Cruz-Rubio JM, Mueller M, Viernstein H, Loeppert R, Praznik W. Prebiotic potential and chemical characterization of the poly and oligosaccharides present in the mucilage of Opuntia ficus-indica and Opuntia joconostle.
Food Chem 2021;
362:130167. [PMID:
34087714 DOI:
10.1016/j.foodchem.2021.130167]
[Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/19/2021] [Accepted: 05/18/2021] [Indexed: 02/01/2023]
Abstract
The mucilage extracted from the convection-dried cladodes of O. ficus-indica and O. joconostle, two species of economic importance, delivered three fractions after methanol precipitation. Two were composed of high molar mass polysaccharides, and one included water-soluble mono-, di-, and oligosaccharides. The large polysaccharides have a molar mass range of 4.0 × 103 to 8.0 × 105 g·mol-1 and are consistently composed of galactose, arabinose, xylose, and rhamnose; however, the content of galacturonic acid was different between both fractions and species. Their fermentability by selected probiotics was relatively low, 11-27 % compared to glucose, and decreased with increasing levels of galacturonic acid in the molecules. In the third fraction, previously unreported oligosaccharides were found. These include simple- and complex-structured galactooligosaccharides with arabinosyl-, xylosyl- and galacturonosyl acid residues. Their fermentability by prebiotic species can be ascribed more to their structural characteristics and monosaccharide composition than their molecular dimensions.
Collapse