1
|
Wu J, Wang R, Tan Y, Liu L, Chen Z, Zhang S, Lou X, Yun J. Hybrid machine learning model based predictions for properties of poly(2-hydroxyethyl methacrylate)-poly(vinyl alcohol) composite cryogels embedded with bacterial cellulose. J Chromatogr A 2024; 1727:464996. [PMID: 38763087 DOI: 10.1016/j.chroma.2024.464996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Supermacroporous composite cryogels with enhanced adjustable functionality have received extensive interest in bioseparation, tissue engineering, and drug delivery. However, the variations in their components significantly impactfinal properties. This study presents a two-step hybrid machine learning approach for predicting the properties of innovative poly(2-hydroxyethyl methacrylate)-poly(vinyl alcohol) composite cryogels embedded with bacterial cellulose (pHEMA-PVA-BC) based on their compositions. By considering the ratios of HEMA (1.0-22.0 wt%), PVA (0.2-4.0 wt%), poly(ethylene glycol) diacrylate (1.0-4.5 wt%), BC (0.1-1.5 wt%), and water (68.0-96.0 wt%) as investigational variables, overlay sampling uniform design (OSUD) was employed to construct a high-quality dataset for model development. The random forest (RF) model was used to classify the preparation conditions. Then four models of artificial neural network, RF, gradient boosted regression trees (GBRT), and XGBoost were developed to predict the basic properties of the composite cryogels. The results showed that the RF model achieved an accurate three-class classification of preparation conditions. Among the four models, the GBRT model exhibited the best predictive performance of the basic properties, with the mean absolute percentage error of 16.04 %, 0.85 %, and 2.44 % for permeability, effective porosity, and height of theoretical plate (1.0 cm/min), respectively. Characterization results of the representative pHEMA-PVA-BC composite cryogel showed an effective porosity of 81.01 %, a permeability of 1.20 × 10-12 m2, and a range of height of theoretical plate between 0.40-0.49 cm at flow velocities of 0.5-3.0 cm/min. These indicate that the pHEMA-PVA-BC cryogel was an excellent material with supermacropores, low flow resistance and high mass transfer efficiency. Furthermore, the model output demonstrates that the alteration of the proportions of PVA (0.2-3.5 wt%) and BC (0.1-1.5 wt%) components in composite cryogels resulted in significant changes in the material basic properties. This work represents an attempt to efficiently design and prepare target composite cryogels using machine learning and providing valuable insights for the efficient development of polymers.
Collapse
Affiliation(s)
- Jiawei Wu
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, PR China
| | - Ruobing Wang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, PR China
| | - Yan Tan
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, PR China
| | - Lulu Liu
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, PR China
| | - Zhihong Chen
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, PR China
| | - Songhong Zhang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, PR China
| | - Xiaoling Lou
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, PR China.
| | - Junxian Yun
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, PR China.
| |
Collapse
|
2
|
Babanejad N, Mfoafo K, Thumma A, Omidi Y, Omidian H. Advances in cryostructures and their applications in biomedical and pharmaceutical products. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
3
|
Sousa LSD, Chaves FS, Ferraro RB, Pessoa A, Minim LA. A quaternary amine cryogel column for chromatographic capture of L-Asparaginase. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
4
|
Applications of Cryostructures in the Chromatographic Separation of Biomacromolecules. J Chromatogr A 2022; 1683:463546. [DOI: 10.1016/j.chroma.2022.463546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/05/2022] [Accepted: 09/29/2022] [Indexed: 12/20/2022]
|
5
|
Zheng H, Wang C, Pavase TR, Xue C. Fabrication of copolymer brushes grafted superporous agarose gels: Towards the ultimate ideal particles for efficient affinity chromatography. Colloids Surf B Biointerfaces 2022; 217:112705. [PMID: 35863235 DOI: 10.1016/j.colsurfb.2022.112705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
A composite immobilized-metal affinity agarose particle was designed for the selective separation and purification of histidine-tagged proteins from complicated biological samples. The composite particle was constructed using superporous agarose particles as supporting matrix, flexible copolymer brushes as scaffolds to render higher ligand densities, and Ni2+-chelated iminodiacetic acids as recognition elements. Superporous agarose composite particles endow high permeability and interfering substance tolerance. The copolymer brush was prepared by surface-initiated atom transfer radical polymerization of N-isopropylacrylamide and glycidyl methacrylate, followed by iminodiacetic acids and Ni2+ ions. The physical and chemical properities of the composite particle were thoroughly investigated. The composite particles were shown to be able to selectively separate histidine-tagged recombinant proteins in the presence of high quantities of interfering chemicals in a model protein-binding experiment. By altering the temperature, the protein binding of the composite particles can be modulated. The superporous agarose particles supported polymer brush enables fast and efficient separation and purification of target proteins with high permeability, low backpressure, and high interfering matrix tolerance, which pave the path for bioseparation through designing and fabrication of novel agarose particles-based functional materials.
Collapse
Affiliation(s)
- Hongwei Zheng
- College of Food Science & Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
| | - Changyun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Tushar Ramesh Pavase
- College of Food Science & Engineering, Ocean University of China, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science & Engineering, Ocean University of China, Qingdao 266003, China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
6
|
|
7
|
Cellulose Cryogels as Promising Materials for Biomedical Applications. Int J Mol Sci 2022; 23:ijms23042037. [PMID: 35216150 PMCID: PMC8880007 DOI: 10.3390/ijms23042037] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
The availability, biocompatibility, non-toxicity, and ease of chemical modification make cellulose a promising natural polymer for the production of biomedical materials. Cryogelation is a relatively new and straightforward technique for producing porous light and super-macroporous cellulose materials. The production stages include dissolution of cellulose in an appropriate solvent, regeneration (coagulation) from the solution, removal of the excessive solvent, and then freezing. Subsequent freeze-drying preserves the micro- and nanostructures of the material formed during the regeneration and freezing steps. Various factors can affect the structure and properties of cellulose cryogels, including the cellulose origin, the dissolution parameters, the solvent type, and the temperature and rate of freezing, as well as the inclusion of different fillers. Adjustment of these parameters can change the morphology and properties of cellulose cryogels to impart the desired characteristics. This review discusses the structure of cellulose and its properties as a biomaterial, the strategies for cellulose dissolution, and the factors affecting the structure and properties of the formed cryogels. We focus on the advantages of the freeze-drying process, highlighting recent studies on the production and application of cellulose cryogels in biomedicine and the main cryogel quality characteristics. Finally, conclusions and prospects are presented regarding the application of cellulose cryogels in wound healing, in the regeneration of various tissues (e.g., damaged cartilage, bone tissue, and nerves), and in controlled-release drug delivery.
Collapse
|
8
|
Inanan T. Cryogel disks for lactase immobilization and lactose-free milk production. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Poddar S, Sharmeen S, Hage DS. Affinity monolith chromatography: A review of general principles and recent developments. Electrophoresis 2021; 42:2577-2598. [PMID: 34293192 PMCID: PMC9536602 DOI: 10.1002/elps.202100163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 07/18/2021] [Indexed: 12/28/2022]
Abstract
Affinity monolith chromatography (AMC) is a liquid chromatographic technique that utilizes a monolithic support with a biological ligand or related binding agent to isolate, enrich, or detect a target analyte in a complex matrix. The target-specific interaction exhibited by the binding agents makes AMC attractive for the separation or detection of a wide range of compounds. This article will review the basic principles of AMC and recent developments in this field. The supports used in AMC will be discussed, including organic, inorganic, hybrid, carbohydrate, and cryogel monoliths. Schemes for attaching binding agents to these monoliths will be examined as well, such as covalent immobilization, biospecific adsorption, entrapment, molecular imprinting, and coordination methods. An overview will then be given of binding agents that have recently been used in AMC, along with their applications. These applications will include bioaffinity chromatography, immunoaffinity chromatography, immobilized metal-ion affinity chromatography, and dye-ligand or biomimetic affinity chromatography. The use of AMC in chiral separations and biointeraction studies will also be discussed.
Collapse
Affiliation(s)
- Saumen Poddar
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| |
Collapse
|
10
|
Liu C, Tao B, Wang Z, Wang D, Guo R, Chen L. Preparation and characterization of lithium ion sieves embedded in a hydroxyethyl cellulose cryogel for the continuous recovery of lithium from brine and seawater. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.115984] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Armutcu C, Tartan Ç, Özgür E, Nemutlu E, Uzun L. Phosphate Anion Imprinted Cryogel Cartridges for Selective Preconcentration of Phosphorylated Amino Acids from Protein Lysate: An Alternative Sorbent for Proteome Analyses. ChemistrySelect 2020. [DOI: 10.1002/slct.202001959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Canan Armutcu
- Hacettepe University Faculty of Science Department of Chemistry Ankara Turkey
| | - Çağrı Tartan
- Hacettepe University Faculty of Science Department of Chemistry Ankara Turkey
| | - Erdoğan Özgür
- Hacettepe University Faculty of Science Department of Chemistry Ankara Turkey
- Hacettepe University Advanced Technologies Application and Research Center Ankara Turkey
| | - Emirhan Nemutlu
- Hacettepe University Faculty of Pharmacy Analytical Chemistry Division Ankara Turkey
| | - Lokman Uzun
- Hacettepe University Faculty of Science Department of Chemistry Ankara Turkey
| |
Collapse
|
12
|
Lozinsky VI. Cryostructuring of Polymeric Systems. 55. Retrospective View on the More than 40 Years of Studies Performed in the A.N.Nesmeyanov Institute of Organoelement Compounds with Respect of the Cryostructuring Processes in Polymeric Systems. Gels 2020; 6:E29. [PMID: 32927850 PMCID: PMC7559272 DOI: 10.3390/gels6030029] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
The processes of cryostructuring in polymeric systems, the techniques of the preparation of diverse cryogels and cryostructurates, the physico-chemical mechanisms of their formation, and the applied potential of these advanced polymer materials are all of high scientific and practical interest in many countries. This review article describes and discusses the results of more than 40 years of studies in this field performed by the researchers from the A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences-one of the key centers, where such investigations are carried out. The review includes brief historical information, the description of the main effects and trends characteristic of the cryostructuring processes, the data on the morphological specifics inherent in the polymeric cryogels and cryostructurates, and examples of their implementation for solving certain applied tasks.
Collapse
Affiliation(s)
- Vladimir I Lozinsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| |
Collapse
|
13
|
Hydrophobic cryogels prepared via cryo-polymerization as oil carriers for biosynthesis of sophorolipids. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
Pourrostam-Ravadanaq P, Safa KD, Abbasi H. Study of imidazole performance as pseudo-affinity ligand in the purification of IgG from bovine milk. Anal Biochem 2020; 597:113693. [PMID: 32201137 DOI: 10.1016/j.ab.2020.113693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 11/17/2022]
Abstract
The spherical sepharose CL-6B beads were activated by epichlorohydrin in different epoxy contents (80, 120 and 160 μmolepoxide/mLgel) and, l-histidine and imidazole as pseudo-affinity ligands were covalently immobilized to them. Some linkers with different length, (1,2-ethanediol diglycidyl ether and 1,4-butanediol diglycidyl ether) were synthesized for activation of sepharose and the activated sepharose beads modified with imidazole and the performance of these adsorbents in the purification of immunoglobulin G from bovine milk were evaluated. Among the l-histidine bearing adsorbents, higher adsorption of IgG (0.28 mg/mL) was obtained by adsorbent with the lower concentration of l-histidine. The highest amount of IgG adsorption (0.53 mg/mL) was obtained by imidazole bearing adsorbent with the highest amount of imidazole and Among the adsorbents with synthesized linkers, the adsorbent with 1,2-ethanediol diglycidyl ether showed better performance and was able to purify 0.25 mg/mL IgG with high purity. The synthesized pseudo-affinity adsorbents represented the abbility to purify immunoglobulin G in one-step process with high purity and efficiency.
Collapse
Affiliation(s)
| | - Kazem D Safa
- Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Hassan Abbasi
- Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
15
|
Chaves GL, Mól PCG, Minim VPR, Minim LA. Hydrodynamics and dynamic capacity of cryogels produced with different monomer compositions. J Appl Polym Sci 2019. [DOI: 10.1002/app.48507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gabriel Luz Chaves
- Department of Food TechnologyProcess Development and Simulation Laboratory, Federal University of Viçosa, Campus Universitário 36570‐900 Viçosa Minas Gerais Brazil
| | - Paula Chequer Gouveia Mól
- Laboratory of Biochemistry and Applied MicrobiologyUNESP‐ São Paulo State University 15054‐000 São José do Rio Preto São Paulo Brazil
| | - Valéria Paula Rodrigues Minim
- Department of Food TechnologyProcess Development and Simulation Laboratory, Federal University of Viçosa, Campus Universitário 36570‐900 Viçosa Minas Gerais Brazil
| | - Luis Antonio Minim
- Department of Food TechnologyProcess Development and Simulation Laboratory, Federal University of Viçosa, Campus Universitário 36570‐900 Viçosa Minas Gerais Brazil
| |
Collapse
|
16
|
Peroxidase Immobilized Cryogels for Phenolic Compounds Removal. Appl Biochem Biotechnol 2019; 190:138-147. [PMID: 31309412 DOI: 10.1007/s12010-019-03083-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
In this presented work, preparation of poly(AAm) cryogel, peroxidase immobilization onto the poly(AAm) cryogel, and usability of these enzyme modified cryogels for phenolic compounds removal were described. For this purpose, poly(AAm) cryogels were synthesized by using cryocopolymerization technique at sub-zero temperatures, and covalently functionalized with peroxidase enzyme by EDC/NHS chemistry. Characterization of the cryogels was carried out by FTIR, SEM, and EDX analysis. Maximum peroxidase loading onto poly(AAm) cryogel was found to be as 127.30 mg/g cryogel. Kinetic parameters of free and immobilized peroxidases were also investigated along with the stability tests. Finally, phenolic compounds removal efficiency of the peroxidase immobilized poly(AAm) cryogel was studied towards model phenolics such as phenol, bisphenol A, guaiacol, pyrogallol, and catechol; and very high phenolic removal efficiency was recorded.
Collapse
|
17
|
de Oliveira ACF, Neves ICO, Saraiva JAM, de Carvalho MFF, Batista GA, Veríssimo LAA, Resende JVD. Capture of lysozyme on macroporous cryogels by hydrophobic affinity chromatography. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1617743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Liu C, Zhang H, Chen L, Dai B. A simplified capillary model for hydrodynamics simulation of cryogel continuous beds and particle packed beds. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Trang HK, Jiang L, Marcus RK. Grafting polymerization of glycidyl methacrylate onto capillary-channeled polymer (C-CP) fibers as a ligand binding platform: Applications in immobilized metal-ion affinity chromatography (IMAC) protein separations. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1110-1111:144-154. [DOI: 10.1016/j.jchromb.2019.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/28/2019] [Accepted: 02/11/2019] [Indexed: 01/28/2023]
|
20
|
Memic A, Colombani T, Eggermont LJ, Rezaeeyazdi M, Steingold J, Rogers ZJ, Navare KJ, Mohammed HS, Bencherif SA. Latest Advances in Cryogel Technology for Biomedical Applications. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201800114] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Adnan Memic
- Center of NanotechnologyKing Abdulaziz University Jeddah 21589 Saudi Arabia
- Center for Biomedical EngineeringDepartment of MedicineBrigham and Women's HospitalHarvard Medical School Cambridge MA 02139 USA
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
| | - Thibault Colombani
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
| | - Loek J. Eggermont
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
- Department of Tumor ImmunologyOncode Institute, Radboud Institute for Molecular Life SciencesRadboud University Medical Center Nijmegen 6500 The Netherlands
| | | | - Joseph Steingold
- Department of Pharmaceutical SciencesNortheastern University Boston MA 02115 USA
| | - Zach J. Rogers
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
| | | | | | - Sidi A. Bencherif
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
- Department of BioengineeringNortheastern University Boston MA 02115 USA
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard University Cambridge MA 02138 USA
- Sorbonne UniversityUTC CNRS UMR 7338Biomechanics and Bioengineering (BMBI)University of Technology of Compiègne Compiègne 60159 France
| |
Collapse
|
21
|
Abstract
The application of interconnected supermacroporous cryogels as support matrices for the purification, separation and immobilization of whole cells and different biological macromolecules has been well reported in literature. Cryogels have advantages over traditional gel carriers in the field of biochromatography and related biomedical applications. These matrices nearly mimic the three-dimensional structure of native tissue extracellular matrix. In addition, mechanical, osmotic and chemical stability of cryogels make them attractive polymeric materials for the construction of scaffolds in tissue engineering applications and in vitro cell culture, separation materials for many different processes such as immobilization of biomolecules, capturing of target molecules, and controlled drug delivery. The low mass transfer resistance of cryogel matrices makes them useful in chromatographic applications with the immobilization of different affinity ligands to these materials. Cryogels have been introduced as gel matrices prepared using partially frozen monomer or polymer solutions at temperature below zero. These materials can be produced with different shapes and are of interest in the therapeutic area. This review highlights the recent advances in cryogelation technologies by emphasizing their biomedical applications to supply an overview of their rising stars day to day.
Collapse
|
22
|
Şarkaya K, Bakhshpour M, Denizli A. Ag+ ions imprinted cryogels for selective removal of silver ions from aqueous solutions. SEP SCI TECHNOL 2018. [DOI: 10.1080/01496395.2018.1556300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Koray Şarkaya
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | | | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
23
|
Preparation and characterization of large-format macroporous cryogel disks for use in affinity chromatography and biotechnological applications. Anal Bioanal Chem 2018; 410:7765-7771. [PMID: 30280230 DOI: 10.1007/s00216-018-1393-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/24/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
We have prepared and evaluated larger format phage-bound epoxy-cryogel columns in order to increase the yield of bound target. Freezing thermograms showed that larger column formats (2.5-5 cm diameter) are not usable due to irregular polymerization phenomena. Preparing thin disks of 0.5 cm height with similar diameter proved to be an excellent alternative. Disks could be stacked and run in a chromatographic setup. In this way, we could increase the matrix volume, ligand-binding capacity, and finally the yield of bound target. By increasing the column volume about sevenfold, we observed a 12-fold increase of ligand density and a sevenfold increase in the yield of protein recovery in a column where phages were attached without spacer and a 10- to 34-fold increase in a spacer column, depending on the spacer used.
Collapse
|
24
|
Keçili R, Çelikoğlu U, Mil S, Ersöz A, Say R. Concanavalin A photocross-linked affinity cryogels for the purification of horseradish peroxidase. ADSORPT SCI TECHNOL 2018. [DOI: 10.1177/0263617418760637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The present study describes an easy and efficient procedure for the purification of horseradish peroxidase from horseradish roots. For this purpose, supermacroporous cryogels having Concanavalin A were prepared by photosensitive cross-linking polymerization. Horseradish peroxidase binding and elution from the prepared cryogels were carried out changing various parameters such as initial peroxidase concentration and pH. The best binding performance was obtained at pH 7.0. The maximum horseradish peroxidase binding of the cryogels was found to be 3.85 mg g−1 cryogel. Horseradish peroxidase purification from crude extract resulted in 115.1-fold. SDS-PAGE analysis and circular dichroism measurements indicated that the horseradish peroxidase purification from horseradish roots was successfully carried out.
Collapse
Affiliation(s)
- Rüstem Keçili
- Anadolu University, Department of Medical Services and Techniques, Eskisehir, Turkey
| | - Umut Çelikoğlu
- Anadolu University, Chemistry Department, Eskisehir, Turkey
| | - Sevgi Mil
- Anadolu University, Chemistry Department, Eskisehir, Turkey
| | - Arzu Ersöz
- Anadolu University, Chemistry Department, Eskisehir, Turkey; Bionkit Ltd., Eskisehir, Turkey
| | - Rıdvan Say
- Anadolu University, Chemistry Department, Eskisehir, Turkey; Bionkit Ltd., Eskisehir, Turkey
| |
Collapse
|
25
|
Hajizadeh S, Kettisen K, Gram M, Bülow L, Ye L. Composite imprinted macroporous hydrogels for haemoglobin purification from cell homogenate. J Chromatogr A 2017; 1534:22-31. [PMID: 29289339 DOI: 10.1016/j.chroma.2017.12.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 12/17/2022]
Abstract
Purification of haemoglobin (Hb) has been studied for many years due to its ability to act as an oxygen carrier and its possible use in urgent clinical treatment. In this study, different types of chromatography columns were developed for Hb purification. Two of them showed satisfactory results as affinity chromatography columns and were thus studied more extensively. The affinity adsorbents were prepared by molecular imprinting techniques. In the first case, Pickering emulsion polymerization was used to prepare affinity adsorbents based on molecular imprinting technology. The imprinted particles were immobilized via covalent bonds on the surface of cryogel, a macroporous hydrogel produced by free radical polymerization under sub-zero temperature. In the second case, the affinity sites for Hb were formed directly on an acrylamide cryogel by protein imprinting during the cryogelation. The dynamic binding capacity of the composite cryogel with the immobilized particles and the directly imprinted acrylamide cryogel was found to be 5.2 mg/g and 3.6 mg/g, respectively. The affinity columns showed high selectivity towards Hb in spite of the presence of serum albumin as well as other interfering substances in non-clarified cell homogenates. The maximum capacity in batch mode, the fluid flow and other physical and chemical properties of these columns were investigated.
Collapse
Affiliation(s)
- Solmaz Hajizadeh
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Sweden.
| | - Karin Kettisen
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Sweden
| | - Magnus Gram
- Lund University, Department of Clinical Sciences Lund, Infection Medicine, 22184, Lund, Sweden
| | - Leif Bülow
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Sweden
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Sweden
| |
Collapse
|
26
|
Fontan RDCI, Bonomo RCF, Gonçalves GRF, Minim VPR, Minim LA. Alternatives for characterizing macroporous polyacrylamide monolithic ion exchanger columns. POLYM ENG SCI 2017. [DOI: 10.1002/pen.24771] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | - Luis Antonio Minim
- Food Technology Department; Federal University of Viçosa; Viçosa MG 36570-000 Brazil
| |
Collapse
|
27
|
Synergistic thallium and iodine memory-based cryogel traps for removing thallium and iodine ions. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5628-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Gonçalves GRF, Gandolfi ORR, Santos LS, Bonomo RCF, Veloso CM, Veríssimo LAA, Fontan RDCI. Immobilization of sugars in supermacroporous cryogels for the purification of lectins by affinity chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1068-1069:71-77. [DOI: 10.1016/j.jchromb.2017.10.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/03/2017] [Accepted: 10/09/2017] [Indexed: 01/30/2023]
|
29
|
Guilherme EPX, de Oliveira JP, de Carvalho LM, Brandi IV, Santos SHS, de Carvalho GGP, Cota J, Mara Aparecida de Carvalho B. Synthesis of supermacroporous cryogel for bioreactors continuous starch hydrolysis. Electrophoresis 2017; 38:2940-2946. [DOI: 10.1002/elps.201700208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/07/2017] [Accepted: 07/25/2017] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | - Igor Viana Brandi
- Institute of Agricultural Sciences; Federal University of Minas Gerais; Montes Claros MG Brazil
| | | | | | - Junio Cota
- Institute of Agricultural Sciences; Federal University of Minas Gerais; Montes Claros MG Brazil
| | | |
Collapse
|
30
|
Noppe W, Deckmyn H. Development and screening of epoxy-spacer-phage cryogels for affinity chromatography: Enhancing the binding capacity. J Sep Sci 2017; 40:2575-2583. [DOI: 10.1002/jssc.201700247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Wim Noppe
- IRF Life Sciences; KU Leuven Campus KULAK Kortrijk; Kortrijk Belgium
| | - Hans Deckmyn
- IRF Life Sciences; KU Leuven Campus KULAK Kortrijk; Kortrijk Belgium
- Laboratory for Thrombosis Research; KU Leuven Campus KULAK Kortrijk; Kortrijk Belgium
| |
Collapse
|
31
|
Veríssimo LAA, Paganoto FS, Mol PCG, Ilhéu Fontan RDC, Minim VPR, Minim LA. Preparation of an affinity cryogel column for lysozyme purification. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1318921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - Paula Chequer Gouveia Mol
- Department of Food Engineering and Technology, UNESP- São Paulo State University, São José do Rio Preto, SP, Brazil
| | | | | | - Luis Antonio Minim
- Department of Food Technology, Federal University of Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
32
|
Göktürk I, Perçin I, Denizli A. Catalase purification from rat liver with iron-chelated poly(hydroxyethyl methacrylate-N-methacryloyl-(l)-glutamic acid) cryogel discs. Prep Biochem Biotechnol 2017; 46:602-9. [PMID: 26460882 DOI: 10.1080/10826068.2015.1085400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, iron-chelated poly(hydroxyethyl methacrylate-N-methacryloyl-(l)-glutamic acid) (PHEMAGA/Fe(3+)) cryogel discs were prepared. The PHEMAGA/Fe(3+) cryogel discs were characterized by elemental analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, swelling tests, and surface area measurements. The PHEMAGA/Fe(3+) cryogel discs had large pores ranging from 10 to 100 µm with a swelling degree of 9.36 g H2O/g cryogel. Effects of pH, temperature, initial catalase concentration, and flow rate on adsorption capacity of the PHEMAGA/Fe(3+) cryogel discs were investigated. Maximum catalase adsorption capacity (62.6 mg/g) was obtained at pH 7.0, 25°C, and 3 mg/ml initial catalase concentration. The PHEMAGA/Fe(3+) cryogel discs were also tested for the purification of catalase from rat liver. After tissue homogenization, purification of catalase was performed using the PHEMAGA/Fe(3+) cryogel discs and catalase was obtained with a yield of 54.34 and 16.67 purification fold.
Collapse
Affiliation(s)
- Ilgım Göktürk
- a Biochemistry Division, Department of Chemistry , Hacettepe University , Beytepe , Ankara , Turkey.,b Nanotechnology and Nanomedicine Division , Institute of Science, Hacettepe University , Beytepe , Ankara , Turkey
| | - Işık Perçin
- c Molecular Biology Division, Department of Biology , Hacettepe University , Beytepe , Ankara , Turkey
| | - Adil Denizli
- a Biochemistry Division, Department of Chemistry , Hacettepe University , Beytepe , Ankara , Turkey
| |
Collapse
|
33
|
Development of supermacroporous monolithic adsorbents for purifying lectins by affinity with sugars. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1033-1034:406-412. [DOI: 10.1016/j.jchromb.2016.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/05/2016] [Accepted: 09/14/2016] [Indexed: 10/21/2022]
|
34
|
Sahiner N, Demirci S. In situpreparation of polyaniline within neutral, anionic, and cationic superporous cryogel networks as conductive, semi-interpenetrating polymer network cryogel composite systems. J Appl Polym Sci 2016. [DOI: 10.1002/app.44137] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Nurettin Sahiner
- Department of Chemistry, Faculty of Science and Arts; Canakkale Onsekiz Mart University, Terzioglu Campus; 17100 Canakkale Turkey
- Nanoscience and Technology Research and Application Center; Canakkale Onsekiz Mart University, Terzioglu Campus; 17100 Canakkale Turkey
| | - Sahin Demirci
- Department of Chemistry, Faculty of Science and Arts; Canakkale Onsekiz Mart University, Terzioglu Campus; 17100 Canakkale Turkey
- Nanoscience and Technology Research and Application Center; Canakkale Onsekiz Mart University, Terzioglu Campus; 17100 Canakkale Turkey
| |
Collapse
|
35
|
Conducting semi-interpenetrating polymeric composites via the preparation of poly(aniline), poly(thiophene), and poly(pyrrole) polymers within superporous poly(acrylic acid) cryogels. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Andaç M, Galaev IY, Denizli A. Affinity based and molecularly imprinted cryogels: Applications in biomacromolecule purification. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1021:69-80. [DOI: 10.1016/j.jchromb.2015.09.034] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022]
|
37
|
von der Ehe C, Buś T, Weber C, Stumpf S, Bellstedt P, Hartlieb M, Schubert US, Gottschaldt M. Glycopolymer-Functionalized Cryogels as Catch and Release Devices for the Pre-Enrichment of Pathogens. ACS Macro Lett 2016; 5:326-331. [PMID: 35614729 DOI: 10.1021/acsmacrolett.5b00856] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A highly porous cryogel is prepared and subsequently functionalized with an atom transfer radical polymerization (ATRP) initiator at the surface. Two new glycomonomers are introduced, which possess deprotected mannose as well as glucose moieties. These are copolymerized with N-isopropylacrylamide (NiPAm) from the cryogel surface, providing a highly hydrophilic porous material, which is characterized by SEM, FT-IR spectroscopy, and NMR spectroscopy. This functionalized support can be applied for affinity chromatography of whole cells owing to the high pore space and diameter. Such an application is exemplified by investigating the ability to capture Escherichia coli bacteria, revealing selective binding interactions of the bacteria with the mannose glycopolymer-functionalized cryogel surface. Thus, the presented glycopolymer-cryogel represents a promising material for affinity chromatography or enrichment of cells.
Collapse
Affiliation(s)
- Christian von der Ehe
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Dutch Polymer Institute (DPI), John F. Kennedylaan 2, 5612 AB Eindhoven, The Netherlands
| | - Tanja Buś
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Christine Weber
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Steffi Stumpf
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Peter Bellstedt
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Matthias Hartlieb
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Dutch Polymer Institute (DPI), John F. Kennedylaan 2, 5612 AB Eindhoven, The Netherlands
| | - Michael Gottschaldt
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
38
|
Alkan H, Cömert ŞC, Gürbüz F, Doğru M, Odabaşı M. Cu2+-attached pumice particles embedded composite cryogels for protein purification. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:90-97. [DOI: 10.3109/21691401.2015.1129627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Hüseyin Alkan
- Department of Biochemistry, Faculty of Pharmacy, Dicle University, Diyarbakir, Turkey
| | - Şeyda Ceylan Cömert
- Department of Chemistry, Biochemistry Division, Aksaray University, Aksaray, Turkey
| | - Fatma Gürbüz
- Environmental Department, Faculty of Engineering, Aksaray University, Aksaray, Turkey
| | - Mehmet Doğru
- Department of Science Teaching, Faculty of Education, Dicle University, Diyarbakir, Turkey
| | - Mehmet Odabaşı
- Department of Chemistry, Biochemistry Division, Aksaray University, Aksaray, Turkey
| |
Collapse
|
39
|
Cankara S, Özkütük EB, Öztürk Ö, Ersöz A, Say R. Biopolymer based ion imprinting cryogel traps for the removal of Tl(I). SEP SCI TECHNOL 2015. [DOI: 10.1080/01496395.2015.1105265] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
HSA immobilized novel polymeric matrix as an alternative sorbent in hemoperfusion columns for bilirubin removal. REACT FUNCT POLYM 2015. [DOI: 10.1016/j.reactfunctpolym.2015.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Çulha S, Armutcu C, Uzun L, Şenel S, Denizli A. Synthesis of l-lysine imprinted cryogels for immunoglobulin G adsorption. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 52:315-24. [DOI: 10.1016/j.msec.2015.03.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 01/25/2015] [Accepted: 03/23/2015] [Indexed: 11/24/2022]
|
42
|
Megaporous poly(hydroxy ethylmethacrylate) based poly(glycidylmethacrylate-N-methacryloly-(l)-tryptophan) embedded composite cryogel. Colloids Surf B Biointerfaces 2015; 130:61-8. [DOI: 10.1016/j.colsurfb.2015.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/23/2022]
|
43
|
One-pot preparation of a sulfamethoxazole functionalized affinity monolithic column for selective isolation and purification of trypsin. J Chromatogr A 2015; 1400:47-53. [DOI: 10.1016/j.chroma.2015.04.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/08/2015] [Accepted: 04/22/2015] [Indexed: 12/16/2022]
|
44
|
Júnior WFDS, Cano R, Totola AH, Carvalho LMD, Cerri MO, Coimbra JSDR, Carvalho GGPD, Carvalho BMAD. Adsorption of immunoglobulin Y in supermacroporous continuous cryogel with immobilized Cu2+ ions. J Chromatogr A 2015; 1395:16-22. [DOI: 10.1016/j.chroma.2015.03.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 02/01/2023]
|
45
|
Baydemir G, Andaç M, Perçin I, Derazshamshir A, Denizli A. Molecularly imprinted composite cryogels for hemoglobin depletion from human blood. J Mol Recognit 2015; 27:528-36. [PMID: 25042707 DOI: 10.1002/jmr.2376] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/12/2014] [Accepted: 03/20/2014] [Indexed: 11/06/2022]
Abstract
A molecularly imprinted composite cryogel (MICC) was prepared for depletion of hemoglobin from human blood prior to use in proteome applications. Poly(hydroxyethyl methacrylate) based MICC was prepared with high gel fraction yields up to 90%, and characterized by Fourier transform infrared spectrophotometer, scanning electron microscopy, swelling studies, flow dynamics and surface area measurements. MICC exhibited a high binding capacity and selectivity for hemoglobin in the presence of immunoglobulin G, albumin and myoglobin. MICC column was successfully applied in fast protein liquid chromatography system for selective depletion of hemoglobin for human blood. The depletion ratio was highly increased by embedding microspheres into the cryogel (93.2%). Finally, MICC can be reused many times with no apparent decrease in hemoglobin adsorption capacity.
Collapse
Affiliation(s)
- Gözde Baydemir
- Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara, Turkey
| | | | | | | | | |
Collapse
|
46
|
Uygun DA, Akduman B, Uygun M, Akgöl S, Denizli A. Immobilization of alcohol dehydrogenase onto metal-chelated cryogels. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:446-57. [PMID: 25715869 DOI: 10.1080/09205063.2015.1023241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this presented work, poly(HEMA-GMA) cryogel was synthesized and used for the immobilization of alcohol dehydrogenase. For this, synthesized cryogels were functionalized with iminodiacetic acid and chelated with Zn(2+). This metal-chelated cryogels were used for the alcohol dehydrogenase immobilization and their kinetic parameters were compared with free enzyme. Optimum pH was found to be 7.0 for both immobilized and free enzyme preparations, while temperature optima for free and immobilized alcohol dehydrogenase was 25 °C. Kinetic constants such as K(m), V(max), and k(cat) for free and immobilized form of alcohol dehydrogenase were also investigated. k(cat) value of free enzyme was found to be 3743.9 min(-1), while k(cat) for immobilized enzyme was 3165.7 min(-1). Thermal stability of the free and immobilized alcohol dehydrogenase was studied and stability of the immobilized enzyme was found to be higher than free form. Also, operational stability and reusability profile of the immobilized alcohol dehydrogenase were investigated. Finally, storage stability of the free and immobilized alcohol dehydrogenase was studied, and at the end of the 60 days storage, it was demonstrated that, immobilized alcohol dehydrogenase was exhibited high stability than that of free enzyme.
Collapse
|
47
|
Singh NK, DSouza RN, Bibi NS, Fernández-Lahore M. Direct capture of His₆-tagged proteins using megaporous cryogels developed for metal-ion affinity chromatography. Methods Mol Biol 2015; 1286:201-12. [PMID: 25749956 DOI: 10.1007/978-1-4939-2447-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Immobilized metal-ion affinity chromatography (IMAC) has been developed for the rapid isolation and purification of recombinant proteins. In this chapter, megaporous cryogels were synthesized having metal-ion affinity functionality, and their adsorptive properties were investigated. These cryogels have large pore sizes ranging from 10 to 100 μm with corresponding porosities between 80 and 90%. The synthesized IMAC-cryogel had a total ligand density of 770 μmol/g. Twelve milligram of a His6-tagged protein (NAD(P)H-dependent 2-cyclohexen-1-one-reductase) can be purified from a crude cell extract per gram of IMAC-cryogels. The protein binding capacity is increased with higher degrees of grafting, although a slight decrease in column efficiency may result. This chapter provides methodologies for a rapid single-step purification of recombinant His6-tagged proteins from crude cell extracts using IMAC-cryogels.
Collapse
Affiliation(s)
- Naveen Kumar Singh
- Downstream Bioprocessing Laboratory, School of Engineering and Science, Jacobs University, Campus Ring 1, Bremen, 28759, Germany
| | | | | | | |
Collapse
|
48
|
Tao SP, Zheng J, Sun Y. Grafting zwitterionic polymer onto cryogel surface enhances protein retention in steric exclusion chromatography on cryogel monolith. J Chromatogr A 2015; 1389:104-11. [PMID: 25757821 DOI: 10.1016/j.chroma.2015.02.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/16/2015] [Accepted: 02/16/2015] [Indexed: 11/25/2022]
Abstract
Cryogel monoliths with interconnected macropores (10-100μm) and hydrophilic surfaces can be employed as chromatography media for protein retention in steric exclusion chromatography (SXC). SXC is based on the principle that the exclusion of polyethylene glycol (PEG) on both a hydrophilic chromatography surface and a protein favors their association, leading to the protein retention on the chromatography surface. Elution of the retained protein can be achieved by reducing PEG concentration. In this work, the surface of polyacrylamide-based cryogel monolith was modified by grafting zwitterionic poly(carboxybetaine methacrylate) (pCBMA), leading the increase in the surface hydrophilicity. Observation by scanning electron microscopy revealed the presence of the grafted pCBMA chain clusters on the cryogel surface, but pCBMA grafting did not result in the changes of the physical properties of the monolith column, and the columns maintained good recyclability in SXC. The effect of the surface grafting on the SXC behavior of γ-globulin was investigated in a wide flow rate range (0.6-12cm/min). It was found that the dynamic retention capacity increased 1.4-1.8 times by the zwitterionic polymer grafting in the flow rate range of 1.5-12cm/min. The mechanism of enhanced protein retention on the zwitterionic polymer-grafted surface was proposed. The research proved that zwitterionic polymer modification was promising for the development of new materials for SXC applications.
Collapse
Affiliation(s)
- Shi-Peng Tao
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, United States
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
49
|
Dogru O, Abdurrahmanoglu S, Kayaman-Apohan N. Preparation and characterization of modified nanosilica/PNIPAm hybrid cryogels. Polym Bull (Berl) 2015. [DOI: 10.1007/s00289-015-1319-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Chromatographic adsorption of serum albumin and antibody proteins in cryogels with benzyl-quaternary amine ligands. J Chromatogr A 2015; 1381:173-83. [DOI: 10.1016/j.chroma.2014.11.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/05/2014] [Accepted: 11/28/2014] [Indexed: 11/24/2022]
|