1
|
Ledoux WR. Role of Robotic Gait Simulators in Elucidating Foot and Ankle Pathomechanics. Foot Ankle Clin 2023; 28:45-62. [PMID: 36822688 DOI: 10.1016/j.fcl.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Testing with cadaveric foot and ankle specimens began as mechanical techniques to study foot function and then evolved into static simulations of specific instances of gait, before technologies were eventually developed to fully replicate the gait cycle. This article summarizes the clinical applications of dynamic cadaveric gait simulation, including foot bone kinematics and joint function, muscle function, ligament function, orthopaedic foot and ankle pathologies, and total ankle replacements. The literature was reviewed and an in-depth summary was written in each section to highlight one of the more sophisticated simulators. The limitations of dynamic cadaveric simulation were also reviewed.
Collapse
Affiliation(s)
- William R Ledoux
- Center for Limb Loss and MoBility (CLiMB), VA Puget Sound Health Care System, ms 151, 1660 South Columbian Way, Seattle, WA 98108, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA, USA; Department of Orthopaedics & Sports Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Singal K, Rajamani R, Ahmadi M, Serdar Sezen A, Bechtold JE. Magnetic sensor for configurable measurement of tension or elasticity with validation in animal soft tissues. IEEE Trans Biomed Eng 2014; 62:426-37. [PMID: 25222945 DOI: 10.1109/tbme.2014.2357345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This paper presents a novel Hall-effect-based magnetic sensor for handheld measurement of either elasticity or tension in soft tissues. A theoretical model is developed for the mechanical interaction of the sensor with the tissue, and conditions are established under which the separate effects of tension or elasticity can be measured. A model of the magnetic field within the sensor is developed and a technique to estimate the sensor response in the presence of multiple magnets is established. This paper then provides analytical sensor responses and compares them with experimental results obtained on synthetic materials. It is found that the sensor can measure tension values upto 100 N with a resolution of 10 N in handheld operation and elasticity of upto 0.87 MPa with a resolution of 0.02 MPa. Significant experimental characterization and statistical analysis of sensor repeatability is performed. The viability of this sensor to make tension and elasticity measurements with biological tissues is then demonstrated using turkey tendons and fresh swine tissues.
Collapse
|
3
|
From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: a review. J Biomech 2014; 47:1251-61. [PMID: 24612722 DOI: 10.1016/j.jbiomech.2014.01.054] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/07/2014] [Accepted: 01/25/2014] [Indexed: 11/23/2022]
Abstract
In vivo measurement, not only in animals but also in humans, is a demanding task and is the ultimate goal in experimental biomechanics. For that purpose, measurements in vivo must be performed, under physiological conditions, to obtain a database and contribute for the development of analytical models, used to describe human biomechanics. The knowledge and control of the mechanisms involved in biomechanics will allow the optimization of the performance in different topics like in clinical procedures and rehabilitation, medical devices and sports, among others. Strain gages were first applied to bone in a live animal in 40's and in 80's for the first time were applied fibre optic sensors to perform in vivo measurements of Achilles tendon forces in man. Fibre optic sensors proven to have advantages compare to conventional sensors and a great potential for biomechanical and biomedical applications. Compared to them, they are smaller, easier to implement, minimally invasive, with lower risk of infection, highly accurate, well correlated, inexpensive and multiplexable. The aim of this review article is to give an overview about the evolution of the experimental techniques applied in biomechanics, from conventional to fibre optic sensors. In the next sections the most relevant contributions of these sensors, for strain and force in biomechanical applications, will be presented. Emphasis was given to report of in vivo experiments and clinical applications.
Collapse
|
4
|
Fouré A, Nordez A, Cornu C. Effects of eccentric training on mechanical properties of the plantar flexor muscle-tendon complex. J Appl Physiol (1985) 2012; 114:523-37. [PMID: 23239873 DOI: 10.1152/japplphysiol.01313.2011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Eccentric training is a mechanical loading classically used in clinical environment to rehabilitate patients with tendinopathies. In this context, eccentric training is supposed to alter tendon mechanical properties but interaction with the other components of the muscle-tendon complex remains unclear. The aim of this study was to determine the specific effects of 14 wk of eccentric training on muscle and tendon mechanical properties assessed in active and passive conditions in vivo. Twenty-four subjects were randomly divided into a trained group (n = 11) and a control group (n = 13). Stiffness of the active and passive parts of the series elastic component of plantar flexors were determined using a fast stretch during submaximal isometric contraction, Achilles tendon stiffness and dissipative properties were assessed during isometric plantar flexion, and passive stiffness of gastrocnemii muscles and Achilles tendon were determined using ultrasonography while ankle joint was passively moved. A significant decrease in the active part of the series elastic component stiffness was found (P < 0.05). In contrast, a significant increase in Achilles tendon stiffness determined under passive conditions was observed (P < 0.05). No significant change in triceps surae muscles and Achilles tendon geometrical parameters was shown (P > 0.05). Specific changes in muscle and tendon involved in plantar flexion are mainly due to changes in intrinsic mechanical properties of muscle and tendon tissues. Specific assessment of both Achilles tendon and plantar flexor muscles allowed a better understanding of the functional behavior of the muscle-tendon complex and its adaptation to eccentric training.
Collapse
Affiliation(s)
- Alexandre Fouré
- Université de Nantes, Laboratoire Motricité, Interactions, Performance, UFR STAPS, Nantes, France
| | | | | |
Collapse
|
5
|
Behrmann GP, Hidler J, Mirotznik MS. Fiber optic micro sensor for the measurement of tendon forces. Biomed Eng Online 2012; 11:77. [PMID: 23033868 PMCID: PMC3494611 DOI: 10.1186/1475-925x-11-77] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/26/2012] [Indexed: 11/10/2022] Open
Abstract
A fiber optic sensor developed for the measurement of tendon forces was designed, numerically modeled, fabricated, and experimentally evaluated. The sensor incorporated fiber Bragg gratings and micro-fabricated stainless steel housings. A fiber Bragg grating is an optical device that is spectrally sensitive to axial strain. Stainless steel housings were designed to convert radial forces applied to the housing into axial forces that could be sensed by the fiber Bragg grating. The metal housings were fabricated by several methods including laser micromachining, swaging, and hydroforming. Designs are presented that allow for simultaneous temperature and force measurements as well as for simultaneous resolution of multi-axis forces.The sensor was experimentally evaluated by hydrostatic loading and in vitro testing. A commercial hydraulic burst tester was used to provide uniform pressures on the sensor in order to establish the linearity, repeatability, and accuracy characteristics of the sensor. The in vitro experiments were performed in excised tendon and in a dynamic gait simulator to simulate biological conditions. In both experimental conditions, the sensor was found to be a sensitive and reliable method for acquiring minimally invasive measurements of soft tissue forces. Our results suggest that this sensor will prove useful in a variety of biomechanical measurements.
Collapse
|
6
|
Measurement of in vivo tendon function. J Shoulder Elbow Surg 2012; 21:149-57. [PMID: 22244057 DOI: 10.1016/j.jse.2011.10.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 10/29/2011] [Accepted: 10/31/2011] [Indexed: 02/01/2023]
Abstract
Chronic tendon pathologies (eg, rotator cuff tears, Achilles tendon ruptures) are common, painful, debilitating, and a significant source of medical expense. Treatment strategies for managing tendon pathologies vary widely in invasiveness and cost, with little scientific basis on which to base treatment selection. Conventional techniques for assessing the outcomes of physical therapy or surgical repair typically rely on patient-based assessments of pain and function, physical measures (eg, strength, range of motion, or stability), and qualitative assessments using magnetic resonance imaging or ultrasound. Unfortunately, these conventional techniques provide only an indirect assessment of tendon function. The inability to make a direct quantitative assessment of the tendon's mechanical capabilities may help to explain the relatively high rate of failed tendon repairs and has led to an interest in the development of tools for directly assessing in vivo tendon function. The purpose of this article is to review methods for assessing tendon function (ie, mechanical properties and capabilities) during in vivo activities. This review will describe the general principles behind the experimental techniques and provide examples of previous applications of these techniques. In addition, this review will characterize the advantages and limitations of each technique, along with its potential clinical utility. Future efforts should focus on developing broadly translatable technologies for quantitatively assessing in vivo tendon function. The ability to accurately characterize the in vivo mechanical properties of tendons would improve patient care by allowing for the systematic development and assessment of new techniques for treating tendon pathologies.
Collapse
|
7
|
Fröberg A, Komi P, Ishikawa M, Movin T, Arndt A. Force in the achilles tendon during walking with ankle foot orthosis. Am J Sports Med 2009; 37:1200-7. [PMID: 19229043 DOI: 10.1177/0363546508330126] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Ankle foot orthoses are used for postoperative treatment of Achilles tendon ruptures and decrease calf muscle electromyography activity during walking. HYPOTHESIS Achilles tendon load decreases with increased restriction of dorsiflexion and is associated with decreased triceps surae activity. STUDY DESIGN Controlled laboratory study. METHODS In 8 subjects, the maximum force and rate of force development in the Achilles tendon were measured with an optic fiber technique, and the activity of the gastrocnemius, soleus, and tibialis anterior muscles was recorded using electromyography. Trial conditions were walking barefoot and wearing an ankle-foot orthoses set in 3 different positions: (1) locked at 20 degrees of plantar flexion and with free plantar flexion but restricted dorsiflexion to (2) 10 degrees plantar flexion and (3) 10 degrees dorsiflexion, respectively. The design of the ankle foot orthoses did not provide heel support when fixed in a plantarflexed position. RESULTS Maximum Achilles tendon force was highest at the ankle-foot orthoses setting of 20 degrees plantar flexion (3.1 times body weight) and decreased to 2.1 times body weight during barefoot walking (P < .01). The rate of Achilles tendon force showed an increasing trend with less-restricted dorsiflexion. Soleus activity was 52% of mean barefoot walking activity at 3 20 degrees plantar flexion (P < .001) and then increased as dorsiflexion was less restricted. CONCLUSION Weightbearing in ankle-foot orthoses when dorsiflexion is restricted beyond neutral may result in increased forces in the Achilles tendon compared with barefoot walking, despite reduced electromyography activity in the triceps surae and decreased rate of force development. CLINICAL RELEVANCE If patients bear full weight in an ankle-foot orthoses locked at 20 degrees plantar flexion without heel support, the maximum force in the tendon may exceed that encountered during barefoot walking.
Collapse
Affiliation(s)
- Asa Fröberg
- Karolinska Institute, Department of Clinical Science, Intervention and Technology, Division of Orthopedic Surgery, Stockholm 14186, Sweden.
| | | | | | | | | |
Collapse
|
8
|
Ren L, Song G, Conditt M, Noble PC, Li H. Fiber Bragg grating displacement sensor for movement measurement of tendons and ligaments. APPLIED OPTICS 2007; 46:6867-71. [PMID: 17906712 DOI: 10.1364/ao.46.006867] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Biomechanical studies often involve measurements of the strains developed in tendons or ligaments in posture or locomotion. Fiber-optic sensors present an attractive option for the measurement of strains in tendons and ligaments because of their low cost, ease of implementation, and increased accuracy compared with other implantable transducers. A new displacement sensor based on a fiber Bragg grating and shape memory alloy technology is proposed for the monitoring of tendon and ligament strains in different postures and in locomotion. After sensor calibration in the laboratory, a comparison of the fiber sensors and traditional camera displacement sensors was carried out to evaluate the performance of the fiber sensor during the application of tension to the Achilles tendon. Additional experiments were performed in cadaver knees to assess the suitability of these fiber sensors to measure ligament deformation in a variety of simulated postures. The results demonstrate that the proposed fiber Bragg grating sensor is a highly accurate, easily implantable, and minimally invasive method of measuring tendon and ligament displacement.
Collapse
Affiliation(s)
- Liang Ren
- State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Liaoning, China.
| | | | | | | | | |
Collapse
|
9
|
Pourcelot P, Defontaine M, Ravary B, Lemâtre M, Crevier-Denoix N. A non-invasive method of tendon force measurement. J Biomech 2005; 38:2124-9. [PMID: 16084214 DOI: 10.1016/j.jbiomech.2004.09.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2004] [Indexed: 11/16/2022]
Abstract
The ability to measure the forces exerted in vivo on tendons and, consequently, the forces produced by muscles on tendons, offers a unique opportunity to investigate questions in disciplines as varied as physiology, biomechanics, orthopaedics and neuroscience. Until now, tendon loads could be assessed directly only by means of invasive sensors implanted within or attached to these collagenous structures. This study shows that the forces acting on tendons can be measured, in a non-invasive way, from the analysis of the propagation of an acoustic wave. Using the equine superficial digital flexor tendon as a model, it is demonstrated that the velocity of an ultrasonic wave propagating along the main axis of a tendon increases with the force applied to this tendon. Furthermore, we show that this velocity measurement can be performed even in the presence of skin overlying the tendon. To validate this measurement technique in vivo, the ultrasonic velocity plots obtained in the Achilles tendon at the walk were compared to the loads plots reported by other authors using invasive transducers.
Collapse
Affiliation(s)
- Philippe Pourcelot
- Unité de Biomécanique et Pathologie Locomotrice du Cheval UMR INRA/ENVA 957, Maisons-Alfort, France.
| | | | | | | | | |
Collapse
|
10
|
Ravary B, Pourcelot P, Bortolussi C, Konieczka S, Crevier-Denoix N. Strain and force transducers used in human and veterinary tendon and ligament biomechanical studies. Clin Biomech (Bristol, Avon) 2004; 19:433-47. [PMID: 15182978 DOI: 10.1016/j.clinbiomech.2004.01.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 01/20/2004] [Indexed: 02/07/2023]
Abstract
Biomechanical studies often aim at determining the contribution (in terms of load or strain) of a tendon or ligament in posture, gesture or locomotion. To this end, many transducers have been developed since 30 years. These devices implanted within or attached to the inside of the tendon or ligament must be compliant enough to measure in vivo the tissue load or strain without interfering with the movement of man or animals. They can be transducers with variation of electrical resistance (liquid metal strain gauge, buckle transducer, implantable force transducer and pressure transducer), variation of magnetic field (Hall effect transducer) and variation of light flow (optic fibre). Their use requires surgery in order to implant them and it is limited in time because of their invasive character and the development of fibrous healing reactions. Besides, the transducer dimensions and its position in the tendon can influence the transducer output signal. Moreover, the latter may not reflect the behaviour of the tendon as a whole but only locally. In addition, a calibration is required in order to convert the output signal into a strain or a force. In animals, this calibration is generally made by a post-mortem procedure on dissected anatomical specimens; in man, an indirect calibration procedure using inverse dynamic calculations is generally performed. However, the calibration conditions cannot reproduce exactly the in vivo conditions. So far, only invasive transducers have allowed to measure strain or force in tendons with all constraints and limits mentioned above.
Collapse
Affiliation(s)
- Bérangère Ravary
- UMR INRA-ENVA, Biomécanique et Pathologie Locomotrice du Cheval, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94704 Maisons-Alfort cedex, France.
| | | | | | | | | |
Collapse
|
11
|
Abstract
BACKGROUND The plantar aponeurosis is known to be a major contributor to arch support, but its role in transferring Achilles tendon loads to the forefoot remains poorly understood. The goal of this study was to increase our understanding of the function of the plantar aponeurosis during gait. We specifically examined the plantar aponeurosis force pattern and its relationship to Achilles tendon forces during simulations of the stance phase of gait in a cadaver model. METHODS Walking simulations were performed with seven cadaver feet. The movements of the foot and the ground reaction forces during the stance phase were reproduced by prescribing the kinematics of the proximal part of the tibia and applying forces to the tendons of extrinsic foot muscles. A fiberoptic cable was passed through the plantar aponeurosis perpendicular to its loading axis, and raw fiberoptic transducer output, tendon forces applied by the experimental setup, and ground reaction forces were simultaneously recorded during each simulation. A post-experiment calibration related fiberoptic output to plantar aponeurosis force, and linear regression analysis was used to characterize the relationship between Achilles tendon force and plantar aponeurosis tension. RESULTS Plantar aponeurosis forces gradually increased during stance and peaked in late stance. Maximum tension averaged 96% +/- 36% of body weight. There was a good correlation between plantar aponeurosis tension and Achilles tendon force (r = 0.76). CONCLUSIONS The plantar aponeurosis transmits large forces between the hindfoot and forefoot during the stance phase of gait. The varying pattern of plantar aponeurosis force and its relationship to Achilles tendon force demonstrates the importance of analyzing the function of the plantar aponeurosis throughout the stance phase of the gait cycle rather than in a static standing position. CLINICAL RELEVANCE The plantar aponeurosis plays an important role in transmitting Achilles tendon forces to the forefoot in the latter part of the stance phase of walking. Surgical procedures that require the release of this structure may disturb this mechanism and thus compromise efficient propulsion.
Collapse
Affiliation(s)
- Ahmet Erdemir
- Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
12
|
Meyer DC, Jacob HAC, Nyffeler RW, Gerber C. In vivo tendon force measurement of 2-week duration in sheep. J Biomech 2004; 37:135-40. [PMID: 14672577 DOI: 10.1016/s0021-9290(03)00260-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tendon tension in vivo may be determined indirectly by measuring intratendinous pressure, by using a buckle transducer or by measuring the tendon strain. All of these methods require appropriate calibration, which is highly dependent on various variables. To measure the tendon load in vivo during a period of 2 weeks in sheep, a measurement technique has been developed using a force sensor interposed serially between the humeral head and the tendon end. Within a supporting frame, a flexion-sensitive force transducer is subjected to three-point bending stress. The load is transmitted by sutures from the tendon end through a hole in the sensor frame, orthogonal to the force transducer. In this configuration, the sensor measures the tensile force acting on the tendon, largely independent of the loading direction. The sensor was screwed to the humeral head and connected to the tendon end which was previously released from its insertion site along with a bone chip, using sutures. Connecting wires passed subcutaneously to a skin outlet about 30 cm away from the transducer. The sensor output was linear to the measured load up to 300 N, with maximum hysteresis of 18% full scale. All sensors worked in vivo without drift over a period of up to 14 days with no change in the calibration data. Forces up to 310 N have been recorded in vivo with daily tension measurements. This study shows that serial tendon tension measurement is feasible and allows for reliable, repeatable recording of the absolute tendon tension at the expense of tendon integrity.
Collapse
Affiliation(s)
- D C Meyer
- Department of Orthopaedic Surgery, University of Zürich, Balgrist, Forchstr. 340, CH-8008 Zürich, Switzerland
| | | | | | | |
Collapse
|
13
|
Erdemir A, Hamel AJ, Piazza SJ, Sharkey NA. Fiberoptic measurement of tendon forces is influenced by skin movement artifact. J Biomech 2003; 36:449-55. [PMID: 12594993 DOI: 10.1016/s0021-9290(02)00414-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fiberoptic cables have previously been used for tendon force measurements in vivo. To measure forces in the Achilles tendon, a cable is passed mediolaterally through the skin and tendon, transverse to the loading axis. As the tendon is loaded, its fibers compress the cable and modulate the intensity of transmitted light, which can be related to tendon force by an in situ calibration. The relative movement between skin and tendon at the cable entry and exit sites may cause error by bending the cable and thus altering transducer output. Cadaver simulations of walking were conducted to compare fiberoptic measurements of Achilles tendon forces to known loads applied to the tendon by actuators attached in series. Force measurement errors, which were high when the skin was intact (RMS errors 24-81% peak forces), decreased considerably after skin removal (RMS errors 10-33% peak forces). The fiberoptic transducer is a useful tool for measurement of tendon forces in situ under natural loading conditions when skin can be removed, but caution should be exercised during in vivo use of this technique or under circumstances where skin is in contact with the fiberoptic cable at the insertion and exit sites.
Collapse
Affiliation(s)
- Ahmet Erdemir
- Center for Locomotion Studies, The Pennsylvania State University, 29 Recreation Building, University Park, PA 16802, USA
| | | | | | | |
Collapse
|