpha and beta (60% identity), whereas Hex B is a homodimer of beta-subunits. Interest in human beta-hexosaminidase stems from its association with Tay-Sachs and Sandhoff disease; these are prototypical lysosomal storage disorders resulting from the abnormal accumulation of G(M2)-ganglioside (G(M2)). Hex A degrades G(M2) by removing a terminal N-acetyl-D-galactosamine (beta-GalNAc) residue, and this activity requires the G(M2)-activator, a protein which solubilizes the ganglioside for presentation to Hex A. We present here the crystal structure of human Hex B, alone (2.4A) and in complex with the mechanistic inhibitors GalNAc-isofagomine (2.2A) or NAG-thiazoline (2.5A). From these, and the known X-ray structure of the G(M2)-activator, we have modeled Hex A in complex with the activator and ganglioside. Together, our crystallographic and modeling data demonstrate how alpha and beta-subunits dimerize to form either Hex A or Hex B, how these isoenzymes hydrolyze diverse substrates, and how many documented point mutations cause Sandhoff disease (beta-subunit mutations) and Tay-Sachs disease (alpha-subunit mutations).
Collapse
Affiliation(s)
- Brian L. Mark
- Canadian Institutes of Heath Research Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alt.,Canada T6G 2H7
| | - Don J. Mahuran
- The Research Institute, The Hospital for Sick Children, 555 University Ave, Toronto Ont., Canada M5G1X8
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ont., Canada M5G1L6
| | - Maia M. Cherney
- Canadian Institutes of Heath Research Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alt.,Canada T6G 2H7
| | - Dalian Zhao
- Department of Chemistry, Rutgers University, New Brunswick, NJ 08903, USA
| | - Spencer Knapp
- Department of Chemistry, Rutgers University, New Brunswick, NJ 08903, USA
| | - Michael N. G. James
- Canadian Institutes of Heath Research Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alt.,Canada T6G 2H7
- Corresponding author:
| |
Collapse
|
7
|
Abstract
Two homoallelic mutations have recently been identified in the alpha-subunit of hexosaminidase A (EC 3.2.1.52) causing the infantile form of Tay-Sachs disease in Turkish patients. Both of these mutations, a 12 bp deletion (1096-1107 or 1098-1108 or 1099-1109) in exon 10 and a point mutation (G1362 to A, Gly454 to Asp) in exon 12, are located in the catalytic domain of the hexosaminidase alpha-chain. In order to determine whether these mutations affect the function of the catalytic domain or result in an instable protein, both mutant cDNAs were overexpressed in COS-1 cells. As judged by Western blotting, transfections of wild-type cDNA produced pro-alpha-chain and mature alpha-chain in parallel with a fivefold increase in cellular hexosaminidase activity using the synthetic substrate 4-methylumbelliferyl beta-N-acetylglucosamine 6-sulfate (MUGS). However, both mutants produced only pro-alpha-chains, although no mature form or detectable hexosaminidase activity towards two different synthetic substrates was observed. These data are consistent with the biochemical phenotype of infantile Tay-Sachs disease. We conclude that the overexpressed mutant pro-alpha-chains were misfolded and could not undergo further proteolytic processing to the active form of the enzyme in the lysosome.
Collapse
Affiliation(s)
- Hatice Asuman Ozkara
- Department of Biochemistry, Hacettepe University Faculty of Medicine, 06100 Ankara, Turkey.
| | | |
Collapse
|
8
|
Yoshizawa T, Kohno Y, Nissato S, Shoji S. Compound heterozygosity with two novel mutations in the HEXB gene produces adult Sandhoff disease presenting as a motor neuron disease phenotype. J Neurol Sci 2002; 195:129-38. [PMID: 11897243 DOI: 10.1016/s0022-510x(02)00007-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Little information is available on molecular defects involved in adult Sandhoff disease presenting as motor neuron disease phenotype. We studied enzyme activities of beta-hexosaminidase (Hex) and the HEXB gene encoding the beta-subunit of Hex in a family of the Japanese case. Enzyme assay with 4-methylumbelliferyl-2-acetamido-2-deoxy-beta-D-glucopyranoside revealed a reduction in Hex A and B activity in proband's leukocytes. Although the activity of both in the mother were intermediate between those of controls and the proband, only Hex B reduction determined with heat inactivation was found in the father. Analysis of HEXB gene demonstrated two novel point mutations. The first mutation, IVS2-1G>A, was located at the 3'-splice acceptor site of intron 2 derived from the mother, causing exon 3 skipping. The resultant mRNA encoded a shorter beta-chain, which may not form an active enzyme. The second mutation was a G-to-A transition in exon 13 (c.1598G>A) derived from the father and resulted in arginine-to-histidine substitution at amino acid position 533 (R533H). Expression of R533H mutation in COS-1 cells demonstrated a lack of normal Hex activity, indicating that this mutation is pathological. Compound heterozygosity of these two mutations may trigger the development of adult Sandhoff disease with a motor neuron disease phenotype.
Collapse
Affiliation(s)
- Toshihiro Yoshizawa
- Department of Neurology, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennodai, 305-8575, Tsukuba, Japan.
| | | | | | | |
Collapse
|
9
|
Mahuran DJ, Gravel RA. The beta-hexosaminidase story in Toronto: from enzyme structure to gene mutation. ADVANCES IN GENETICS 2002; 44:145-63. [PMID: 11596980 DOI: 10.1016/s0065-2660(01)44077-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- D J Mahuran
- The Research Institute, The Hospital for Sick Children and Department of Laboratory Medicine and Pathobiology University of Toronto, Ontario, Canada.
| | | |
Collapse
|
10
|
Kolodny EH. Molecular genetics of the beta-hexosaminidase isoenzymes: an introduction. ADVANCES IN GENETICS 2002; 44:101-26. [PMID: 11596976 DOI: 10.1016/s0065-2660(01)44074-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- E H Kolodny
- Department of Neurology, New York University School of Medicine, New York, USA
| |
Collapse
|
11
|
Mark BL, Vocadlo DJ, Knapp S, Triggs-Raine BL, Withers SG, James MN. Crystallographic evidence for substrate-assisted catalysis in a bacterial beta-hexosaminidase. J Biol Chem 2001; 276:10330-7. [PMID: 11124970 DOI: 10.1074/jbc.m011067200] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Hexosaminidase, a family 20 glycosyl hydrolase, catalyzes the removal of beta-1,4-linked N-acetylhexosamine residues from oligosaccharides and their conjugates. Heritable deficiency of this enzyme results in various forms of GalNAc-beta(1,4)-[N-acetylneuraminic acid (2,3)]-Gal-beta(1,4)-Glc-ceramide gangliosidosis, including Tay-Sachs disease. We have determined the x-ray crystal structure of a beta-hexosaminidase from Streptomyces plicatus to 2.2 A resolution (Protein Data Bank code ). beta-Hexosaminidases are believed to use a substrate-assisted catalytic mechanism that generates a cyclic oxazolinium ion intermediate. We have solved and refined a complex between the cyclic intermediate analogue N-acetylglucosamine-thiazoline and beta-hexosaminidase from S. plicatus to 2.1 A resolution (Protein Data Bank code ). Difference Fourier analysis revealed the pyranose ring of N-acetylglucosamine-thiazoline bound in the enzyme active site with a conformation close to that of a (4)C(1) chair. A tryptophan-lined hydrophobic pocket envelopes the thiazoline ring, protecting it from solvolysis at the iminium ion carbon. Within this pocket, Tyr(393) and Asp(313) appear important for positioning the 2-acetamido group of the substrate for nucleophilic attack at the anomeric center and for dispersing the positive charge distributed into the oxazolinium ring upon cyclization. This complex provides decisive structural evidence for substrate-assisted catalysis and the formation of a covalent, cyclic intermediate in family 20 beta-hexosaminidases.
Collapse
Affiliation(s)
- B L Mark
- Medical Research Council Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Mahuran DJ. Biochemical consequences of mutations causing the GM2 gangliosidoses. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1455:105-38. [PMID: 10571007 DOI: 10.1016/s0925-4439(99)00074-5] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The hydrolysis of GM2-ganglioside is unusual in its requirements for the correct synthesis, processing, and ultimate combination of three gene products. Whereas two of these proteins are the alpha- (HEXA gene) and beta- (HEXB) subunits of beta-hexosaminidase A, the third is a small glycolipid transport protein, the GM2 activator protein (GM2A), which acts as a substrate specific co-factor for the enzyme. A deficiency of any one of these proteins leads to storage of the ganglioside, primarily in the lysosomes of neuronal cells, and one of the three forms of GM2-gangliosidosis, Tay-Sachs disease, Sandhoff disease or the AB-variant form. Studies of the biochemical impact of naturally occurring mutations associated with the GM2 gangliosidoses on mRNA splicing and stability, and on the intracellular transport and stability of the affected protein have provided some general insights into these complex cellular mechanisms. However, such studies have revealed little in the way of structure-function information on the proteins. It appears that the detrimental effect of most mutations is not specifically on functional elements of the protein, but rather on the proteins' overall folding and/or intracellular transport. The few exceptions to this generalization are missense mutations at two codons in HEXA, causing the unique biochemical phenotype known as the B1-variant, and one codon in both the HEXB and GM2A genes. Biochemical characterization of these mutations has led to the localization of functional residues and/or domains within each of the encoded proteins.
Collapse
Affiliation(s)
- D J Mahuran
- Research Institute, The Hospital for Sick Children, Toronto, Ont, Canada.
| |
Collapse
|
13
|
Kaplan F. Tay-Sachs disease carrier screening: a model for prevention of genetic disease. GENETIC TESTING 1999; 2:271-92. [PMID: 10464605 DOI: 10.1089/gte.1998.2.271] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tay-Sachs disease (TSD) is an autosomal-recessive, progressive, and ultimately fatal neurodegenerative disorder. Within the last 30 years, the discovery of the enzymatic basis of the disease, namely deficiency of the enzyme hexosaminidase A, made possible both enzymatic diagnosis of TSD and heterozygote identification. In the last decade, the cloning of the HEXA gene and the identification of more than 80 associated TSD-causing mutations has permitted molecular diagnosis in many instances. TSD was the first genetic condition for which community-based screening for carrier detection was implemented. As such, the TSD experience can be viewed as a prototypic effort for public education, carrier testing, and reproductive counseling for avoiding fatal childhood disease. More importantly, the outcome of TSD screening over the last 28 years offers convincing evidence that such an effort can dramatically reduce incidence of the disease.
Collapse
Affiliation(s)
- F Kaplan
- McGill University-Montreal Children's Hospital Research Institute, Quebec, Canada.
| |
Collapse
|
14
|
Amutha B, Khire JM, Khan MI. Characterization of a novel exo-N-acetyl-beta-D-glucosaminidase from the thermotolerant Bacillus sp. NCIM 5120. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1425:300-10. [PMID: 9795245 DOI: 10.1016/s0304-4165(98)00081-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
An exo-N-acetyl-beta-d-glucosaminidase from the thermotolerant Bacillus sp. NCIM 5120 was purified to homogeneity by chromatography on CM-cellulose, Sephacryl S-300 and phenyl-Sepharose. The enzyme has a Mr of 230000 as determined by size exclusion chromatography on Sephacryl S-300/Sephadex G-200 and exhibited a relative subunit Mr of 60000 on denaturing gel electrophoresis. It is a neutral protein with a pI of 6.79. The optimum pH and temperature for the enzyme activity are 6.0 and 70 degreesC, respectively. Determination of the reaction stereochemistry indicates that the enzyme is a retaining glycosidase with the beta anomer of GlcNAc formed as the initial product. Determination of the energy of activation with different leaving groups (p-nitrophenol and 4-methyl-umbelliferone) reveals that the enzyme exhibits a biphasic Arrhenius plot with two characteristic energy of activation with an inflection temperature of 50 degreesC. The activation energy at temperatures below the inflection point was found to be higher than that above the inflection point. The energy of activation for 4-Me-Umb-beta-d-GlcNAc was higher at temperatures below the inflection point than for pNP-beta-d-GlcNAc (60.3 and 43.2 kJ mol-1, respectively). It hydrolyzes specifically, terminally linked beta(1-4) GlcNAc residues from the non-reducing end of oligosaccharides. Comparative studies on the hydrolysis of chito-oligosaccharides by the exo-N-acetyl-beta-d-glucosaminidase indicates that chitobiose is the best substrate with a Km and kcat of 0.34 mM and 24 microoff min-1mg-1, respectively. It also exhibits strict substrate specificity with respect to the glycone substitution as well as anomeric linkage.
Collapse
Affiliation(s)
- B Amutha
- Division of Biochemical Sciences, National Chemical Laboratory, Pune 411 008, India
| | | | | |
Collapse
|
15
|
Hou Y, McInnes B, Hinek A, Karpati G, Mahuran D. A Pro504 --> Ser substitution in the beta-subunit of beta-hexosaminidase A inhibits alpha-subunit hydrolysis of GM2 ganglioside, resulting in chronic Sandhoff disease. J Biol Chem 1998; 273:21386-92. [PMID: 9694901 DOI: 10.1074/jbc.273.33.21386] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GM2 gangliosidoses are caused by mutations in the genes encoding the alpha- (Tay-Sachs) or beta- (Sandhoff) subunits of heterodimeric beta-hexosaminidase A (Hex A), or the GM2 activator protein (AB variant), a substrate-specific co-factor for Hex A. Although the active site associated with the hydrolysis of GM2 ganglioside, as well as part of the binding site for the ganglioside-activator complex, is associated with the alpha-subunit, elements of the beta-subunit are also involved. Missense mutations in these genes normally result in the mutant protein being retained in the endoplasmic reticulum and degraded. The mutations associated with the B1-variant of Tay-Sachs are rare exceptions that directly affect residues in the alpha-active site. We have previously reported two sisters with chronic Sandhoff disease who were heterozygous for the common HEXB deletion allele. Cells from these patients had higher than expected levels of mature beta-protein and residual Hex A activity, approximately 20%. We now identify these patients' second mutant allele as a C1510T transition encoding a beta-Pro504 --> Ser substitution. Biochemical characterization of Hex A from both patient cells and cotransfected CHO cells demonstrated that this substitution (a) decreases the level of heterodimer transport out of the endoplasmic reticulum by approximately 45%, (b) lowers its heat stability, (c) does not affect its Km for neutral or charged artificial substrates, and (d) lowers the ratio of units of ganglioside/units of artificial substrate hydrolyzed by a factor of 3. We concluded that the beta-Pro504 --> Ser mutation directly affects the ability of Hex A to hydrolyze its natural substrate but not its artificial substrates. The effect of the mutation on ganglioside hydrolysis, combined with its effect on intracellular transport, produces chronic Sandhoff disease.
Collapse
Affiliation(s)
- Y Hou
- The Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
16
|
Mark BL, Wasney GA, Salo TJ, Khan AR, Cao Z, Robbins PW, James MN, Triggs-Raine BL. Structural and functional characterization of Streptomyces plicatus beta-N-acetylhexosaminidase by comparative molecular modeling and site-directed mutagenesis. J Biol Chem 1998; 273:19618-24. [PMID: 9677388 DOI: 10.1074/jbc.273.31.19618] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have sequenced the Streptomyces plicatus beta-N-acetylhexosaminidase (SpHex) gene and identified the encoded protein as a member of family 20 glycosyl hydrolases. This family includes human beta-N-acetylhexosaminidases whose deficiency results in various forms of GM2 gangliosidosis. Based upon the x-ray structure of Serratia marcescens chitobiase (SmChb), we generated a three-dimensional model of SpHex by comparative molecular modeling. The overall structure of the enzyme is very similar to homology modeling-derived structures of human beta-N-acetylhexosaminidases, with differences being confined mainly to loop regions. From previous studies of the human enzymes, sequence alignments of family 20 enzymes, and analysis of the SmChb x-ray structure, we selected and mutated putative SpHex active site residues. Arg162 --> His mutation increased Km 40-fold and reduced Vmax 5-fold, providing the first biochemical evidence for this conserved Arg residue (Arg178 in human beta-N-acetylhexosaminidase A (HexA) and Arg349 in SmChb) as a substrate-binding residue in a family 20 enzyme, a finding consistent with our three-dimensional model of SpHex. Glu314 --> Gln reduced Vmax 296-fold, reduced Km 7-fold, and altered the pH profile, consistent with it being the catalytic acid residue as suggested by our model and other studies. Asp246 --> Asn reduced Vmax 2-fold and increased Km only 1.2-fold, suggesting that Asp246 may play a lesser role in the catalytic mechanism of this enzyme. Taken together with the x-ray structure of SmChb, these studies suggest a common catalytic mechanism for family 20 glycosyl hydrolases.
Collapse
Affiliation(s)
- B L Mark
- Department of Biochemistry and Molecular Biology, University of Manitoba, Winnipeg, Manitoba, R3E 0W3, Canada
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Cao Z, Petroulakis E, Salo T, Triggs-Raine B. Benign HEXA mutations, C739T(R247W) and C745T(R249W), cause beta-hexosaminidase A pseudodeficiency by reducing the alpha-subunit protein levels. J Biol Chem 1997; 272:14975-82. [PMID: 9169471 DOI: 10.1074/jbc.272.23.14975] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Two benign mutations, C739T(R247W) and C745T(R249W), in the alpha-subunit of beta-hexosaminidase A (Hex A) have been found in all but one of the currently identified Hex A-pseudodeficient subjects. To confirm the relationship of the benign mutations and Hex A pseudodeficiency and to determine how the benign mutations reduce Hex A activity, we transiently expressed each of the benign mutations, and other mutations associated with infantile, juvenile, and adult onset forms of GM2 gangliosidosis, as Hex S (alphaalpha) and Hex A (alphabeta) in COS-7 cells. The benign mutations decreased the expressed Hex A and Hex S activity toward the synthetic substrate 4-methylumbelliferyl-6-sulfo-beta-N-acetylglucosaminide (4-MUGS) by 60-80%, indicating that they are the primary cause of Hex A pseudodeficiency. Western blot analysis showed that the benign mutations decreased the enzymatic activity by reducing the alpha-subunit protein level. No change in heat sensitivity, catalytic activity, or the substrate specificity to the synthetic substrates, 4-methylumbelliferyl-beta-N-acetylglucosaminide or 4-methylumbelliferyl-6-sulfo-beta-N-acetylglucosaminide, was detected. The effects of the benign mutations on Hex A were further analyzed in fibroblasts, and during transient expression, using pulse-chase metabolic labeling. These studies showed that the benign mutations reduced the alpha-subunit protein by affecting its stability in vivo, not by affecting the processing of the alpha-subunit, i.e. phosphorylation, targeting, or secretion. Our studies also demonstrated that these benign mutations could be readily differentiated from disease-causing mutations using a transient expression system.
Collapse
Affiliation(s)
- Z Cao
- Department of Biochemistry and Molecular Biology, University of Manitoba, Winnipeg, Manitoba R3E OW3, Canada
| | | | | | | |
Collapse
|
18
|
Fernandes MJ, Yew S, Leclerc D, Henrissat B, Vorgias CE, Gravel RA, Hechtman P, Kaplan F. Identification of candidate active site residues in lysosomal beta-hexosaminidase A. J Biol Chem 1997; 272:814-20. [PMID: 8995368 DOI: 10.1074/jbc.272.2.814] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The beta-hexosaminidases (Hex) catalyze the cleavage of terminal amino sugars on a broad spectrum of glycoconjugates. The major Hex isozymes in humans, Hex A, a heterodimer of alpha and beta subunits (alphabeta), and Hex B, a homodimer of beta subunits (betabeta), have different substrate specificities. The beta subunit (HEXB gene product), hydrolyzes neutral substrates. The alpha subunit (HEXA gene product), hydrolyzes both neutral and charged substrates. Only Hex A is able to hydrolyze the most important natural substrate, the acidic glycolipid GM2 ganglioside. Mutations in the HEXA gene cause Tay-Sachs disease (TSD), a GM2 ganglioside storage disorder. We investigated the role of putative active site residues Asp-alpha258, Glu-alpha307, Glu-alpha323, and Glu-alpha462 in the alpha subunit of Hex A. A mutation at codon 258 which we described was associated with the TSD B1 phenotype, characterized by the presence of normal amounts of mature but catalytically inactive enzyme. TSD-B1 mutations are believed to involve substitutions of residues at the enzyme active site. Glu-alpha307, Glu-alpha323, and Glu-alpha462 were predicted to be active site residues by homology studies and hydrophobic cluster analysis. We used site-directed mutagenesis and expression in a novel transformed human fetal TSD neuroglial (TSD-NG) cell line (with very low levels of endogenous Hex A activity), to study the effects of mutation at candidate active site residues. Mutant HEXA cDNAs carrying conservative or isofunctional substitutions at these positions were expressed in TSD-NG cells. alphaE323D, alphaE462D, and alphaD258N cDNAs produced normally processed peptide chains with drastically reduced activity toward the alpha subunit-specific substrate 4MUGS. The alphaE307D cDNA produced a precursor peptide with significant catalytic activity. Kinetic analysis of enzymes carrying mutations at Glu-alpha323 and Asp-alpha258 (reported earlier by Bayleran, J., Hechtman, P., Kolodny, E., and Kaback, M. (1987) Am. J. Hum. Genet. 41,532-548) indicated no significant change in substrate binding properties. Our data, viewed in the context of homology studies and modeling, and studies with suicide substrates, suggest that Glu-alpha323 and Asp-alpha258 are active site residues and that Glu-alpha323 is involved in catalysis.
Collapse
Affiliation(s)
- M J Fernandes
- McGill University-Montreal Children's Hospital Research Institute, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Tews I, Perrakis A, Oppenheim A, Dauter Z, Wilson KS, Vorgias CE. Bacterial chitobiase structure provides insight into catalytic mechanism and the basis of Tay-Sachs disease. NATURE STRUCTURAL BIOLOGY 1996; 3:638-48. [PMID: 8673609 DOI: 10.1038/nsb0796-638] [Citation(s) in RCA: 280] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chitin, the second most abundant polysaccharide on earth, is degraded by chitinases and chitobiases. The structure of Serratia marcescens chitobiase has been refined at 1.9 A resolution. The mature protein is folded into four domains and its active site is situated at the C-terminal end of the central (beta alpha)8-barrel. Based on the structure of the complex with the substrate disaccharide chitobiose, we propose an acid-base reaction mechanism, in which only one protein carboxylate acts as catalytic acid, while the nucleophile is the polar acetamido group of the sugar in a substrate-assisted reaction. The structural data lead to the hypothesis that the reaction proceeds with retention of anomeric configuration. The structure allows us to model the catalytic domain of the homologous hexosaminidases to give a structural rationale to pathogenic mutations that underlie Tay-Sachs and Sandhoff disease.
Collapse
Affiliation(s)
- I Tews
- European Molecular Biology Laboratory, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- V Gieselmann
- Department of Biochemistry II, Georg August Universität, Göttingen, Germany
| |
Collapse
|
21
|
Abstract
Tay-Sachs disease (TSD) is an autosomal recessive, progressive, and fatal neurodegenerative disorder. Within the last 25 years, the discovery of the enzymatic basis of the disease, the deficiency of the enzyme hexosaminidase A, has made possible both enzymatic diagnosis of TSD and heterozygote identification. TSD is the first genetic condition for which a community-based heterozygote screening program was attempted with the intention of reducing the incidence of a genetic disease. In this article we review the clinical, biochemical, and molecular features of TSD as well as the development of laboratory technology that has been deployed in community genetic screening programs. We describe the assay procedures used and some of the limitations in their accuracy. We consider the impact of DNA-based technology on the process of identification of individuals carrying mutant genes associated with TSD and we discuss the social context within which genetic screening occurs.
Collapse
Affiliation(s)
- P Hechtman
- De Belle Laboratory for Biochemical Genetics, McGill University-Montreal Children's Hospital Research Institute, Quebec, Canada
| | | |
Collapse
|
22
|
Abstract
beta-Hexosaminidase is a lysosomal hydrolase that is important in the metabolism of sphingoglycolipids. beta-Hexosaminidase B and beta-hexosaminidase A are the major isozymes in normal human tissue. beta-Hexosaminidase B is a homodimer of beta subunits, and beta-hexosaminidase A is a heterodimer composed of an alpha and a beta subunit. Crystals of beta-hexosaminidase B (M(r) 112,000) have been grown using the handling drop technique. They are elongated hexagonal prisms with maximum dimensions of 0.2 mm x 0.2 mm x 0.7 mm. The space group is P6(1)22 (or enantiomorph); the unit cell dimensions are a = b = 114.2 A, c = 402.2 A, alpha = beta = 90 degrees, gamma = 120 degrees. The molecular mass and cell dimensions suggest that there is one dimer per asymmetric unit. Crystals diffract to 3.2 A resolution.
Collapse
Affiliation(s)
- W B Church
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
23
|
Akalin N, Shi HP, Vavougios G, Hechtman P, Lo W, Scriver CR, Mahuran D, Kaplan F. Novel Tay-Sachs disease mutations from China. Hum Mutat 1992; 1:40-6. [PMID: 1301190 DOI: 10.1002/humu.1380010107] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We describe three HEXA mutations associated with infantile Tay-Sachs disease (TSD) in three unrelated nonconsanguineous Chinese families. Novel mutations were found in two of these families. The third is a previously reported mutation (G-->A transition at nt 1444) (Nakano et al., 1988). Direct sequencing of PCR products identified a novel insertion of an A after nt 547 in family 1. This change generates an early termination codon 6 bp downstream from the insertion site. Allele-specific oligonucleotide hybridization confirmed homozygosity in the proband. Single strand conformational polymorphism analysis and direct sequencing of amplified exon 13 revealed a T-->C transition at nt 1453 with the corresponding amino acid substitution W485R in the second family. This mutation creates an Fnu4HI restriction site. The proband is homozygous for this allele. When the site-specific mutagenized alpha cDNA carrying the T-->C transition at nt 1453 was expressed in COS 1 cells hexosaminidase S activity was not detectable above background. A G-->A transition at nt 1444 (exon 13) corresponding to the E482K substitution was found in the third family. This mutation occurs at a CpG dinucleotide. It has been reported in an Italian TSD proband and causes defective intracellular transport of the alpha-subunit from the rough endoplasmic reticulum to the Golgi apparatus.
Collapse
Affiliation(s)
- N Akalin
- McGill University Montreal Children's Hospital Research Institute, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Banerjee P, Siciliano L, Oliveri D, McCabe NR, Boyers MJ, Horwitz AL, Li SC, Dawson G. Molecular basis of an adult form of beta-hexosaminidase B deficiency with motor neuron disease. Biochem Biophys Res Commun 1991; 181:108-15. [PMID: 1720305 DOI: 10.1016/s0006-291x(05)81388-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A patient (KL) with progressive motor neuron disease associated with partial Hex A (alpha beta) and no Hex B (beta beta) activity, synthesized beta-chains which only associated with alpha-chains. To identify the molecular basis of this inability of beta-chains to self associate, RNA from cultured fibroblasts was reverse transcribed, the cDNA encoding the beta-chain amplified by polymerase chain reaction, subcloned, and sequenced to reveal two types of single missense mutation. The first mutation, (Type I) 619A----G, was paternally inherited and converted a 207IIe----Val in a highly conserved region believed to be associated with catalytic activity and activator protein binding. Biochemical evidence for impaired activator protein binding was obtained by purifying Hex A from KL urine and demonstrating a greater than 50% reduction of in vitro GM2 hydrolysis compared to normal urinary Hex A. In other cDNA species (Type II), a maternally inherited 1367A----C mutation converted 456Tyr----Ser in another highly conserved region of the beta-chain and we propose that this mutation leads to the inability of the beta-chains to self associate and thus reach maturity. These same cDNA species contained a second 362A----G mutation which converted 121Lys----Arg, but is apparently a polymorphism since it also occurs in some normal subjects. We propose that the patient is a compound heterozygote in which a combination of no self-association of the mutant beta-chains and impaired activator protein binding to alpha-beta (mutant) (Hex A) required for GM2 hydrolysis result in total beta-Hex B deficiency and slow accumulation of GM2 ganglioside, primarily in motor neurons.
Collapse
Affiliation(s)
- P Banerjee
- Joseph P. Kennedy, Jr. Mental Retardation Research Center, Department of Pediatrics, University of Chicago, IL 60637
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Sagherian C, Mahuran D. Examination of an area in beta-hexosaminidase B homologous to that in cathepsin D linked to lysosomal targeting. Biochem Biophys Res Commun 1991; 179:477-81. [PMID: 1831978 DOI: 10.1016/0006-291x(91)91395-s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A lysine-rich area in the beta subunit of beta-hexosaminidase (beta-N-acetylhexosaminidase, EC 3.2.1.52) homologous to residues 189-203 in Cathepsin D, previously proposed as being critical for efficient lysosomal targeting, was identified. In vitro mutagenesis of the Lys residues was followed by COS-1 cell expression of enzymatic activity. The intracellular mutant beta-hexosaminidase B activity had a T1/2 at 60 degrees C similar to that of the wild type enzyme, indicating that this region is likely on the surface of the folded enzyme, as is the targeting domain of Cathepsin D. However, in the case of beta-hexosaminidase B, mutation of the Lys residues did not affect lysosomal compartmentalization. These data suggest that the hunt for the common protein signal that results in proper intracellular transport of lysosomal enzymes will not be straightforward and that Lys residues may not be an absolute requirement of the signal.
Collapse
Affiliation(s)
- C Sagherian
- Research Institute, Hospital for Sick Children, Ave, Toronto, Ontario, Canada
| | | |
Collapse
|
26
|
Active arginine residues in beta-hexosaminidase. Identification through studies of the B1 variant of Tay-Sachs disease. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98487-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
27
|
Xie B, McInnes B, Neote K, Lamhonwah AM, Mahuran D. Isolation and expression of a full-length cDNA encoding the human GM2 activator protein. Biochem Biophys Res Commun 1991; 177:1217-23. [PMID: 2059210 DOI: 10.1016/0006-291x(91)90671-s] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report the construction of a cDNA clone encoding a functional GM2-activator protein. The sequence of the complete 5' end of the coding region was determined by direct nucleotide sequencing of a fragment generated by multiple RACE PCR procedures from Hela cell cDNA. Specific oligonucleotides were synthesized from these data which allowed us to produce a PCR fragment that contained the complete coding sequence of the protein. This was then cloned into a mammalian expression vector. The ability of purified hexosaminidase A (beta-N-acetylhexosaminidase, EC 3.2.1.52) to hydrolyse labeled GM2 ganglioside was enhanced 10-fold more by the addition in the assay mix of lysate from transfected COS-1 cells than by the addition of identical amounts of lysate from mock transfected cells. Direct sequencing of PCR fragments from two sources also identified three polymorphisms.
Collapse
Affiliation(s)
- B Xie
- Research Institute, Hospital For Sick Children, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
28
|
Mahuran DJ. The biochemistry of HEXA and HEXB gene mutations causing GM2 gangliosidosis. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1096:87-94. [PMID: 1825792 DOI: 10.1016/0925-4439(91)90044-a] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- D J Mahuran
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Neote K, Brown CA, Mahuran DJ, Gravel RA. Translation initiation in the HEXB gene encoding the beta-subunit of human beta-hexosaminidase. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)45286-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Mahuran DJ, Triggs-Raine BL, Feigenbaum AJ, Gravel RA. The molecular basis of Tay-Sachs disease: mutation identification and diagnosis. Clin Biochem 1990; 23:409-15. [PMID: 2147596 DOI: 10.1016/0009-9120(90)90153-l] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tay-Sachs disease is the prototype of lysosomal storage disease. While it was first described over a century ago, the defective enzyme was not identified until 1969, making possible the development of enzyme-based diagnostic and carrier screening techniques. This led to the establishment of the successful international Tay-Sachs screening program, primarily for the high risk Ashkenazi Jewish population. In the past five years the development of recombinant DNA technology has allowed researchers to characterize 95-99% of the mutations causing Tay-Sachs disease in this high risk ethnic group. Knowledge of the exact mutations responsible for the disease coupled with the powerful polymerase chain reaction technique has now made DNA-based screening and diagnosis possible. While the enzyme-based test has proven to be reliable and economical, it cannot differentiate variant phenotypes and requires the presence of specialized testing centers. Although the DNA-based test is presently less economical, it can provide carrier couples with their exact genotype and thus, predict the general phenotype of an unborn child. Furthermore, as the catalogue of mutations leading to human disease increases, more economical DNA methodologies will be developed. In the future it would be expected that a laboratory using a single DNA-based technology could diagnose and screen for a myriad of human diseases including Tay-Sachs disease.
Collapse
Affiliation(s)
- D J Mahuran
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
31
|
Characterization of human placental beta-hexosaminidase I2. Proteolytic processing intermediates of hexosaminidase A. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39219-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|