1
|
Recent advances for estimating environmental properties for small molecules from chromatographic measurements and the solvation parameter model. J Chromatogr A 2023; 1687:463682. [PMID: 36502643 DOI: 10.1016/j.chroma.2022.463682] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
The transfer of neutral compounds between immiscible phases in chromatographic or environmental systems can be described by six solute properties (solute descriptors) using the solvation parameter model. The solute descriptors are size (McGowan's characteristic volume), V, excess molar refraction, E, dipolarity/polarizability, S, hydrogen-bond acidity and basicity, A and B, and the gas-liquid partition constant on n-hexadecane at 298.15 K, L. V and E for liquids are accessible by calculation but the other descriptors and E for solids are determined experimentally by chromatographic, liquid-liquid partition, and solubility measurements. These solute descriptors are available for several thousand compounds in the Abraham solute descriptor databases and for several hundred compounds in the WSU experimental solute descriptor database. In the first part of this review, we highlight features important in defining each descriptor, their experimental determination, compare descriptor quality for the two organized descriptor databases, and methods for estimating Abraham solute descriptors. In the second part we focus on recent applications of the solvation parameter model to characterize environmental systems and its use for the identification of surrogate chromatographic models for estimating environmental properties.
Collapse
|
2
|
Safa F, Manouchehri F. Unified Linear and Nonlinear Models for Retention Prediction of Aliphatic Aldehydes and Ketones in Different Columns and Temperatures: Application of Atom-Type-Based AI Topological Indices. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Poole CF. Gas chromatography system constant database for 52 wall-coated, open-tubular columns covering the temperature range 60–140 °C. J Chromatogr A 2019; 1604:460482. [DOI: 10.1016/j.chroma.2019.460482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 10/26/2022]
|
4
|
Poole CF, Ariyasena TC, Lenca N. Estimation of the environmental properties of compounds from chromatographic measurements and the solvation parameter model. J Chromatogr A 2013; 1317:85-104. [DOI: 10.1016/j.chroma.2013.05.045] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/15/2013] [Accepted: 05/20/2013] [Indexed: 11/29/2022]
|
5
|
Gotta J, Keunchkarian S, Castells C, Reta M. Predicting retention in reverse-phase liquid chromatography at different mobile phase compositions and temperatures by using the solvation parameter model. J Sep Sci 2012; 35:2699-709. [DOI: 10.1002/jssc.201200197] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/18/2012] [Accepted: 06/21/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Javier Gotta
- Laboratorio de Separaciones Analíticas; División Química Analítica; Facultad de Ciencias Exactas (UNLP); La Plata Argentina
| | - Sonia Keunchkarian
- Laboratorio de Separaciones Analíticas; División Química Analítica; Facultad de Ciencias Exactas (UNLP); La Plata Argentina
| | - Cecilia Castells
- Laboratorio de Separaciones Analíticas; División Química Analítica; Facultad de Ciencias Exactas (UNLP); La Plata Argentina
| | - Mario Reta
- Laboratorio de Separaciones Analíticas; División Química Analítica; Facultad de Ciencias Exactas (UNLP); La Plata Argentina
| |
Collapse
|
6
|
Poole CF, Atapattu SN, Poole SK, Bell AK. Determination of solute descriptors by chromatographic methods. Anal Chim Acta 2009; 652:32-53. [DOI: 10.1016/j.aca.2009.04.038] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 04/25/2009] [Accepted: 04/28/2009] [Indexed: 11/24/2022]
|
7
|
Poole CF, Poole SK. Separation characteristics of wall-coated open-tubular columns for gas chromatography. J Chromatogr A 2008; 1184:254-80. [PMID: 17678934 DOI: 10.1016/j.chroma.2007.07.028] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 07/01/2007] [Accepted: 07/13/2007] [Indexed: 10/23/2022]
Abstract
The application of the solvation parameter model for the classification of wall-coated open-tubular columns for gas chromatography is reviewed. A system constants database for 50 wall-coated open-tubular columns at five equally spaced temperatures between 60 and 140 degrees C is constructed and statistical and chemometric techniques used to identify stationary phases with equivalent selectivity, the effect of monomer chemistry on selectivity, and the selection of stationary phases for method development. The system constants database contains examples of virtually all commercially available common stationary phases.
Collapse
Affiliation(s)
- Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | | |
Collapse
|
8
|
Tello AM, Lebrón-Aguilar R, Quintanilla-López JE, Pérez-Parajón JM, Santiuste JM. Application of the solvation parameter model to poly(methylcyanopropylsiloxane) stationary phases. J Chromatogr A 2006; 1122:230-41. [PMID: 16701680 DOI: 10.1016/j.chroma.2006.04.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 04/17/2006] [Accepted: 04/19/2006] [Indexed: 10/24/2022]
Abstract
The solvation parameter model has been applied to the specific retention volumes of 65 solutes of varied polarity on glass capillary columns coated with commercial and synthesized poly(methylcyanopropyl)siloxanes (CNPXX) with eight different percentages of cyanopropyl group (CNP). Their system constants were determined at 75, 90, 105 and 120 degrees C. The polymers examined do not either show any acidity (b = 0) or interact with solute pi/n electrons (e = 0); the prominent constants, dipolarity/polarizability and hydrogen-bond basicity, are of the same order (s approximately a), and the cavity formation/dispersive forces have normal values. Constants s, l and a decrease linearly with temperature for each cyanopropyl percentage. At each temperature, the constants s and a increase with polarity of polymer according to a curve, while the constant l decreases slightly. Cluster analysis shows that six CNPXX with medium to high cyanopropyl substitution integrate into a group with other high-polarity cyano-containing stationary phases taken from the literature, while the other three CNPXX with low CNP percentage form a group with other low-polarity stationary phases of different chemical nature. These clusters are supported by the dendrogram of 52 stationary phases made with the nine polymers presented here and other 43 taken from the literature.
Collapse
Affiliation(s)
- A M Tello
- Department of Molecular Structure and Dynamics, Institute of Physical Chemistry Rocasolano (CSIC), Serrano 119, 28006-Madrid, Spain
| | | | | | | | | |
Collapse
|
9
|
Lu C, Guo W, Yin C. Quantitative structure-retention relationship study of the gas chromatographic retention indices of saturated esters on different stationary phases using novel topological indices. Anal Chim Acta 2006. [DOI: 10.1016/j.aca.2005.12.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Lebrón-Aguilar R, Quintanilla-López JE, Tello AM, Pérez-Parajón JM, Santiuste JM. System constants of synthesized poly(methyl-3,3,3-trifluoropropyl) siloxanes. J Chromatogr A 2005; 1100:208-17. [PMID: 16236288 DOI: 10.1016/j.chroma.2005.09.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 09/21/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
The method of solvation model has been applied to five poly (methyl-trifluoropropyl) siloxanes (TFPSXX) prepared in our laboratories, at five trifluoropropyl (TFP) group contents, XX = 0, 11.5, 26.3, 35.5 and 50.0%, at 80, 100, 120 and 140 degrees C. Previously, specific retention volumes of 60-odd solutes of varied polarities were measured upon each of these stationary phases within the above temperature range. Constant s prevails over all other constants, TFPSXX stationary phases showing strong dipole/induced dipole forces with the solutes, moderate acidity and no basicity at all. Constant e is zero in the stationary phase without TFP groups, but has negative low-medium values for the other fluorine contents, XX from 11.5 to 50.0%, hinting at repulsive forces, as expected. Normal values for constant l, decreasing from the less cohesive TFPS00 to the more cohesive TFPS50, were found. For each TFP content constants s, a and l show a negative temperature dependence, while constant e increases as temperature increases. Constant c also decreases with increasing temperature. At each temperature, constants s and a increase with increasing %TFP (or increasing stationary phase polarity), whereas constants e and l show the opposite trend, diminishing with increasing polarity of the stationary phase. Principal component analysis shows that the five stationary phases presented in this work conform a group with other earlier synthesized trifluoropropyl siloxanes and other fluorinated stationary phases taken from literature: VB-210, QF-1, DB-200, DB-210 and PFS6, showing the same selectivity which only the fluorine atom confers. A dendrogram of 38 stationary phases supports these results.
Collapse
Affiliation(s)
- R Lebrón-Aguilar
- Institute of Physical Chemistry Rocasolano, Department of Molecular Structure and Dynamics, Madrid, Spain
| | | | | | | | | |
Collapse
|
11
|
Chen JL, Liu CY. Thermodynamic characterization of a metallomesogenic stationary phase in gas chromatography. Anal Chim Acta 2005. [DOI: 10.1016/j.aca.2005.05.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Goss KU. Free Energy of Transfer of a Solute and Its Relation to the Partition Constant. J Phys Chem B 2003. [DOI: 10.1021/jp036650h] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kai-Uwe Goss
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), and Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| |
Collapse
|
13
|
da Silva Junkes B, Dias de Mello Castanho Amboni R, Augusto Yunes R, Heinzen VEF. Prediction of the chromatographic retention of saturated alcohols on stationary phases of different polarity applying the novel semi-empirical topological index. Anal Chim Acta 2003. [DOI: 10.1016/s0003-2670(02)01413-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
A method for estimating the solvent strength parameter in liquid-solid chromatography. Chromatographia 2001. [DOI: 10.1007/bf02490323] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Dallos A, Sisak A, Kulcsár Z, Kováts E. Pair-wise interactions by gas chromatography. VII. Interaction free enthalpies of solutes with secondary alcohol groups. J Chromatogr A 2000; 904:211-42. [PMID: 11204236 DOI: 10.1016/s0021-9673(00)00908-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A polar type liquid having a secondary alcohol substituent on a branched alkane skeleton, SOH, was used as stationary phase. The molecules of this stationary phase are nearly isomorphous and isochor with those of the branched alkane, C78, elected as standard, i.e., the molecules of both solvents have nearly the same form and the same size. Partition properties of 158 chosen molecular probes were measured by gas chromatography on SOH and on an SOH-C78 mixture having a volume fraction of thetaOH = 0.5. Based on the resulting data an interaction free enthalpy could be calculated, i.e., the additional effect of the secondary alcohol to partition. Comparison with data determined earlier on another member of this solvent family, POH, having a primary alcohol as interacting group gives information about the effect of steric hindrance on polar type solute-solvent interaction free energies.
Collapse
Affiliation(s)
- A Dallos
- Department of Physical Chemistry, University of Veszprém, Hungary.
| | | | | | | |
Collapse
|
16
|
Jalali-Heravi M, Parastar F. Development of comprehensive descriptors for multiple linear regression and artificial neural network modeling of retention behaviors of a variety of compounds on different stationary phases. J Chromatogr A 2000; 903:145-54. [PMID: 11153937 DOI: 10.1016/s0021-9673(00)00871-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new series of six comprehensive descriptors that represent different features of the gas-liquid partition coefficient, K(L), for commonly used stationary phases is developed. These descriptors can be considered as counterparts of the parameters in the Abraham solvatochromic model of solution. A separate multiple linear regression (MLR) model was developed by using the six descriptors for each stationary phase of poly(ethylene glycol adipate) (EGAD), N,N,N',N'-tetrakis(2-hydroxypropyl) ethylenediamine (THPED), poly(ethylene glycol) (Ucon 50 HB 660) (U50HB), di(2-ethylhexyl)phosphoric acid (DEHPA) and tetra-n-butylammonium N,N-(bis-2-hydroxylethyl)-2-aminoethanesulfonate (QBES). The results obtained using these models are in good agreement with the experiment and with the results of the empirical model based on the solvatochromic theory. A 6-6-5 neural network was developed using the descriptors appearing in the MLR models as inputs. Comparison of the mean square errors (MSEs) shows the superiority of the artificial neural network (ANN) over that of the MLR. This indicates that the retention behavior of the molecules on different columns show some nonlinear characteristics. The experimental solvatochromic parameters proposed by Abraham can be replaced by the calculated descriptors in this work.
Collapse
Affiliation(s)
- M Jalali-Heravi
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | |
Collapse
|
17
|
Study of retention interactions of solute and stationary phase in the light of the solvation model theory. Anal Chim Acta 2000. [DOI: 10.1016/s0003-2670(99)00734-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Abraham MH, Poole CF, Poole SK. Classification of stationary phases and other materials by gas chromatography. J Chromatogr A 1999. [DOI: 10.1016/s0021-9673(98)00930-3] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Tan LC, Carr PW, Abraham MH. Study of retention in reversed-phase liquid chromatography using linear solvation energy relationships I. The stationary phase. J Chromatogr A 1996. [DOI: 10.1016/s0021-9673(96)00459-1] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Relative polarities of nine modified cyclodextrin commercial stationary phases in gas chromatographic capillaries. J Chromatogr A 1996. [DOI: 10.1016/0021-9673(95)00719-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Poole SK, Miller KG, Poole CF. Variation of selectivity among the poly(siloxane) stationary phases for gas chromatography. ACTA ACUST UNITED AC 1995. [DOI: 10.1002/mcs.1220070510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Poole SK, Poole CF. Application of principal component factor analysis to the cavity model of solvation to identify factors important in characterizing the solvent properties of gas chromatographic stationary phases. J Chromatogr A 1995. [DOI: 10.1016/0021-9673(94)00705-e] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Nonionic surfactant polarity index determination by inverse gas chromatography. J AM OIL CHEM SOC 1995. [DOI: 10.1007/bf02635784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Poole SK, Kollie TO, Poole CF. Influence of temperature on the mechanism by which compounds are retained in gas-liquid chromatography. J Chromatogr A 1994. [DOI: 10.1016/0021-9673(94)87012-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Poole CF, Kollie TO. Interpretation of the influence of temperature on the solvation properties of gas chromatographic stationary phases using Abraham's solvation parameter model. Anal Chim Acta 1993. [DOI: 10.1016/0003-2670(93)80347-n] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
|
27
|
Betts T. Two-solute method for indicating polarity changes of conventional and novel gas chromatographic stationary phases with temperature increase. J Chromatogr A 1993. [DOI: 10.1016/0021-9673(93)80341-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Poole CF, Kollie TO, Poole SK. Recent advances in solvation models for stationary phase characterization and the prediction of retention in gas chromatography. Chromatographia 1992. [DOI: 10.1007/bf02268359] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Kollie TO, Poole CF. Influence of fluorine substitution on the solvation properties of tetraalkylammonium alkanesulfonate phases in gas chromatography. Chromatographia 1992. [DOI: 10.1007/bf02262247] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Kollie TO, Poole CF, Abraham MH, Whiting GS. Comparison of two free energy of solvation models for characterizing selectivity of stationary phases used in gas-liquid chromatography. Anal Chim Acta 1992. [DOI: 10.1016/0003-2670(92)85067-g] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|