1
|
Nayak S, Peto TJ, Kucharski M, Tripura R, Callery JJ, Quang Huy DT, Gendrot M, Lek D, Nghia HDT, van der Pluijm RW, Dong N, Long LT, Vongpromek R, Rekol H, Hoang Chau N, Miotto O, Mukaka M, Dhorda M, von Seidlein L, Imwong M, Roca X, Day NPJ, White NJ, Dondorp AM, Bozdech Z. Population genomics and transcriptomics of Plasmodium falciparum in Cambodia and Vietnam uncover key components of the artemisinin resistance genetic background. Nat Commun 2024; 15:10625. [PMID: 39639029 PMCID: PMC11621345 DOI: 10.1038/s41467-024-54915-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
The emergence of Plasmodium falciparum parasites resistant to artemisinins compromises the efficacy of Artemisinin Combination Therapies (ACTs), the global first-line malaria treatment. Artemisinin resistance is a complex genetic trait in which nonsynonymous SNPs in PfK13 cooperate with other genetic variations. Here, we present population genomic/transcriptomic analyses of P. falciparum collected from patients with uncomplicated malaria in Cambodia and Vietnam between 2018 and 2020. Besides the PfK13 SNPs, several polymorphisms, including nonsynonymous SNPs (N1131I and N821K) in PfRad5 and an intronic SNP in PfWD11 (WD40 repeat-containing protein on chromosome 11), appear to be associated with artemisinin resistance, possibly as new markers. There is also a defined set of genes whose steady-state levels of mRNA and/or splice variants or antisense transcripts correlate with artemisinin resistance at the base level. In vivo transcriptional responses to artemisinins indicate the resistant parasite's capacity to decelerate its intraerythrocytic developmental cycle (IDC), which can contribute to the resistant phenotype. During this response, PfRAD5 and PfWD11 upregulate their respective alternatively/aberrantly spliced isoforms, suggesting their contribution to the protective response to artemisinins. PfRAD5 and PfWD11 appear under selective pressure in the Greater Mekong Sub-region over the last decade, suggesting their role in the genetic background of the artemisinin resistance.
Collapse
Affiliation(s)
- Sourav Nayak
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Thomas J Peto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Michal Kucharski
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Amsterdam UMC, University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Rupam Tripura
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - James J Callery
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Duong Tien Quang Huy
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Mathieu Gendrot
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Dysoley Lek
- Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
- National Institute for Public Health, Phnom Penh, Cambodia
| | - Ho Dang Trung Nghia
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Rob W van der Pluijm
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Institut Pasteur, Université Paris Cité, G5 Infectious Disease Epidemiology and Analytics, Paris, France
| | - Nguyen Dong
- Khanh Hoa Hospital for Tropical diseases, Ho Chi Minh City, Khanh Hoa province, Vietnam
| | - Le Thanh Long
- Phuoc Long Hospital, Ho Chi Minh City, Binh Phuoc province, Vietnam
| | - Ranitha Vongpromek
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- WorldWide Antimalarial Resistance Network - Asia-Pacific Regional Centre, Bangkok, Thailand
| | - Huy Rekol
- Amsterdam UMC, University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | | | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mavuto Mukaka
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mehul Dhorda
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- WorldWide Antimalarial Resistance Network - Asia-Pacific Regional Centre, Bangkok, Thailand
| | - Lorenz von Seidlein
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mallika Imwong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
- Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam.
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
2
|
Eshar S, Altenhofen L, Rabner A, Ross P, Fastman Y, Mandel-Gutfreund Y, Karni R, Llinás M, Dzikowski R. PfSR1 controls alternative splicing and steady-state RNA levels in Plasmodium falciparum through preferential recognition of specific RNA motifs. Mol Microbiol 2015; 96:1283-97. [PMID: 25807998 DOI: 10.1111/mmi.13007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2015] [Indexed: 11/28/2022]
Abstract
Plasmodium species have evolved complex biology to adapt to different hosts and changing environments throughout their life cycle. Remarkably, these adaptations are achieved by a relatively small genome. One way by which the parasite expands its proteome is through alternative splicing (AS). We recently identified PfSR1 as a bona fide Ser/Arg-rich (SR) protein that shuttles between the nucleus and cytoplasm and regulates AS in Plasmodium falciparum. Here we show that PfSR1 is localized adjacent to the Nuclear Pore Complex (NPC) clusters in the nucleus of early stage parasites. To identify the endogenous RNA targets of PfSR1, we adapted an inducible overexpression system for tagged PfSR1 and performed RNA immunoprecipitation followed by microarray analysis (RIP-chip) to recover and identify the endogenous RNA targets that bind PfSR1. Bioinformatic analysis of these RNAs revealed common sequence motifs potentially recognized by PfSR1. RNA-EMSAs show that PfSR1 preferentially binds RNA molecules containing these motifs. Interestingly, we find that PfSR1 not only regulates AS but also the steady-state levels of mRNAs containing these motifs in vivo.
Collapse
Affiliation(s)
- Shiri Eshar
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Institute for Medical Research Israel-Canada, The Hebrew University - Hadassah Medical School, Jerusalem, Israel
| | - Lindsey Altenhofen
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA.,Department of Biochemistry and Molecular Biology, Department of Chemistry and Center for Malaria Research, Pennsylvania State University, State College, PA, 16802, USA
| | - Alona Rabner
- Department of Biology, Israel Institute of Technology-Technion, Haifa, Israel
| | - Phil Ross
- Department of Biochemistry and Molecular Biology, Department of Chemistry and Center for Malaria Research, Pennsylvania State University, State College, PA, 16802, USA
| | - Yair Fastman
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Institute for Medical Research Israel-Canada, The Hebrew University - Hadassah Medical School, Jerusalem, Israel
| | | | - Rotem Karni
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University - Hadassah Medical School, Jerusalem, Israel
| | - Manuel Llinás
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA.,Department of Biochemistry and Molecular Biology, Department of Chemistry and Center for Malaria Research, Pennsylvania State University, State College, PA, 16802, USA
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Institute for Medical Research Israel-Canada, The Hebrew University - Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
3
|
Gadalla NB, Malmberg M, Adam I, Oguike MC, Beshir K, Elzaki SE, Mukhtar I, Gadalla AA, Warhurst DC, Ngasala B, Mårtensson A, El-Sayed BB, Gil JP, Sutherland CJ. Alternatively spliced transcripts and novel pseudogenes of the Plasmodium falciparum resistance-associated locus pfcrt detected in East African malaria patients. J Antimicrob Chemother 2014; 70:116-23. [PMID: 25253286 PMCID: PMC4267505 DOI: 10.1093/jac/dku358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objectives Polymorphisms in the lysosomal transporter encoded by the pfcrt gene directly impact on Plasmodium falciparum susceptibility to aminoquinolines. The Lys76Thr mutation is the critical change conferring chloroquine resistance in vitro and in vivo, but always occurs with additional non-synonymous changes in the pfcrt coding sequence. We sought to better describe pfcrt polymorphisms distal to codon 76. Methods Small-volume samples (≤500 μL) of parasite-infected blood collected directly from malaria patients presenting for treatment in Sudan and Tanzania were immediately preserved for RNA extraction. The pfcrt locus was amplified from cDNA preparations by nested PCR and sequenced directly to derive full-length mRNA sequences. Results In one of two sites in Sudan, two patients were found with an unorthodox spliced form of pfcrt mRNA in which two exons were skipped, but it was not possible to test for the presence of the putative protein products of these aberrant transcripts. Genomic DNA sequencing from dried blood spots collected in parallel confirmed the presence of spliced pfcrt pseudogenes in a minority of parasite isolates. Full-length cDNA from conventionally spliced mRNA molecules in all study sites demonstrated the existence of a variety of pfcrt haplotypes in East Africa, and thus provides evidence of intragenic recombination. Conclusions The presence of pseudogenes, although unlikely to have any direct public health impact, may confound results obtained from simple genotyping methods that consider only codon 76 and the adjacent residues of pfcrt.
Collapse
Affiliation(s)
- Nahla B Gadalla
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK Department of Epidemiology, Tropical Medicine Research Institute, Khartoum, Sudan
| | - Maja Malmberg
- Malaria Research, Infectious Diseases Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ishag Adam
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mary C Oguike
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Khalid Beshir
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Salah-Eldin Elzaki
- Department of Epidemiology, Tropical Medicine Research Institute, Khartoum, Sudan
| | - Izdihar Mukhtar
- National Health Laboratory, Federal Ministry of Health, Khartoum, Sudan
| | - Amal A Gadalla
- Department of Epidemiology, Tropical Medicine Research Institute, Khartoum, Sudan
| | - David C Warhurst
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Billy Ngasala
- Department of Parasitology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Andreas Mårtensson
- Malaria Research, Infectious Diseases Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden Global Health (IHCAR), Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Badria B El-Sayed
- Department of Epidemiology, Tropical Medicine Research Institute, Khartoum, Sudan
| | - J Pedro Gil
- Drug Resistance Unit, Division of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden Drug Resistance and Pharmacogenetics, Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal The Harpur College of Arts and Sciences, Binghamton University, The State University of New York, Binghamton, NY, USA
| | - Colin J Sutherland
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
4
|
Eshar S, Allemand E, Sebag A, Glaser F, Muchardt C, Mandel-Gutfreund Y, Karni R, Dzikowski R. A novel Plasmodium falciparum SR protein is an alternative splicing factor required for the parasites' proliferation in human erythrocytes. Nucleic Acids Res 2012; 40:9903-16. [PMID: 22885299 PMCID: PMC3479193 DOI: 10.1093/nar/gks735] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Malaria parasites have a complex life cycle, during which they undergo significant biological changes to adapt to different hosts and changing environments. Plasmodium falciparum, the species responsible for the deadliest form of human malaria, maintains this complex life cycle with a relatively small number of genes. Alternative splicing (AS) is an important post-transcriptional mechanisms that enables eukaryotic organisms to expand their protein repertoire out of relatively small number of genes. SR proteins are major regulators of AS in higher eukaryotes. Nevertheless, the regulation of splicing as well as the AS machinery in Plasmodium spp. are still elusive. Here, we show that PfSR1, a putative P. falciparum SR protein, can mediate RNA splicing in vitro. In addition, we show that PfSR1 functions as an AS factor in mini-gene in vivo systems similar to the mammalian SR protein SRSF1. Expression of PfSR1-myc in P. falciparum shows distinct patterns of cellular localization during intra erythrocytic development. Furthermore, we determine that the predicted RS domain of PfSR1 is essential for its localization to the nucleus. Finally, we demonstrate that proper regulation of pfsr1 is required for parasite proliferation in human RBCs and over-expression of pfsr1 influences AS activity of P. falciparum genes in vivo.
Collapse
Affiliation(s)
- Shiri Eshar
- Department of Microbiology and Molecular Genetics, The Kuvin Center for Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Branch point identification and sequence requirements for intron splicing in Plasmodium falciparum. EUKARYOTIC CELL 2011; 10:1422-8. [PMID: 21926333 DOI: 10.1128/ec.05193-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Splicing of mRNA is an ancient and evolutionarily conserved process in eukaryotic organisms, but intron-exon structures vary. Plasmodium falciparum has an extreme AT nucleotide bias (>80%), providing a unique opportunity to investigate how evolutionary forces have acted on intron structures. In this study, we developed an in vivo luciferase reporter splicing assay and employed it in combination with lariat isolation and sequencing to characterize 5' and 3' splicing requirements and experimentally determine the intron branch point in P. falciparum. This analysis indicates that P. falciparum mRNAs have canonical 5' and 3' splice sites. However, the 5' consensus motif is weakly conserved and tolerates nucleotide substitution, including the fifth nucleotide in the intron, which is more typically a G nucleotide in most eukaryotes. In comparison, the 3' splice site has a strong eukaryotic consensus sequence and adjacent polypyrimidine tract. In four different P. falciparum pre-mRNAs, multiple branch points per intron were detected, with some at U instead of the typical A residue. A weak branch point consensus was detected among 18 identified branch points. This analysis indicates that P. falciparum retains many consensus eukaryotic splice site features, despite having an extreme codon bias, and possesses flexibility in branch point nucleophilic attack.
Collapse
|
6
|
Sorber K, Dimon MT, DeRisi JL. RNA-Seq analysis of splicing in Plasmodium falciparum uncovers new splice junctions, alternative splicing and splicing of antisense transcripts. Nucleic Acids Res 2011; 39:3820-35. [PMID: 21245033 PMCID: PMC3089446 DOI: 10.1093/nar/gkq1223] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Over 50% of genes in Plasmodium falciparum, the deadliest human malaria parasite, contain predicted introns, yet experimental characterization of splicing in this organism remains incomplete. We present here a transcriptome-wide characterization of intraerythrocytic splicing events, as captured by RNA-Seq data from four timepoints of a single highly synchronous culture. Gene model-independent analysis of these data in conjunction with publically available RNA-Seq data with HMMSplicer, an in-house developed splice site detection algorithm, revealed a total of 977 new 5' GU-AG 3' and 5 new 5' GC-AG 3' junctions absent from gene models and ESTs (11% increase to the current annotation). In addition, 310 alternative splicing events were detected in 254 (4.5%) genes, most of which truncate open reading frames. Splicing events antisense to gene models were also detected, revealing complex transcriptional arrangements within the parasite's transcriptome. Interestingly, antisense introns overlap sense introns more than would be expected by chance, perhaps indicating a functional relationship between overlapping transcripts or an inherent organizational property of the transcriptome. Independent experimental validation confirmed over 30 new antisense and alternative junctions. Thus, this largest assemblage of new and alternative splicing events to date in Plasmodium falciparum provides a more precise, dynamic view of the parasite's transcriptome.
Collapse
Affiliation(s)
- Katherine Sorber
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
7
|
Iriko H, Jin L, Kaneko O, Takeo S, Han ET, Tachibana M, Otsuki H, Torii M, Tsuboi T. A small-scale systematic analysis of alternative splicing in Plasmodium falciparum. Parasitol Int 2009; 58:196-9. [DOI: 10.1016/j.parint.2009.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/30/2009] [Accepted: 02/15/2009] [Indexed: 11/24/2022]
|
8
|
Lu F, Jiang H, Ding J, Mu J, Valenzuela JG, Ribeiro JMC, Su XZ. cDNA sequences reveal considerable gene prediction inaccuracy in the Plasmodium falciparum genome. BMC Genomics 2007; 8:255. [PMID: 17662120 PMCID: PMC1978503 DOI: 10.1186/1471-2164-8-255] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 07/27/2007] [Indexed: 11/17/2022] Open
Abstract
Background The completion of the Plasmodium falciparum genome represents a milestone in malaria research. The genome sequence allows for the development of genome-wide approaches such as microarray and proteomics that will greatly facilitate our understanding of the parasite biology and accelerate new drug and vaccine development. Designing and application of these genome-wide assays, however, requires accurate information on gene prediction and genome annotation. Unfortunately, the genes in the parasite genome databases were mostly identified using computer software that could make some erroneous predictions. Results We aimed to obtain cDNA sequences to examine the accuracy of gene prediction in silico. We constructed cDNA libraries from mixed blood stages of P. falciparum parasite using the SMART cDNA library construction technique and generated 17332 high-quality expressed sequence tags (EST), including 2198 from primer-walking experiments. Assembly of our sequence tags produced 2548 contigs and 2671 singletons versus 5220 contigs and 5910 singletons when our EST were assembled with EST in public databases. Comparison of all the assembled EST/contigs with predicted CDS and genomic sequences in the PlasmoDB database identified 356 genes with predicted coding sequences fully covered by EST, including 85 genes (23.6%) with introns incorrectly predicted. Careful automatic software and manual alignments found an additional 308 genes that have introns different from those predicted, with 152 new introns discovered and 182 introns with sizes or locations different from those predicted. Alternative spliced and antisense transcripts were also detected. Matching cDNA to predicted genes also revealed silent chromosomal regions, mostly at subtelomere regions. Conclusion Our data indicated that approximately 24% of the genes in the current databases were predicted incorrectly, although some of these inaccuracies could represent alternatively spliced transcripts, and that more genes than currently predicted have one or more additional introns. It is therefore necessary to annotate the parasite genome with experimental data, although obtaining complete cDNA sequences from this parasite will be a formidable task due to the high AT nature of the genome. This study provides valuable information for genome annotation that will be critical for functional analyses.
Collapse
Affiliation(s)
- Fangli Lu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, PRoC
| | - Hongying Jiang
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jinhui Ding
- Bioinformatics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jesus G Valenzuela
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - José MC Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Xin-zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Fonager J, Cunningham D, Jarra W, Koernig S, Henneman AA, Langhorne J, Preiser P. Transcription and alternative splicing in the yir multigene family of the malaria parasite Plasmodium y. yoelii: identification of motifs suggesting epigenetic and post-transcriptional control of RNA expression. Mol Biochem Parasitol 2007; 156:1-11. [PMID: 17692398 DOI: 10.1016/j.molbiopara.2007.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 05/11/2007] [Accepted: 06/15/2007] [Indexed: 11/28/2022]
Abstract
The Plasmodium interspersed repeat (pir) genes represent the largest multigene family in Plasmodium genomes, and the only one shared between the human pathogen, P. vivax, the simian malaria species P. knowlesi and the rodent malaria species P.y. yoelii, P. berghei and P.c. chabaudi. PIR have been shown to be expressed on the surface of red blood cells and are thought to play a role in antigenic variation. Here we have used a range of bioinformatic and experimental approaches to investigate the existence of gene subsets within P.y. yoelii pir. We have identified five groups of yir genes which could be further distinguished by chromosomal location and different alternative splicing events. Two of the groups were not highly represented among the transcribed pirs in blood stage parasites. Together these data suggest that different pir genes may be active at different stages of the life cycle of P. yoelii and may have different functions. Analysis of the 5' UTR identified a unique highly conserved yir/bir/cir specific promoter motif, which could serve as a general recognition element for yir transcription. However, its presence in front of all yirs makes it unlikely to play a role in regulating differential expression.
Collapse
Affiliation(s)
- Jannik Fonager
- Division of Parasitology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| | | | | | | | | | | | | |
Collapse
|
10
|
Singh N, Preiser P, Rénia L, Balu B, Barnwell J, Blair P, Jarra W, Voza T, Landau I, Adams JH. Conservation and developmental control of alternative splicing in maebl among malaria parasites. J Mol Biol 2004; 343:589-99. [PMID: 15465047 DOI: 10.1016/j.jmb.2004.08.047] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 08/11/2004] [Accepted: 08/13/2004] [Indexed: 11/18/2022]
Abstract
Genes of malaria parasites and other unicellular organisms have larger exons with fewer and smaller introns than metaozoans. Such differences in gene structure are perceived to extend to simpler mechanisms for transcriptional control and mRNA processing. Instead, we discovered a surprisingly complex level of post-transcriptional mRNA processing in analysis of maebl transcripts in several Plasmodium species. Mechanisms for internal alternative cis-splicing and exon skipping were active in multiple life cycle stages to change exon structure in the deduced coding sequence (CDS). The major alternatively spliced transcript utilized a less favorable acceptor splice site, which shifted codon triplet usage to a different CDS with a hydrophilic C terminus, changing the canonical type I membrane MAEBL product to a predicted soluble isoform. We found that developmental control of the alternative splicing pattern was distinct from the canonical splicing pattern. Western blot analysis indicated that MAEBL expression was better correlated with the appearance of the canonical ORF1 transcript. Together these data reveal that RNA metabolism in unicellular eukaryotes like Plasmodium is more sophisticated than believed and may have a significant role regulating gene expression in Plasmodium.
Collapse
Affiliation(s)
- Naresh Singh
- Department of Biological Sciences, University of Notre Dame, 220 Galvin, PO Box 369, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Baunaure F, Eldin P, Cathiard AM, Vial H. Characterization of a non-mitochondrial type I phosphatidylserine decarboxylase in Plasmodium falciparum. Mol Microbiol 2004; 51:33-46. [PMID: 14651609 DOI: 10.1046/j.1365-2958.2003.03822.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In search of key enzymes in Plasmodium phospholipid metabolism, we demonstrate the presence of a parasite-encoded phosphatidylserine decarboxylase (PSD) in the membrane fraction of Plasmodium falciparum-infected erythrocytes. PSD cDNA, encoding phosphatidylserine decarboxylase (PfPSD), was cloned by screening a directional cDNA library derived from the trophozoite erythrocytic stage. The corresponding PfPSD gene is located on chromosome 9 of P. falciparum, contains one intron of 938 nucleotides and is transcribed into a 3.7 kb mRNA. PfPSD cDNA encodes a putative protein of 362 amino acids, with a predicted molecular mass of 42.6 kDa, which clearly belongs to the type I PSD family. Only a 35 kDa polypeptide was detected in the parasite using a specific rabbit antiserum. PfPSD has a 314VGSS317 sequence near its carboxyl-terminus that is related to the Escherichia coli, yeast and human LGST motif, which is the site of proenzyme processing. PSD enzyme was expressed in E. coli with a KM of 63 +/- 19 microM and a VMAX of 680 +/- 49 nmol of phosphatidylethanolamine formed h-1 mg-1 protein. Site-directed mutagenesis of the VGSS active site demonstrated that the PfPSD proenzyme was processed into two non-identical subunits (alpha and beta) and revealed the crucial role played by each residue in enzyme processing and activity. Using indirect immunofluorescence, PfPSD labelling was co-localized with an endoplasmic reticulum marker, but not with a mitochondrial vital dye. This P. falciparum PSD is the first type I PSD identified in the endoplasmic reticulum compartment.
Collapse
Affiliation(s)
- Françoise Baunaure
- Dynamique Moléculaire des Interactions Membranaires, CNRS UMR 5539, cc107, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
12
|
Huestis R, Cloonan N, Tchavtchitch M, Saul A. An algorithm to predict 3' intron splice sites in Plasmodium falciparum genomic sequences. Mol Biochem Parasitol 2001; 112:71-7. [PMID: 11166388 DOI: 10.1016/s0166-6851(00)00347-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A new algorithm, PfAGSS, for predicting 3' splice sites in Plasmodium falciparum genomic sequences is described. Application of this program to the published P. falciparum chromosome 2 and 3 data suggests that existing programs result in a high error rate in assigning 3' intron boundaries.
Collapse
Affiliation(s)
- R Huestis
- The Australian Centre for International and Tropical Health and Nutrition, The University of Queensland, Brisbane Q 4072, Australia.
| | | | | | | |
Collapse
|
13
|
Abstract
A gene identification procedure is formulated, based on large-scale structural analyses of genomic sequences. The structural property is the physical - thermal - stability of the DNA double-helix, as described by the classical helix-coil model. The analyses are detailed for the Plasmodium falciparum genome, which represents one of the most difficult cases for the gene identification problem (notably because of the extreme AT-richness of the genome). In this genome, the coding domains (either uninterrupted genes or exons in split genes) are accurately identified as regions of high thermal stability. The conclusion is based on the study of the available cloned genes, of which 17 examples are described in detail. These examples demonstrate that the physical criterion is valid for the detection of coding regions whose lengths extend from a few base pairs up to several thousand base pairs. Accordingly, the structural analyses can provide a powerful and convenient tool for the identification of complex genes in the P. falciparum genome. The limits of such a scheme are discussed. The gene identification procedure is applied to the completely sequenced chromosomes (2 and 3), and the results are compared with the database annotations. The structural analyses suggest more or less extensive revision to the annotations, and also allow new putative genes to be identified in the chromosome sequences. Several examples of such new genes are described in detail.
Collapse
Affiliation(s)
- E Yeramian
- Unité de Physico-Chimie des Macromolécules Biologiques (URA 1773 du CNRS), Institut Pasteur, 75724 Cedex 15, Paris, France.
| |
Collapse
|
14
|
Black CG, Wang L, Hibbs AR, Werner E, Coppel RL. Identification of the Plasmodium chabaudi homologue of merozoite surface proteins 4 and 5 of Plasmodium falciparum. Infect Immun 1999; 67:2075-81. [PMID: 10225857 PMCID: PMC115940 DOI: 10.1128/iai.67.5.2075-2081.1999] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies of Plasmodium falciparum have identified a region of chromosome 2 in which are clustered three genes for glycosylphosphatidylinositol (GPI)-anchored merozoite surface proteins, MSP2, MSP5, and MSP4, arranged in tandem. MSP4 and MSP5 both encode proteins 272 residues long that contain hydrophobic signal sequences, GPI attachment signals, and a single epidermal growth factor (EGF)-like domain at their carboxyl termini. Nevertheless, the remainder of their protein coding regions are quite dissimilar. The locations and similar structural features of these genes suggest that they have arisen from a gene duplication event. Here we describe the identification of the syntenic region of the genome in the murine malaria parasite, Plasmodium chabaudi adami DS. Only one open reading frame is present in this region, and it encodes a protein with structural features reminiscent of both MSP4 and MSP5, including a single EGF-like domain. Accordingly, the gene has been designated PcMSP4/5. The homologue of the P. falciparum MSP2 gene could not be found in P. chabaudi; however, the amino terminus of the PcMSP4/5 protein shows similarity to that of MSP2. The PcMSP4/5 gene encodes a protein with an apparent molecular mass of 36 kDa, and this protein is detected in mature stages of the parasite. The protein partitions in the detergent-enriched phase after Triton X-114 fractionation and is localized to the surfaces of trophozoites and developing and free merozoites. The PcMSP4/5 gene is transcribed in both ring and trophozoite stages but appears to be spliced in a stage-specific manner such that the central intron is spliced from the mRNA in the parasitic stage in which the protein is expressed.
Collapse
Affiliation(s)
- C G Black
- Department of Microbiology, Monash University, Clayton 3168, Victoria, Australia
| | | | | | | | | |
Collapse
|
15
|
Kocken CH, Hundt E, Knapp B, Brazel D, Enders B, Narum DL, Wubben JA, Thomas AW. Immunization of Aotus monkeys with recombinant Plasmodium falciparum hybrid proteins does not reproducibly result in protection from malaria infection. Infect Immun 1998; 66:373-5. [PMID: 9423884 PMCID: PMC107908 DOI: 10.1128/iai.66.1.373-375.1998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Plasmodium falciparum antigens SERP, HRPII, MSAI, and 41-3 have shown promise as vaccine components. This study aimed at reproducing and extending previous results using three hybrid molecules. Antibody responses were reproduced in Aotus monkeys, but solid protection from a P. falciparum blood-stage challenge that showed an unintendedly enhanced pathogenicity was not observed.
Collapse
Affiliation(s)
- C H Kocken
- Biomedical Primate Research Centre, Department of Parasitology, Rijswijk, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ji DD, Arnot DE. A Plasmodium falciparum homologue of the ATPase subunit of a multi-protein complex involved in chromatin remodelling for transcription. Mol Biochem Parasitol 1997; 88:151-62. [PMID: 9274876 DOI: 10.1016/s0166-6851(97)00089-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A Plasmodium falciparum homologue of one of the components of a chromatin-remodelling complex which controls binding of transcription factors to nucleosome core particles has been cloned and characterised. The gene encodes 1422 amino acids with an estimated molecular mass of 167 kDa. The protein, SNF2L, shares 60% amino acid identity in its conserved DNA-dependent ATPase domain with yeast transcription factors originally identified by characterising mating type switch mutants. It also contains sequences related to the so-called SWI3, ADA2, N-CoR and TFIIIB B" or SANT DNA binding domains which are characteristic of these transcriptional activation factors. The SNF2L gene has two short introns in the 3' region of the coding sequence of the gene and is transcribed into a single approximately 6.5 kb messenger RNA species which is present throughout the asexual stages of the cell cycle. Southern blotting and pulsed field gel electrophoresis experiments show that SNF2L is a single copy gene. located on P. falciparum chromosome 11.
Collapse
Affiliation(s)
- D D Ji
- Institute of Cell, Animal and Population Biology, Ashworth Laboratory, University of Edinburgh, UK
| | | |
Collapse
|
17
|
Silins GU, Blakeley RL, Riddles PW. Characterisation of genes encoding a nucleoside monophosphate kinase and a L35 ribosomal protein from Babesia bovis. Mol Biochem Parasitol 1996; 76:231-44. [PMID: 8920009 DOI: 10.1016/0166-6851(95)02561-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have sequenced a region of the Babesia bovis nuclear genome that encodes a L35 ribosomal protein homologue (bl35) and a putative nucleoside monophosphate kinase (bnmk) that is most similar to the adenylate kinase of gram-positive bacteria and the mitochondrial form of adenylate kinase in eukaryotes. BNMK appears to be unique in that it is the first eukaryotic family member to feature a putative zinc-binding domain. bnmk and bl35 are closely linked and transcribed from opposite DNA strands. Examination of the gene structures indicate that the coding regions contain small intervening sequences that obey the GT-AG rule of eukaryotic spliceosomal introns. The single intron separates the bl35 initiation codon from the remainder of the coding region and the 6-exon bnmk gene does not appear to be differentially spliced. Both genes utilise multiple polyadenylation sites and the canonical mammalian polyadenylation signal AATAAA is absent from their 3' untranslated regions. Primer extension analyses reveal that the bnmk gene utilises a cluster of transcription start points, one of which is used most frequently. The bnmk mRNA 5' end does not appear to be cis- or trans-spliced. We report here the first evidence of intronic sequences, as well as heterogeneous 5' and 3' ends for mRNA of a member of the Babesia genus.
Collapse
Affiliation(s)
- G U Silins
- Department of Biochemistry, University of Queensland, Australia.
| | | | | |
Collapse
|
18
|
Fox BA, Bzik DJ. Analysis of stage-specific transcripts of the Plasmodium falciparum serine repeat antigen (SERA) gene and transcription from the SERA locus. Mol Biochem Parasitol 1994; 68:133-44. [PMID: 7891737 DOI: 10.1016/0166-6851(94)00162-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We evaluated the stage-specific transcription and processing of serine repeat antigen (SERA) messenger RNA to further examine mechanisms regulating gene expression in Plasmodium falciparum. SERA mRNA was expressed exclusively in trophozoite and schizont stages. Transcription from the SERA gene was first detected between 24 and 29 h following erythrocyte invasion. The transcript mapping data revealed heterogeneity of the SERA mRNA 5' and 3' ends. RNA sequencing revealed that SERA transcripts were not generated by a trans-splicing mechanism. A new SERA gene, SERA3, was identified 1.8 kb upstream of SERA. The direction of transcription of the SERA locus genes, SERA3, SERA, and SERA2, was mapped relative to the location of other chromosome 2 genetic markers. The SERA locus and the closely linked MSA2 locus were found to be transcriptionally regulated in a coordinate fashion. Collectively, the results of these experiments show that parallel and coordinately controlled transcription units reside on chromosome 2. These results implicate a novel mechanism of transcriptional control in Plasmodium.
Collapse
Affiliation(s)
- B A Fox
- Department of Microbiology, Dartmouth Medical School, Hanover, NH 03755
| | | |
Collapse
|
19
|
Abstract
RNA processing in malarial parasites is a relatively new focus o f scientific research. Although only a few transcripts have been characterized in depth, a few patterns are beginning to emerge. Alexandra Levitt here reviews post-transcriptional processing in Plasmodium.
Collapse
Affiliation(s)
- A Levitt
- New York University Medical Center, Department of Medical and Molecular Parasitology, NY 10010, USA
| |
Collapse
|
20
|
Matsuba T, Kubota H, Tanaka M, Hattori M, Murata M, Sugimoto C, Onuma M. Analysis of mixed parasite populations of Theileria sergenti using cDNA probes encoding a major piroplasm surface protein. Parasitology 1993; 107 ( Pt 4):369-77. [PMID: 8278218 DOI: 10.1017/s0031182000067718] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The gene for the 32 kDa surface protein (p32) of Theileria sergenti was cloned into lambda gt11 and its nucleotide sequence was determined. The gene encodes a protein of 283 amino acids as deduced from its nucleotide sequence with a 22 residue N-terminal signal peptide. Using this cDNA as a probe we have isolated another two clones from a cDNA library with a CDM8 vector system derived from the same parasite stock. Comparison with three cDNA clones revealed differential polyadenylation and differences in sequences of non-coding regions. Within the coding regions, there were nucleotide transitions which affected the Pst I-restriction site, and one of the transitions was also accompanied by an amino acid substitution (Ala to Gly). Southern blot analysis showed hybridization pattern changes among the parasites isolated from individual calves at different times after infection. From these results, we conclude that at least 3 genetically different parasite populations may coexist, and the transition to predominant parasite populations might occur during persistent infections in a host, possibly to evade the host immune responses.
Collapse
Affiliation(s)
- T Matsuba
- Department of Epizootiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Susceptible Aotus monkeys were immunized with Escherichia coli-derived fusion proteins containing partial sequences of the proteins MSAI, SERP, HRPII and with a group of three recombinant antigens isolated by screening with an antiserum raised against the protective 41 kDa protein band. HRPII, the combination of the fusion proteins of the 41 kDa group and a mixture of two sequences of SERP conferred significant protection against a challenge infection with Plasmodium falciparum blood stages. Based on the protective capacity of these recombinant antigens we have expressed two hybrid proteins (MS2/SERP/HRPII and SERP/MSAI/HRPII) in E. coli containing selected partial sequences. In two independent immunization trials it was shown that immunization of Aotus monkeys with either of the two hybrid proteins can protect the animals from an experimental P. falciparum infection.
Collapse
Affiliation(s)
- B Enders
- Research Laboratories of Behringwerke AG, Marburg, Germany
| | | | | |
Collapse
|