1
|
Glasmacher S, Gertsch J. Characterization of pepcan-23 as pro-peptide of RVD-hemopressin (pepcan-12) and stability of hemopressins in mice. Adv Biol Regul 2021; 80:100808. [PMID: 33799079 DOI: 10.1016/j.jbior.2021.100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022]
Abstract
Hemopressins ((x)-PVNFKLLSH) or peptide endocannabinoids (pepcans) can bind to cannabinoid receptors. RVD-hemopressin (pepcan-12) was shown to act as endogenous allosteric modulator of cannabinoid receptors, with opposite effects on CB1 and CB2, respectively. Moreover, the N-terminally elongated pepcan-23 was detected in different tissues and was postulated to be the pro-peptide of RVD-hemopressin. Currently, data about the pharmacokinetics, tissue distribution and stability of hemopressin-type peptides are lacking. Here we investigated the secondary structure and physiological role of pepcan-23 as precursor of RVD-hemopressin. We assessed the metabolic stability of these peptides, including hemopressin. Using LC-ESI-MS/MS, pepcan-23 was measured in mouse tissues and human whole blood (~50 pmol/mL) and in plasma was the most stable endogenous peptide containing the hemopressin sequence. Using peptide spiked human whole blood, mouse adrenal gland and liver homogenates demonstrate that pepcan-23 acts as endogenous pro-peptide of RVD-hemopressin. Furthermore, administered pepcan-23 converted to RVD-hemopressin in mice. In circular dichroism spectroscopy, pepcan-23 showed a helix-unordered-helix structure and efficiently formed complexes with divalent metal ions, in particular Cu(II) and Ni(II). Hemopressin and RVD-hemopressin were not bioavailable to the brain and showed poor stability in plasma, in agreement with their overall poor biodistribution. Acute hemopressin administration (100 mg/kg) did not modulate endogenous RVD-hemopressin/pepcan-23 levels or influence the endocannabinoid lipidome but increased 1-stearoyl-2-arachidonoyl-sn-glycerol. Overall, we show that pepcan-23 is a biological pro-peptide of RVD-hemopressin and divalent metal ions may regulate this process. Given the lack of metabolic stability of hemopressins, administration of pepcan-23 as pro-peptide may be suitable in pharmacological experiments as it is converted to RVD-hemopressin in vivo.
Collapse
Affiliation(s)
- Sandra Glasmacher
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland.
| |
Collapse
|
2
|
Köhnlein K, Urban N, Guerrero-Gómez D, Steinbrenner H, Urbánek P, Priebs J, Koch P, Kaether C, Miranda-Vizuete A, Klotz LO. A Caenorhabditis elegans ortholog of human selenium-binding protein 1 is a pro-aging factor protecting against selenite toxicity. Redox Biol 2019; 28:101323. [PMID: 31557719 PMCID: PMC6812014 DOI: 10.1016/j.redox.2019.101323] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/30/2019] [Accepted: 09/07/2019] [Indexed: 12/21/2022] Open
Abstract
Human selenium-binding protein 1 (SELENBP1) was originally identified as a protein binding selenium, most likely as selenite. SELENBP1 is associated with cellular redox and thiol homeostasis in several respects, including its established role as a methanethiol oxidase that is involved in degradation of methanethiol, a methionine catabolite, generating hydrogen sulfide (H2S) and hydrogen peroxide (H2O2). As both H2S and reactive oxygen species (such as H2O2) are major regulators of Caenorhabditis elegans lifespan and stress resistance, we hypothesized that a SELENBP1 ortholog in C. elegans would likely be involved in regulating these aspects. Here we characterize Y37A1B.5, a putative selenium-binding protein 1 ortholog in C. elegans with 52% primary structure identity to human SELENBP1. While conferring resistance to toxic concentrations of selenite, Y37A1B.5 also attenuates resistance to oxidative stress and lowers C. elegans lifespan: knockdown of Y37A1B.5 using RNA interference resulted in an approx. 10% increase of C. elegans lifespan and an enhanced resistance against the redox cycler paraquat, as well as enhanced motility. Analyses of transgenic reporter strains suggest hypodermal expression and cytoplasmic localization of Y37A1B.5, whose expression decreases with worm age. We identify the transcriptional coregulator MDT-15 and transcription factor EGL-27 as regulators of Y37A1B.5 levels and show that the lifespan extending effect elicited by downregulation of Y37A1B.5 is independent of known MDT-15 interacting factors, such as DAF-16 and NHR-49. In summary, Y37A1B.5 is an ortholog of SELENBP1 that shortens C. elegans lifespan and lowers resistance against oxidative stress, while allowing for a better survival under toxic selenite concentrations.
Collapse
Affiliation(s)
- Karl Köhnlein
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich-Schiller-Universität Jena, Jena, Germany; Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Nadine Urban
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - David Guerrero-Gómez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Holger Steinbrenner
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Pavel Urbánek
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Josephine Priebs
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Philipp Koch
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | | | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Lars-Oliver Klotz
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich-Schiller-Universität Jena, Jena, Germany.
| |
Collapse
|
3
|
Metal Binding Properties of the N-Terminus of the Functional Amyloid Orb2. Biomolecules 2017; 7:biom7030057. [PMID: 28763009 PMCID: PMC5618238 DOI: 10.3390/biom7030057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/14/2017] [Accepted: 07/21/2017] [Indexed: 12/18/2022] Open
Abstract
The cytoplasmic polyadenylation element binding protein (CPEB) homologue Orb2 is a functional amyloid that plays a key regulatory role for long-term memory in Drosophila. Orb2 has a glutamine, histidine-rich (Q/H-rich) domain that resembles the Q/H-rich, metal binding domain of the Hpn-like protein (Hpnl) found in Helicobacter pylori. In the present study, we used chromatography and isothermal titration calorimetry (ITC) to show that the Q/H-rich domain of Orb2 binds Ni2+ and other transition metals ions with μM affinity. Using site directed mutagenesis, we show that several histidine residues are important for binding. In particular, the H61Y mutation, which was previously shown to affect the aggregation of Orb2 in cell culture, completely inhibited metal binding of Orb2. Finally, we used thioflavin T fluorescence and electron microscopy images to show that Ni2+ binding induces the aggregating of Orb2 into structures that are distinct from the amyloid fibrils formed in the absence of Ni2+. These data suggest that transition metal binding might be important for the function of Orb2 and potentially long-term memory in Drosophila.
Collapse
|
4
|
Kikot P, Polat A, Achilli E, Fernandez Lahore M, Grasselli M. Immobilized palladium(II) ion affinity chromatography for recovery of recombinant proteins with peptide tags containing histidine and cysteine. J Mol Recognit 2015; 27:659-68. [PMID: 25277090 DOI: 10.1002/jmr.2389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/28/2014] [Accepted: 04/28/2014] [Indexed: 11/10/2022]
Abstract
Fusion of peptide-based tags to recombinant proteins is currently one of the most used tools for protein production. Also, immobilized metal ion affinity chromatography (IMAC) has a huge application in protein purification, especially in research labs. The combination of expression systems of recombinant tagged proteins with this robust chromatographic system has become an efficient and rapid tool to produce milligram-range amounts of proteins. IMAC-Ni(II) columns have become the natural partners of 6xHis-tagged proteins. The Ni(II) ion is considered as the best compromise of selectivity and affinity for purification of a recombinant His-tagged protein. The palladium(II) ion is also able to bind to side chains of amino acids and form ternary complexes with iminodiacetic acid and free amino acids and other sulfur-containing molecules. In this work, we evaluated two different cysteine- and histidine-containing six amino acid tags linked to the N-terminal group of green fluorescent protein (GFP) and studied the adsorption and elution conditions using novel eluents. Both cysteine-containing tagged GFPs were able to bind to IMAC-Pd(II) matrices and eluted successfully using a low concentration of thiourea solution. The IMAC-Ni(II) system reaches less than 20% recovery of the cysteine-containing tagged GFP from a crude homogenate of recombinant Escherichia coli, meanwhile the IMAC-Pd(II) yields a recovery of 45% with a purification factor of 13.
Collapse
Affiliation(s)
- Pamela Kikot
- Laboratorio de Materiales Biotecnológicos (LaMaBio), Universidad Nacional de Quilmes-IMBICE (CONICET), Roque Sáenz Peña 352, B1876BXD, Bernal, Argentina
| | | | | | | | | |
Collapse
|
5
|
Stieren ES, El Ayadi A, Xiao Y, Siller E, Landsverk ML, Oberhauser AF, Barral JM, Boehning D. Ubiquilin-1 is a molecular chaperone for the amyloid precursor protein. J Biol Chem 2011; 286:35689-35698. [PMID: 21852239 DOI: 10.1074/jbc.m111.243147] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer disease (AD) is associated with extracellular deposition of proteolytic fragments of amyloid precursor protein (APP). Although mutations in APP and proteases that mediate its processing are known to result in familial, early onset forms of AD, the mechanisms underlying the more common sporadic, yet genetically complex forms of the disease are still unclear. Four single-nucleotide polymorphisms within the ubiquilin-1 gene have been shown to be genetically associated with AD, implicating its gene product in the pathogenesis of late onset AD. However, genetic linkage between ubiquilin-1 and AD has not been confirmed in studies examining different populations. Here we show that regardless of genotype, ubiquilin-1 protein levels are significantly decreased in late onset AD patient brains, suggesting that diminished ubiquilin function may be a common denominator in AD progression. Our interrogation of putative ubiquilin-1 activities based on sequence similarities to proteins involved in cellular quality control showed that ubiquilin-1 can be biochemically defined as a bona fide molecular chaperone and that this activity is capable of preventing the aggregation of amyloid precursor protein both in vitro and in live neurons. Furthermore, we show that reduced activity of ubiquilin-1 results in augmented production of pathogenic amyloid precursor protein fragments as well as increased neuronal death. Our results support the notion that ubiquilin-1 chaperone activity is necessary to regulate the production of APP and its fragments and that diminished ubiquilin-1 levels may contribute to AD pathogenesis.
Collapse
Affiliation(s)
- Emily S Stieren
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Amina El Ayadi
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Yao Xiao
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Efraín Siller
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Megan L Landsverk
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Andres F Oberhauser
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555
| | - José M Barral
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas 77555.
| | - Darren Boehning
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas 77555.
| |
Collapse
|
6
|
Mooney JT, Fredericks D, Hearn MTW. Use of phage display methods to identify heptapeptide sequences for use as affinity purification 'tags' with novel chelating ligands in immobilized metal ion affinity chromatography. J Chromatogr A 2010; 1218:92-9. [PMID: 21159343 DOI: 10.1016/j.chroma.2010.10.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/22/2010] [Accepted: 10/26/2010] [Indexed: 01/30/2023]
Abstract
This study describes the screening of a peptide phage display library for amino acid sequences that bind with different affinities to a novel class of chelating ligands complexed with Ni²+ ions. These chelating ligands are based on the 1,4,7-triazacyclononane (TACN) structure and have been chosen to allow enhanced efficiency in protein capture and decreased propensity for metal ion leakage in the immobilized metal ion affinity chromatographic (IMAC) purification of recombinant proteins. Utilising high stringency screening conditions, various peptide sequences containing multiple histidine, tryptophan, and/or tyrosine residues were identified amongst the different phage peptide sequences isolated. The structures, and particularly the conserved locations of these key amino acid residues within the selected heptapeptides, form a basis to design specific peptide tags for use with these novel TACN ligands as a new mode of IMAC purification of recombinant proteins.
Collapse
Affiliation(s)
- Jane T Mooney
- ARC Special Research Centre for Green Chemistry, Building75, Monash University, Clayton, Victoria 3800, Australia
| | | | | |
Collapse
|
7
|
Grauer A, Riechers A, Ritter S, König B. Synthetic Receptors for the Differentiation of Phosphorylated Peptides with Nanomolar Affinities. Chemistry 2008; 14:8922-8927. [DOI: 10.1002/chem.200800432] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Drochioiu G, Damoc N, Przybylski M. Novel UV assay for protein determination and the characterization of copper–protein complexes by mass spectrometry. Talanta 2006; 69:556-64. [DOI: 10.1016/j.talanta.2005.10.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 10/04/2005] [Accepted: 10/25/2005] [Indexed: 11/25/2022]
|
9
|
Pekel N, Salih B, Güven O. Metal ion promoted hydrogels for bovine serum albumin adsorption: Cu(II) and Co(II) chelated poly[(N-vinylimidazole)-maleic acid]. Colloids Surf B Biointerfaces 2005; 42:89-96. [PMID: 15833659 DOI: 10.1016/j.colsurfb.2005.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2005] [Indexed: 10/25/2022]
Abstract
Poly[(N-vinylimidazole)-maleic acid] (poly(VIm-MA)), copolymeric hydrogels were prepared by gamma-irradiating ternary mixtures of N-vinylimidazole-maleic acid-water in a (60)Co-gamma source. Cu(II) and Co(II) ions were chelated within the gels at pH=5.0. The maximum adsorption capacity of the gels were 3.71 mmol/g dry gel for Cu(II) and 1.25 mmol/g dry gel for Co(II) at pH=5.0. The swelling ratios of the gels were 1200% for poly(VIm-MA), 60 and 45% for Cu(II) and Co(II)-chelated poly(VIm-MA) gels at pH=5.0 in acetate buffer solution. These affinity gels with different swelling ratios for plain poly(VIm-MA), Cu(II)-, and Co(II)-chelated poly(VIm-MA), in acetate and phosphate buffers were used in the bovine serum albumin (BSA) adsorption/desorption studies in batch reactor. The maximum BSA adsorption capacities of the gels were 0.38 g/g dry gel for plain, 0.88 g/g dry gel for Cu(II)-chelated poly(VIm-MA) and 1.05 g/g dry gel for Co(II)-chelated poly(VIm-MA) gels. Adsorption capacity of BSA by the gels was reduced dramatically by increasing the ionic strength adjusted with NaCl. More than 95% of BSA were desorbed in 10 h in desorption medium containing 0.1M of EDTA for metal ion-chelated gels at pH=4.7.
Collapse
Affiliation(s)
- Nursel Pekel
- Department of Chemistry, Hacettepe University, Beytepe, 06532 Ankara, Turkey
| | | | | |
Collapse
|
10
|
Zuo R, Ornek D, Wood TK. Aluminum- and mild steel-binding peptides from phage display. Appl Microbiol Biotechnol 2005; 68:505-9. [PMID: 15703906 DOI: 10.1007/s00253-005-1922-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 01/16/2005] [Accepted: 01/17/2005] [Indexed: 10/25/2022]
Abstract
Using a phage library displaying random peptides of 12 amino acids on its surface, several peptides were found that bind to aluminum and mild steel. Like other metal-binding peptides, no obvious consensus motif has been found for these peptides. However, most of them are rich in hydroxyl-containing amino acids, serine or threonine, or contain histidine. For the aluminum-binding peptides, peptides with a higher number of hydroxyl-containing amino acids bind to the aluminum surface more tightly. For example, Val-Pro-Ser-Ser-Gly-Pro-Gln-Asp-Thr-Arg-Thr-Thr, which contains five hydroxyl-containing amino acid residues, was selected four-fold more frequently than a peptide containing only one serine, suggesting an important role for the hydroxyl-containing amino acids in the metal-peptide interaction.
Collapse
Affiliation(s)
- Rongjun Zuo
- Department of Chemical Engineering, University of Connecticut, Storrs, CT 06269-3222, USA
| | | | | |
Collapse
|
11
|
Rabiller-Baudry M, Chaufer B. Small molecular ion adsorption on proteins and DNAs revealed by separation techniques. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 797:331-45. [PMID: 14630159 DOI: 10.1016/s1570-0232(03)00488-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ion binding is a term that assumes that the ion is included in the solvation sphere characterising the biomolecule. The binding forces are not clearly stated except for electrostatic attraction; weak forces (hydrogen bonds and Van der Waals forces) are likely involved. Many publications have dealt with ion binding to proteins and the consequences over the past 10 years, but only a few studies were performed using high-performance liquid chromatography (HPLC: ion exchange, reversed phase without the well-identified immobilised metal affinity chromatography) and capillary zone electrophoresis (CZE). This review focuses on the binding of proteins and DNAs mainly to the oxyanions (phosphate, borate, citrate) and amines used as buffers for both the HPLC eluent and the background electrolyte of CZE. Such specific ion adsorption on biomolecules is evidenced by physico-chemical characteristics such as the mobility or retention volume, closely associated with the net charge, which differ from the expected or experimental data obtained under the conditions of an indifferent electrolyte. It is shown that ion binding to proteins is a key parameter in the electrostatic repulsion between the free protein and a fouled membrane in the ultrafiltration separation of a protein mixture.
Collapse
Affiliation(s)
- Murielle Rabiller-Baudry
- Laboratoire des Procédés de Séparation, Université Rennes 1, UC INRA, Campus de Beaulieu, Bat. 10A, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France.
| | | |
Collapse
|
12
|
Ma K, Wang K. Binding of copper(II) ions to the polyproline II helices of PEVK modules of the giant elastic protein titin as revealed by ESI-MS, CD, and NMR. Biopolymers 2004; 70:297-309. [PMID: 14579303 DOI: 10.1002/bip.10477] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Titin, a family of giant elastic proteins, constitutes an elastic sarcomere matrix in striated muscle. In the I-band region of the sarcomere, the titin PEVK segment acts as a molecular spring to generate elasticity as well as sites of adhesion with parallel thin filaments. Previously, we reported that PEVK consists of tandem repeats of 28 residue modules and that the "polyproline II-coil" motif is the fundamental conformational motif of the PEVK module. In order to characterize the factors that may affect and alter the PPII-coil conformational motifs, we have initiated a systematic study of the interaction with divalent cations (Cu2+, Ca2+, Zn2+, and Ni2+) and a conformational profile of PEVK peptides (a representative 28-mer peptide PR: PEPPKEVVPEKKAPVAPPKKPEVPPVKV and its subfragments PR1: kvPEPPKEVVPE, PR2: VPEKKAPVAPPK, PR3: KPEVPPVKV). UV-Vis absorption difference spectra and CD spectra showed that Cu2+ bound to PR1 with high affinity (20 microM), while its binding to PR2 and PR3 as well as the binding of other cations to all four peptides were of lower affinity (>100 microM). Conformational studies by CD revealed that Cu2+ binding to PR1 resulted in a polyproline II to turn transition up to a 1:2 PR1/Cu2+ ratio and a coil to turn transition at higher Cu2+ concentration. ESI-MS provided the stoichiometry of PEVK peptide-Cu2+ complexes at both low and high ion strength, confirming the specific high affinity binding of Cu2+ to PR1 and PR. Furthermore, NMR and ESI-MS/MS fragmentation analysis elucidated the binding sites of the PEVK peptide-Cu2+ complexes at (-2)KVPE2, 8VPE10, 13APV15, and 22EVP24. A potential application of Cu2+ binding in peptide sequencing by mass spectrometry was also revealed. We conclude that Cu2+ binds and bends PEVK peptides to a beta-turn-like structure at specific sites. The specific targeting of Cu2+ towards PPII is likely to be of significant value in elucidating the roles of PPII in titin elasticity as well as in interactions of proline-rich proteins.
Collapse
Affiliation(s)
- Kan Ma
- Muscle Proteomics and Nanotechnology Section, Laboratory of Muscle Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
13
|
Abstract
It is difficult to over-state the importance of Zn(II) in biology. It is a ubiquitous essential metal ion and plays a role in catalysis, protein structure and perhaps as a signal molecule, in organisms from all three kingdoms. Of necessity, organisms have evolved to optimise the intracellular availability of Zn(II) despite the extracellular milieu. To this end, prokaryotes contain a range of Zn(II) import, Zn(II) export and/or binding proteins, some of which utilise either ATP or the chemiosmotic potential to drive the movement of Zn(II) across the cytosolic membrane, together with proteins that facilitate the diffusion of this ion across either the outer or inner membranes of prokaryotes. This review seeks to give an overview of the systems currently classified as altering Zn(II) availability in prokaryotes.
Collapse
Affiliation(s)
- Dayle K Blencowe
- Cardiff School of Biosciences (2), Cardiff University, Museum Avenue, P.O. Box 911, Cardiff CF10 3US, Wales, UK
| | | |
Collapse
|
14
|
Mineo P, Vitalini D, La Mendola D, Rizzarelli E, Scamporrino E, Vecchio G. Electrospray mass spectrometric studies of L-carnosine (beta-alanyl-L-histidine) complexes with copper(II) or zinc ions in aqueous solution. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2002; 16:722-729. [PMID: 11921252 DOI: 10.1002/rcm.633] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) was used for the speciation of supramolecular assemblies formed between equimolar amounts of carnosine and copper or zinc ions in dilute aqueous solutions. In the case of pure carnosine and carnosine/copper systems, the effect of pH changes, in the range 2-9, on the complexes surviving in solution was also explored. ESI data, besides supporting previous reported results on the formation of dimeric carnosine/copper and carnosine/zinc complexes, allowed a more complete speciation of the examined systems, bringing to light the existence of bis-complex species and, in the zinc case, the formation of oligomeric species. The data obtained for the systems investigated show that ESI-MS is not only a reliable and fast technique for the analysis of the metal/ligand systems, but also an interesting tool to obtain stoichiometric information on metal complexes formed in very low concentration solutions.
Collapse
Affiliation(s)
- P Mineo
- Istituto per la Chimica e la Tecnologia dei Materiali Polimerci, CNR, Viale A. Doria 6, 95125 Catania, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Whittal RM, Ball HL, Cohen FE, Burlingame AL, Prusiner SB, Baldwin MA. Copper binding to octarepeat peptides of the prion protein monitored by mass spectrometry. Protein Sci 2000; 9:332-43. [PMID: 10716185 PMCID: PMC2144551 DOI: 10.1110/ps.9.2.332] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) was used to measure the binding of Cu2+ ions to synthetic peptides corresponding to sections of the sequence of the mature prion protein (PrP). ESI-MS demonstrates that Cu2+ is unique among divalent metal ions in binding to PrP and defines the location of the major Cu2+ binding site as the octarepeat region in the N-terminal domain, containing multiple copies of the repeat ProHisGlyGlyGlyTrpGlyGln. The stoichiometries of the complexes measured directly by ESI-MS are pH dependent: a peptide containing four octarepeats chelates two Cu2+ ions at pH 6 but four at pH 7.4. At the higher pH, the binding of multiple Cu2+ ions occurs with a high degree of cooperativity for peptides C-terminally extended to incorporate a fifth histidine. Dissociation constants for each Cu2+ ion binding to the octarepeat peptides, reported here for the first time, are mostly in the low micromolar range; for the addition of the third and fourth Cu2+ ions to the extended peptides at pH 7.4, K(D)'s are <100 nM. N-terminal acetylation of the peptides caused some reduction in the stoichiometry of binding at both pH's. Cu2+ also binds to a peptide corresponding to the extreme N-terminus of PrP that precedes the octarepeats, arguing that this region of the sequence may also make a contribution to the Cu2+ complexation. Although the structure of the four-octarepeat peptide is not affected by pH changes in the absence of Cu2+, as judged by circular dichroism, Cu2+ binding induces a modest change at pH 6 and a major structural perturbation at pH 7.4. It is possible that PrP functions as a Cu2+ transporter by binding Cu2+ ions from the extracellular medium under physiologic conditions and then releasing some or all of this metal upon exposure to acidic pH in endosomes or secondary lysosomes.
Collapse
Affiliation(s)
- R M Whittal
- Department of Pharmaceutical Chemistry, University of California San Francisco, 94143-0446, USA
| | | | | | | | | | | |
Collapse
|
16
|
Chapter 12 Electrospray ionization mass spectrometry. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0166-526x(00)80022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
17
|
Qian X, Zhou W, Khaledi MG, Tomer KB. Direct analysis of the products of sequential cleavages of peptides and proteins affinity-bound to immobilized metal ion beads by matrix-assisted laser desorption/ionization mass spectrometry. Anal Biochem 1999; 274:174-80. [PMID: 10527513 DOI: 10.1006/abio.1999.4268] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Consecutive enzymatic reactions on analytes affinity-bound to immobilized metal ion beads with subsequent direct analysis of the products by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry have been used for detecting protein synthesis errors occuring at the N-terminus. The usefulness of this method was demonstrated by analyzing two commercially available recombinant HIV proteins with affinity tags at the N-terminus, and histatin-5, a peptide with multiple histidine residues. The high specificity, sensitivity, and speed of analysis make this method especially useful in obtaining N-terminal sequencing information of histidine-tagged recombinant proteins.
Collapse
Affiliation(s)
- X Qian
- Laboratory of Structure Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | | | | | | |
Collapse
|
18
|
Herrmann L, Schwan D, Garner R, Mobley HL, Haas R, Schäfer KP, Melchers K. Helicobacter pylori cadA encodes an essential Cd(II)-Zn(II)-Co(II) resistance factor influencing urease activity. Mol Microbiol 1999; 33:524-36. [PMID: 10417643 DOI: 10.1046/j.1365-2958.1999.01496.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inactivation of Helicobacter pylori cadA, encoding a putative transition metal ATPase, was only possible in one of four natural competent H. pylori strains, designated 69A. All tested cadA mutants showed increased growth sensitivity to Cd(II) and Zn(II). In addition, some of them showed both reduced 63Ni accumulation during growth and no or impaired urease activity, which was not due to lack of urease enzyme subunits. Gene complementation experiments with plasmid (pY178)-derived H. pylori cadA failed to correct the deficiencies, whereas resistance to Cd(II) and Zn(II) was restored. Moreover, pY178 conferred increased Co(II) resistance to both the cadA mutants and the wild-type strain 69A. Heterologous expression of H. pylori cadA in an Escherichia coli zntA mutant resulted in an elevated resistance to Cd(II) and Zn(II). Expression of cadA in E. coli SE5000 harbouring H. pylori nixA, which encodes a divalent cation importer along with the H. pylori urease gene cluster, led to about a threefold increase in urease activity compared with E. coli control cells lacking the H. pylori cadA gene. These results suggest that H. pylori CadA is an essential resistance pump with ion specificity towards Cd(II), Zn(II) and Co(II). They also point to a possible role of H. pylori CadA in high-level activity of H. pylori urease, an enzyme sensitive to a variety of metal ions.
Collapse
Affiliation(s)
- L Herrmann
- Department of Molecular Biology, Byk Gulden Pharmaceuticals, D-78462 Konstanz, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Bayle D, Wängler S, Weitzenegger T, Steinhilber W, Volz J, Przybylski M, Schäfer KP, Sachs G, Melchers K. Properties of the P-type ATPases encoded by the copAP operons of Helicobacter pylori and Helicobacter felis. J Bacteriol 1998; 180:317-29. [PMID: 9440521 PMCID: PMC106887 DOI: 10.1128/jb.180.2.317-329.1998] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/1997] [Accepted: 11/03/1997] [Indexed: 02/05/2023] Open
Abstract
The cop operons of Helicobacter pylori and Helicobacter felis were cloned by gene library screening. Both operons contain open reading frames for a P-type ion pump (CopA) with homology to Cd2+ and Cu2+ ATPases and a putative ion binding protein (CopP), the latter representing a CopZ homolog of the copYZAB operon of Enterococcus hirae. The predicted CopA ATPases contained an N-terminal GMXCXXC ion binding motif and a membrane-associated CPC sequence. A synthetic N-terminal peptide of the H. pylori CopA ATPase bound to Cu2+ specifically, and gene disruption mutagenesis of CopA resulted in an enhanced growth sensitivity of H. pylori to Cu2+ but not to other divalent cations. As determined experimentally, H. pylori CopA contains four pairs of transmembrane segments (H1 to H8), with the ATP binding and phosphorylation domains lying between H6 and H7, as found for another putative transition metal pump of H. pylori (K. Melchers, T. Weitzenegger, A. Buhmann, W. Steinhilber, G. Sachs, and K. P. Schäfer, J. Biol. Chem. 271:446-457, 1996). The corresponding transmembrane segments of the H. felis CopA pump were identified by hydrophobicity analysis and via sequence similarity. To define functional domains, similarly oriented regions of the two enzymes were examined for sequence identity. Regions with high degrees of identity included the N-terminal Cu2+ binding domain, the regions of ATP binding and phosphorylation in the energy transduction domain, and a transport domain consisting of the last six transmembrane segments with conserved cysteines in H4, H6, and H7. The data suggest that H. pylori and H. felis employ conserved mechanisms of ATPase-dependent copper resistance.
Collapse
Affiliation(s)
- D Bayle
- University of California-Los Angeles and Wadsworth Veterans Affairs Medical Center, USA
| | | | | | | | | | | | | | | | | |
Collapse
|