1
|
Wolf ESA, Vela S, Wilker J, Davis A, Robert M, Infante V, Venado RE, Voiniciuc C, Ané JM, Vermerris W. Identification of genetic and environmental factors influencing aerial root traits that support biological nitrogen fixation in sorghum. G3 (BETHESDA, MD.) 2024; 14:jkad285. [PMID: 38096484 PMCID: PMC10917507 DOI: 10.1093/g3journal/jkad285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/19/2023] [Indexed: 03/08/2024]
Abstract
Plant breeding and genetics play a major role in the adaptation of plants to meet human needs. The current requirement to make agriculture more sustainable can be partly met by a greater reliance on biological nitrogen fixation by symbiotic diazotrophic microorganisms that provide crop plants with ammonium. Select accessions of the cereal crop sorghum (Sorghum bicolor (L.) Moench) form mucilage-producing aerial roots that harbor nitrogen-fixing bacteria. Breeding programs aimed at developing sorghum varieties that support diazotrophs will benefit from a detailed understanding of the genetic and environmental factors contributing to aerial root formation. A genome-wide association study of the sorghum minicore, a collection of 242 landraces, and 30 accessions from the sorghum association panel was conducted in Florida and Wisconsin and under 2 fertilizer treatments to identify loci associated with the number of nodes with aerial roots and aerial root diameter. Sequence variation in genes encoding transcription factors that control phytohormone signaling and root system architecture showed significant associations with these traits. In addition, the location had a significant effect on the phenotypes. Concurrently, we developed F2 populations from crosses between bioenergy sorghums and a landrace that produced extensive aerial roots to evaluate the mode of inheritance of the loci identified by the genome-wide association study. Furthermore, the mucilage collected from aerial roots contained polysaccharides rich in galactose, arabinose, and fucose, whose composition displayed minimal variation among 10 genotypes and 2 fertilizer treatments. These combined results support the development of sorghums with the ability to acquire nitrogen via biological nitrogen fixation.
Collapse
Affiliation(s)
- Emily S A Wolf
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL 32609, USA
| | - Saddie Vela
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL 32609, USA
| | - Jennifer Wilker
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | - Alyssa Davis
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32610, USA
| | - Madalen Robert
- Independent Junior Research Group–Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32609, USA
| | - Valentina Infante
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | - Rafael E Venado
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | - Cătălin Voiniciuc
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32609, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
- Department of Agronomy, University of Wisconsin, Madison, WI 53706, USA
| | - Wilfred Vermerris
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32610, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Peng SY, Yan J, Li M, Yan ZX, Wei HY, Xu DJ, Cheng X. Preparation of polysaccharide-conjugated selenium nanoparticles from spent mushroom substrates and their growth-promoting effect on rice seedlings. Int J Biol Macromol 2023; 253:126789. [PMID: 37690636 DOI: 10.1016/j.ijbiomac.2023.126789] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Selenium nanoparticles (SeNPs) have gained significant attention in the agricultural field due to their favorable bioavailability and low toxicity, making them a highly researched subject. In this study, crude polysaccharides from spent mushroom substrate of Agrocybe aegerita (AaPs) were extracted for preparing the polysaccharide‑selenium-nanoparticles (AaPs-SeNPs) by ascorbic acid reduction method. The structure of AaPs-SeNPs was analyzed and their growth-promoting effects on rice seedlings were studied by adopting different application methods. The results revealed that AaPs-SeNPs exhibited improved free radical scavenging ability, with a lower half-maximal inhibitory concentrations compared to AaPs. Rice seedlings treated with AaPs-SeNPs showed significant enhancements in growth characteristics when compared to AaPs treatment, and foliar application exhibited a better growth-promoting effect compared to root application. Moreover, the growth performance and antioxidant enzyme activities of rice seedlings were enhanced by the addition of AaPs-SeNPs, and the absorption efficiency of essential nutrients such as N/P/K and Fe/Zn/Mn was also improved at appropriate concentrations, which could be one of the key factors contributing to the improved growth performance of plants. This study provides new aspects for the utilization of SMS, and also offers new insights from the perspective of nutrient absorption on how polysaccharide-conjugated selenium nanoparticles enhance crop growth.
Collapse
Affiliation(s)
- Shuai-Ying Peng
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Jiao Yan
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Min Li
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zu-Xuan Yan
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hong-Yu Wei
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Duan-Jun Xu
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xin Cheng
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
3
|
Van Gelder K, Oliveira-Filho ER, Messina CD, Venado RE, Wilker J, Rajasekar S, Ané JM, Amthor JS, Hanson AD. Running the numbers on plant synthetic biology solutions to global problems. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111815. [PMID: 37543223 DOI: 10.1016/j.plantsci.2023.111815] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Synthetic biology and metabolic engineering promise to deliver sustainable solutions to global problems such as phasing out fossil fuels and replacing industrial nitrogen fixation. While this promise is real, scale matters, and so do knock-on effects of implementing solutions. Both scale and knock-on effects can be estimated by 'Fermi calculations' (aka 'back-of-envelope calculations') that use uncontroversial input data plus simple arithmetic to reach rough but reliable conclusions. Here, we illustrate how this is done and how informative it can be using two cases: oilcane (sugarcane engineered to accumulate triglycerides instead of sugar) as a source of bio-jet fuel, and nitrogen fixation by bacteria in mucilage secreted by maize aerial roots. We estimate that oilcane could meet no more than about 1% of today's U.S. jet fuel demand if grown on all current U.S. sugarcane land and that, if cane land were expanded to meet two-thirds of this demand, the fertilizer and refinery requirements would create a large carbon footprint. Conversely, we estimate that nitrogen fixation in aerial-root mucilage could replace up to 10% of the fertilizer nitrogen applied to U.S. maize, that 2% of plant carbon income used for growth would suffice to fuel the fixation, and that this extra carbon consumption would likely reduce grain yield only slightly.
Collapse
Affiliation(s)
- Kristen Van Gelder
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | | | - Carlos D Messina
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Rafael E Venado
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jennifer Wilker
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Shanmugam Rajasekar
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jeffrey S Amthor
- Center for Ecosystem Science and Society, Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
4
|
Xu S, Li XQ, Guo H, Wu XY, Wang N, Liu ZQ, Hao HQ, Jing HC. Mucilage secretion by aerial roots in sorghum (Sorghum bicolor): sugar profile, genetic diversity, GWAS and transcriptomic analysis. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01365-1. [PMID: 37378835 DOI: 10.1007/s11103-023-01365-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023]
Abstract
Aerial root mucilage can enhance nitrogen fixation by providing sugar and low oxygen environment to the rhizosphere microbiome in Sierra Mixe maize. Aerial root mucilage has long been documented in sorghum (Sorghum bicolor), but little is known about the biological significance, genotypic variation, and genetic regulation of this biological process. In the present study, we found that a large variation of mucilage secretion capacity existed in a sorghum panel consisting of 146 accessions. Mucilage secretion occurred primarily in young aerial roots under adequately humid conditions but decreased or stopped in mature long aerial roots or under dry conditions. The main components of the mucilage-soluble were glucose and fructose, as revealed by sugar profiling of cultivated and wild sorghum. The mucilage secretion capacity of landrace grain sorghum was significantly higher than that of wild sorghum. Transcriptome analysis revealed that 1844 genes were upregulated and 2617 genes were downregulated in mucilage secreting roots. Amongst these 4461 differentially expressed genes, 82 genes belonged to glycosyltransferases and glucuronidation pathways. Sobic.010G120200, encoding a UDP-glycosyltransferase, was identified by both GWAS and transcriptome analysis as a candidate gene, which may be involved in the regulation of mucilage secretion in sorghum through a negative regulatory mechanism.
Collapse
Affiliation(s)
- Si Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiu-Qing Li
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, E3B 4Z7, Canada
- Canada Forage International Inc., Fredericton, NB, Canada
| | - Hong Guo
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Yuan Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China
| | - Ning Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China
| | - Zhi-Quan Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China
- Engineering Laboratory for Grass-Based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Huai-Qing Hao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Engineering Laboratory for Grass-Based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
5
|
Bhattacharyya A, Mavrodi O, Bhowmik N, Weller D, Thomashow L, Mavrodi D. Bacterial biofilms as an essential component of rhizosphere plant-microbe interactions. METHODS IN MICROBIOLOGY 2023; 53:3-48. [PMID: 38415193 PMCID: PMC10898258 DOI: 10.1016/bs.mim.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Affiliation(s)
- Ankita Bhattacharyya
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Olga Mavrodi
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Niladri Bhowmik
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - David Weller
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Linda Thomashow
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Dmitri Mavrodi
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
6
|
Ladha JK, Peoples MB, Reddy PM, Biswas JC, Bennett A, Jat ML, Krupnik TJ. Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems. FIELD CROPS RESEARCH 2022; 283:108541. [PMID: 35782167 PMCID: PMC9133800 DOI: 10.1016/j.fcr.2022.108541] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 05/02/2023]
Abstract
The demand for nitrogen (N) for crop production increased rapidly from the middle of the twentieth century and is predicted to at least double by 2050 to satisfy the on-going improvements in productivity of major food crops such as wheat, rice and maize that underpin the staple diet of most of the world's population. The increased demand will need to be fulfilled by the two main sources of N supply - biological nitrogen (gas) (N2) fixation (BNF) and fertilizer N supplied through the Haber-Bosch processes. BNF provides many functional benefits for agroecosystems. It is a vital mechanism for replenishing the reservoirs of soil organic N and improving the availability of soil N to support crop growth while also assisting in efforts to lower negative environmental externalities than fertilizer N. In cereal-based cropping systems, legumes in symbiosis with rhizobia contribute the largest BNF input; however, diazotrophs involved in non-symbiotic associations with plants or present as free-living N2-fixers are ubiquitous and also provide an additional source of fixed N. This review presents the current knowledge of BNF by free-living, non-symbiotic and symbiotic diazotrophs in the global N cycle, examines global and regional estimates of contributions of BNF, and discusses possible strategies to enhance BNF for the prospective benefit of cereal N nutrition. We conclude by considering the challenges of introducing in planta BNF into cereals and reflect on the potential for BNF in both conventional and alternative crop management systems to encourage the ecological intensification of cereal and legume production.
Collapse
Affiliation(s)
- Jagdish K. Ladha
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Mark B. Peoples
- Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
| | | | | | - Alan Bennett
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Mangi L. Jat
- International Maize and Wheat Improvement Center, New Delhi, India
| | | |
Collapse
|
7
|
Liu D, Tang W, Yin JY, Nie SP, Xie MY. Monosaccharide composition analysis of polysaccharides from natural sources: Hydrolysis condition and detection method development. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106641] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Rüger L, Feng K, Dumack K, Freudenthal J, Chen Y, Sun R, Wilson M, Yu P, Sun B, Deng Y, Hochholdinger F, Vetterlein D, Bonkowski M. Assembly Patterns of the Rhizosphere Microbiome Along the Longitudinal Root Axis of Maize ( Zea mays L.). Front Microbiol 2021; 12:614501. [PMID: 33643242 PMCID: PMC7906986 DOI: 10.3389/fmicb.2021.614501] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/25/2021] [Indexed: 02/02/2023] Open
Abstract
It is by now well proven that different plant species within their specific root systems select for distinct subsets of microbiota from bulk soil - their individual rhizosphere microbiomes. In maize, root growth advances several centimeters each day, with the locations, quality and quantity of rhizodeposition changing. We investigated the assembly of communities of prokaryotes (archaea and bacteria) and their protistan predators (Cercozoa, Rhizaria) along the longitudinal root axis of maize (Zea mays L.). We grew maize plants in an agricultural loamy soil and sampled rhizosphere soil at distinct locations along maize roots. We applied high-throughput sequencing, followed by diversity and network analyses in order to track changes in relative abundances, diversity and co-occurrence of rhizosphere microbiota along the root axis. Apart from a reduction of operational taxonomic unit (OTU) richness and a strong shift in community composition between bulk soil and root tips, patterns of microbial community assembly along maize-roots were more complex than expected. High variation in beta diversity at root tips and the root hair zone indicated substantial randomness of community assembly. Root hair zone communities were characterized by massive co-occurrence of microbial taxa, likely fueled by abundant resource supply from rhizodeposition. Further up the root where lateral roots emerged processes of community assembly appeared to be more deterministic (e.g., through competition and predation). This shift toward significance of deterministic processes was revealed by low variability of beta diversity, changes in network topology, and the appearance of regular phylogenetic co-occurrence patterns in bipartite networks between prokaryotes and their potential protistan predators. Such patterns were strongest in regions with fully developed laterals, suggesting that a consistent rhizosphere microbiome finally assembled. For the targeted improvement of microbiome function, such knowledge on the processes of microbiome assembly on roots and its temporal and spatial variability is crucially important.
Collapse
Affiliation(s)
- Lioba Rüger
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Kenneth Dumack
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Jule Freudenthal
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Yan Chen
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Ruibo Sun
- Microbial Ecology Lab, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Monica Wilson
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Peng Yu
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Bo Sun
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Frank Hochholdinger
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Doris Vetterlein
- Department of Soil System Science, Helmholtz Centre for Environmental Research – UFZ, Halle, Germany
- Soil Science, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Michael Bonkowski
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Nazari M, Riebeling S, Banfield CC, Akale A, Crosta M, Mason-Jones K, Dippold MA, Ahmed MA. Mucilage Polysaccharide Composition and Exudation in Maize From Contrasting Climatic Regions. FRONTIERS IN PLANT SCIENCE 2020; 11:587610. [PMID: 33363554 PMCID: PMC7752898 DOI: 10.3389/fpls.2020.587610] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/18/2020] [Indexed: 05/28/2023]
Abstract
Mucilage, a gelatinous substance comprising mostly polysaccharides, is exuded by maize nodal and underground root tips. Although mucilage provides several benefits for rhizosphere functions, studies on the variation in mucilage amounts and its polysaccharide composition between genotypes are still lacking. In this study, eight maize (Zea mays L.) genotypes from different globally distributed agroecological zones were grown under identical abiotic conditions in a randomized field experiment. Mucilage exudation amount, neutral sugars and uronic acids were quantified. Galactose (∼39-42%), fucose (∼22-30%), mannose (∼11-14%), and arabinose (∼8-11%) were the major neutral sugars in nodal root mucilage. Xylose (∼1-4%), and glucose (∼1-4%) occurred only in minor proportions. Glucuronic acid (∼3-5%) was the only uronic acid detected. The polysaccharide composition differed significantly between maize genotypes. Mucilage exudation was 135 and 125% higher in the Indian (900 M Gold) and Kenyan (DH 02) genotypes than in the central European genotypes, respectively. Mucilage exudation was positively associated with the vapor pressure deficit of the genotypes' agroecological zone. The results indicate that selection for environments with high vapor pressure deficit may favor higher mucilage exudation, possibly because mucilage can delay the onset of hydraulic failure during periods of high vapor pressure deficit. Genotypes from semi-arid climates might offer sources of genetic material for beneficial mucilage traits.
Collapse
Affiliation(s)
- Meisam Nazari
- Division of Biogeochemistry of Agroecosystems, Georg-August University of Göttingen, Göttingen, Germany
| | - Sophie Riebeling
- Division of Biogeochemistry of Agroecosystems, Georg-August University of Göttingen, Göttingen, Germany
| | - Callum C. Banfield
- Division of Biogeochemistry of Agroecosystems, Georg-August University of Göttingen, Göttingen, Germany
| | - Asegidew Akale
- Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Margherita Crosta
- Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Kyle Mason-Jones
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Michaela A. Dippold
- Division of Biogeochemistry of Agroecosystems, Georg-August University of Göttingen, Göttingen, Germany
| | - Mutez Ali Ahmed
- Division of Biogeochemistry of Agroecosystems, Georg-August University of Göttingen, Göttingen, Germany
- Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
10
|
Bennett AB, Pankievicz VCS, Ané JM. A Model for Nitrogen Fixation in Cereal Crops. TRENDS IN PLANT SCIENCE 2020; 25:226-235. [PMID: 31954615 DOI: 10.1016/j.tplants.2019.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 05/06/2023]
Abstract
Nitrogen-fixing microbial associations with cereals have been of intense interest for more than a century (Roesch et al., Plant Soil 2008;302:91-104; Triplett, Plant Soil 1996;186:29-38; Mus et al., Appl. Environ. Microbiol. 2016;82:3698-3710; Beatty and Good, Science 2011;333:416-417). A recent report demonstrated that an indigenous Sierra Mixe maize landrace, characterized by an extensive development of aerial roots that secrete large amounts of mucilage, can acquire 28-82% of its nitrogen from atmospheric dinitrogen (Van Deynze et al., PLoS Biol. 2018;16:e2006352). Although the Sierra Mixe maize landrace is unique in the large quantity of mucilage produced, other cereal crops secrete mucilage from underground and aerial roots and we hypothesize that this may represent a general mechanism for cereals to support associations with microbial diazotrophs. We propose a model for the association of nitrogen-fixing microbes with maize mucilage and identify the four main functionalities for such a productive diazotrophic association.
Collapse
Affiliation(s)
- Alan B Bennett
- Department of Plant Sciences, University of California, Davis, CA, USA.
| | | | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
11
|
Galloway AF, Knox P, Krause K. Sticky mucilages and exudates of plants: putative microenvironmental design elements with biotechnological value. THE NEW PHYTOLOGIST 2020; 225:1461-1469. [PMID: 31454421 DOI: 10.1111/nph.16144] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/19/2019] [Indexed: 05/16/2023]
Abstract
Plants produce a wide array of secretions both above and below ground. Known as mucilages or exudates, they are secreted by seeds, roots, leaves and stems and fulfil a variety of functions including adhesion, protection, nutrient acquisition and infection. Mucilages are generally polysaccharide-rich and often occur in the form of viscoelastic gels and in many cases have adhesive properties. In some cases, progress is being made in understanding the structure-function relationships of mucilages such as for the secretions that allow growing ivy to attach to substrates and the biosynthesis and secretion of the mucilage compounds of the Arabidopsis seed coat. Work is just beginning towards understanding root mucilage and the proposed adhesive polymers involved in the formation of rhizosheaths at root surfaces and for the secretions involved in host plant infection by parasitic plants. In this article, we summarise knowledge on plant exudates and mucilages within the concept of their functions in microenvironmental design, focusing in particular on their bioadhesive functions and the molecules responsible for them. We draw attention to areas of future knowledge need, including the microstructure of mucilages and their compositional and regulatory dynamics.
Collapse
Affiliation(s)
- Andrew F Galloway
- Department for Arctic and Marine Biology, Faculty for Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Breivika, Tromsø, 9037, Norway
| | - Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Kirsten Krause
- Department for Arctic and Marine Biology, Faculty for Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Breivika, Tromsø, 9037, Norway
| |
Collapse
|
12
|
Li L, Huang T, Liu H, Zang J, Wang P, Jiang X. Purification, structural characterization and anti-UVB irradiation activity of an extracellular polysaccharide from Pantoea agglomerans. Int J Biol Macromol 2019; 137:1002-1012. [DOI: 10.1016/j.ijbiomac.2019.06.191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/06/2019] [Accepted: 06/24/2019] [Indexed: 01/16/2023]
|
13
|
Amicucci MJ, Galermo AG, Guerrero A, Treves G, Nandita E, Kailemia MJ, Higdon SM, Pozzo T, Labavitch JM, Bennett AB, Lebrilla CB. Strategy for Structural Elucidation of Polysaccharides: Elucidation of a Maize Mucilage that Harbors Diazotrophic Bacteria. Anal Chem 2019; 91:7254-7265. [PMID: 30983332 DOI: 10.1021/acs.analchem.9b00789] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The recruitment of a bacterial consortium by the host is a strategy not limited to animals but is also used in plants. A maize aerial root mucilage has been found that harbors nitrogen fixing bacteria that are attracted to the carbohydrate rich environment. This synbiotic relationship is facilitated by a polysaccharide, whose complicated structure has been previously unknown. In this report, we present the characterization of the maize polysaccharide by employing new analytical strategies combining chemical depolymerization, oligosaccharide sequencing, and monosaccharide and glycosidic linkage quantitation. The mucilage contains a single heterogeneous polysaccharide composed of a highly fucosylated and xylosylated galactose backbone with arabinan and mannoglucuronan branches. This unique polysaccharide structure may select for the diazotrophic community by containing monosaccharides and linkages that correspond to the glycosyl hydrolases associated with the microbial community. The elucidation of this complicated structure illustrates the power of the analytical methods, which may serve as a general platform for polysaccharide analysis in the future.
Collapse
Affiliation(s)
- Matthew J Amicucci
- Department of Chemistry , University of California-Davis , Davis , California 95616 , United States
| | - Ace G Galermo
- Department of Chemistry , University of California-Davis , Davis , California 95616 , United States
| | - Andres Guerrero
- Department of Chemistry , University of California-Davis , Davis , California 95616 , United States
| | - Guy Treves
- Department of Chemistry , University of California-Davis , Davis , California 95616 , United States
| | - Eshani Nandita
- Department of Chemistry , University of California-Davis , Davis , California 95616 , United States
| | - Muchena J Kailemia
- Department of Chemistry , University of California-Davis , Davis , California 95616 , United States
| | - Shawn M Higdon
- Department of Plant Sciences , University of California-Davis , Davis , California 95616 , United States
| | - Tania Pozzo
- Department of Plant Sciences , University of California-Davis , Davis , California 95616 , United States
| | - John M Labavitch
- Department of Plant Sciences , University of California-Davis , Davis , California 95616 , United States
| | - Alan B Bennett
- Department of Plant Sciences , University of California-Davis , Davis , California 95616 , United States
| | - Carlito B Lebrilla
- Department of Chemistry , University of California-Davis , Davis , California 95616 , United States
| |
Collapse
|
14
|
Ullah MI, Akhtar M, Awais MM, Anwar MI, Khaliq K. Evaluation of immunostimulatory and immunotherapeutic effects of tropical mushroom (Lentinus edodes) against eimeriasis in chicken. Trop Anim Health Prod 2017; 50:97-104. [DOI: 10.1007/s11250-017-1407-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/17/2017] [Indexed: 10/18/2022]
|
15
|
Zhao HP, Zhang Y, Liu Z, Chen JY, Zhang SY, Yang XD, Zhou HL. Acute toxicity and anti-fatigue activity of polysaccharide-rich extract from corn silk. Biomed Pharmacother 2017; 90:686-693. [DOI: 10.1016/j.biopha.2017.04.045] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 01/24/2023] Open
|
16
|
Improvement of simultaneous determination of neutral monosaccharides and uronic acids by gas chromatography. Food Chem 2017; 220:198-207. [DOI: 10.1016/j.foodchem.2016.10.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/27/2016] [Accepted: 10/01/2016] [Indexed: 01/10/2023]
|
17
|
Rattan R, Inder Fozdar B, Gautam V, Sharma R, Kumar D, Sharma U. Cuspidate A, new anti-fungal triterpenoid saponin from Lepidagathis cuspidata. Nat Prod Res 2016; 31:773-779. [DOI: 10.1080/14786419.2016.1244192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Rajeev Rattan
- Department of Chemistry, Government Post Graduate College Dhaliara, Himachal Pradesh University, Shimla, India
| | - Bharat Inder Fozdar
- Department of Chemistry, School of Sciences, Indira Gandhi National Open University, New Delhi, India
| | - Veena Gautam
- Department of Chemistry, Government Post Graduate College Dhaliara, Himachal Pradesh University, Shimla, India
| | - Ritika Sharma
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- CSIR, Academy of Scientific and Innovative Research, New Delhi, India
| | - Dinesh Kumar
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- CSIR, Academy of Scientific and Innovative Research, New Delhi, India
| | - Upendra Sharma
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- CSIR, Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
18
|
Rattan R, Reddy SGE, Dolma SK, Fozdar BI, Gautam V, Sharma R, Sharma U. Triterpenoid Saponins from Clematis graveolens and Evaluation of their Insecticidal Activities. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A new hederagenin based triterpenoid saponin, clematograveolenoside A (1), along with three known saponins, tomentoside A (2), huzhangoside D (3) and clematoside S (4), were isolated from the roots and rhizomes of Clematis graveolens. The structure of new compound was elucidated on the basis of detailed analysis of chemical and spectroscopic data including 1D- and 2D NMR spectra. Compound 2 was found the most effective against aphid ( Aphis craccivora) with an LC50 of 1.2 and 0.5 mg/mL after treatment for 72 and 96 h, respectively and was followed by compound 4 (LC50 = 2.3 and 1.9 mg/mL) and 1 (LC50 = 3.2 and 2.6 mg/mL). In case of termite ( Coptotermis homii), compound 1 was found more toxic with an LC50 of 0.1 mg/L after 24 h of treatment followed by compound 2, 3 and 4 (LC50 = 0.1, 0.2 and 0.2 mg/mL, respectively).
Collapse
Affiliation(s)
- Rajeev Rattan
- Department of Chemistry, Government Post Graduate College, Dhaliara, Himachal Pradesh University, Shimla, India
| | - S. G. Eswara Reddy
- Entomology Laboratory, Plant Health Management Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
| | - Shudh Kirti Dolma
- Entomology Laboratory, Plant Health Management Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
| | - Bharat Inder Fozdar
- Department of Chemistry, School of Sciences, Indira Gandhi National Open University, New Delhi, India
| | - Veena Gautam
- Department of Chemistry, Government Post Graduate College, Dhaliara, Himachal Pradesh University, Shimla, India
| | - Ritika Sharma
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
| | - Upendra Sharma
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
| |
Collapse
|
19
|
Poerschmann J, Schultze-Nobre L. Structural characterization of organic intermediates arising from xylenol degradation by laboratory-scale constructed wetlands. CHEMOSPHERE 2014; 109:120-127. [PMID: 24393564 DOI: 10.1016/j.chemosphere.2013.12.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 06/03/2023]
Abstract
A mixture of xylenols (2,6-, 3,4-, 3,5-) was subjected to laboratory-scale constructed wetland treatment using helophytes. Conversion efficiencies under aerobic conditions ranged from 89% to 94%; the corresponding numbers under anaerobic conditions were lower. The studies were focused on the identification of stable organic intermediates. Identification was performed by a combination of GC/MS analysis and pre-chromatographic derivatization of the lyophilizates. In addition to common intermediates including citraconate, succinate and dimethyl benzenediols, an array of α- and β-ketoadipic acid carboxylates could be identified. The ketoadipic acid carboxylates have not been known to be formed in bioremediation of phenols including xylenols so far. Mechanisms for the formation of ketoadipic acid carboxylates are proposed. Chemotaxonomic considerations using diagnostic fatty acids provided mounting evidence that organic matter originating from plants prevailed over bacterial organic matter. Biomarkers indicated a virtual absence of fungi and algae.
Collapse
Affiliation(s)
- J Poerschmann
- UFZ - Helmholtz Center for Environmental Research, Department of Environmental Engineering, Permoserstr. 15, D-04318 Leipzig, Germany.
| | - L Schultze-Nobre
- UFZ - Helmholtz Center for Environmental Research, Department of Environmental Biotechnology, Germany
| |
Collapse
|
20
|
Sun X, Sun Y, Zhang Q, Zhang H, Yang B, Wang Z, Zhu W, Li B, Wang Q, Kuang H. Screening and comparison of antioxidant activities of polysaccharides from Coriolus versicolor. Int J Biol Macromol 2014; 69:12-9. [PMID: 24857871 DOI: 10.1016/j.ijbiomac.2014.05.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/03/2014] [Accepted: 05/07/2014] [Indexed: 11/19/2022]
Abstract
Six polysaccharide fractions (Coriolus versicolor polysaccharides: CVPS-1, CVPS-2, CVPS-3, CVPS-4, CVPS-5 and CVPS-6) were isolated and purified from the fruiting bodies of C. versicolor by ion exchange chromatography and gel chromatography. Their chemical and physical characteristics were determined by chemical methods, high performance liquid chromatography, and high-performance gel-permeation chromatography. Finally, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical assay, superoxide radical assay, and hydroxyl radical assay were carried out to test the antioxidant activities of CVPS in vitro. The results indicated that the six CVPS fractions were acidic heteropolysaccharides, composed of mannose, rhamnose, glucuronic acid, glucose and fructose with different ratios. The molecular weights of CVPS-1, CVPS-2, CVPS-3, CVPS-4, CVPS-5 and CVPS-6 were 1740, 1480, 568, 880, 1260 and 1840kDa and the protein contents were 4.2%, 6.4%, 8.5%, 7.8%, 6.5% and 3.9%, respectively. Among the six fractions, CVPS with lower molecular weight, higher protein content and larger uronic acid amount, basically exhibited higher radical scavenging effects at the same concentration. Compared with other fractions, CVPS-3 exhibited the highest antioxidant activities. The effects of the molecular weight, protein content and uronic acid amount of the polysaccharides appeared to be significant on the improvement of the bioactivities.
Collapse
Affiliation(s)
- Xiaowen Sun
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Yanping Sun
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Qingbo Zhang
- Heilongjiang Institute for Drug Control, Harbin 150001, China
| | - Hongwei Zhang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Bingyou Yang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Zhibin Wang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Weiguo Zhu
- Chemistry Department, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China
| | - Bin Li
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Qiuhong Wang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| |
Collapse
|
21
|
Zou Y, Zhao T, Mao G, Zhang M, Zheng D, Feng W, Wang W, Wu X, Yang L. Isolation, purification and characterisation of selenium-containing polysaccharides and proteins in selenium-enriched Radix puerariae. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:349-58. [PMID: 24037994 DOI: 10.1002/jsfa.6366] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 07/22/2013] [Accepted: 08/22/2013] [Indexed: 05/22/2023]
Abstract
BACKGROUND Selenium (Se) is an essential dietary mineral and Radix puerariae (RP) (the dried root of Pueraria lobata Willd.) is a botanical supplement widely used as a nutraceutical. Food enriched with Se provides a feasible and economic approach for production of organic Se compounds. However, little is known about Se-enriched RP and the structure of Se-containing polysaccharides and proteins derived from Se-enriched RP. RESULTS The organic form of Se accounted for 82.42% of total content. Purification by DEAE-52 and Sephadex G-100 column chromatography yielded three single fractions--RP-SeP-11, RP-SeP-22 and RP-SeP-33--with Se contents of 0.9562 × 10⁻³, 0.6113 × 10⁻³ and 0.3827 × 10⁻³ g kg⁻¹, respectively. RP-SeP-11 (3.5 kDa) was made of glucose, RP-SeP-22 (19.6 kDa) was composed of xylose and glucose, and RP-SeP-33 (97.9 kDa) was made up galactose, mannose and glucose. Two Se-containing proteins were obtained with Se content of 3.175 × 10⁻³ and 4.328 × 10⁻³ g kg⁻¹, respectively. One appeared as three subunits with molecular masses of 43.0, 29.0 and 17.8 kDa while the other appeared as two subunits with molecular masses of 43.0 and 26.3 kDa. CONCLUSION The results provide a basis for promoting the utilisation of RP resources enriched with Se as a promising tool for the food industry and are significant for its contribution to Se biochemistry in plants.
Collapse
Affiliation(s)
- Ye Zou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, Jiangsu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cai M, Wang N, Xing C, Wang F, Wu K, Du X. Immobilization of aluminum with mucilage secreted by root cap and root border cells is related to aluminum resistance in Glycine max L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:8924-33. [PMID: 23749363 DOI: 10.1007/s11356-013-1815-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/08/2013] [Indexed: 05/25/2023]
Abstract
The root cap and root border cells (RBCs) of most plant species produced pectinaceous mucilage, which can bind metal cations. In order to evaluate the potential role of root mucilage on aluminum (Al) resistance, two soybean cultivars differing in Al resistance were aeroponic cultured, the effects of Al on root mucilage secretion, root growth, contents of mucilage-bound Al and root tip Al, and the capability of mucilage to bind Al were investigated. Increasing Al concentration and exposure time significantly enhanced mucilage excretion from both root caps and RBCs, decreased RBCs viability and relative root elongation except roots exposed to 400 μM Al for 48 h in Al-resistant cultivar. Removal of root mucilage from root tips resulted in a more severe inhibition of root elongation. Of the total Al accumulated in root, mucilage accounted 48-72 and 12-27 %, while root tip accounted 22-52 and 73-88 % in Al-resistant and Al-sensitive cultivars, respectively. A (27)Al nuclear magnetic resonance spectrum of the Al-adsorbed mucilage showed Al tightly bound to mucilage. Higher capacity to exclude Al in Al-resistant soybean cultivar is related to the immobilization and detoxification of Al by the mucilage secreted from root cap and RBCs.
Collapse
Affiliation(s)
- Miaozhen Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, 688 Yingbin Avenue, Jinhua, Zhejiang Province, 321004, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
23
|
Zhao L, Fan F, Wang P, Jiang X. Culture medium optimization of a new bacterial extracellular polysaccharide with excellent moisture retention activity. Appl Microbiol Biotechnol 2012; 97:2841-50. [PMID: 23104645 DOI: 10.1007/s00253-012-4515-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 10/10/2012] [Accepted: 10/13/2012] [Indexed: 11/28/2022]
Abstract
A new kind of extracellular polysaccharide (EPS) from Pseudomonas fluorescens PGM37 was obtained and culture media was optimized using the statistical methods single factor experiments and response surface methodology (RSM) design. As a result, the optimum cultivation conditions initial pH value, medium volume, inoculum size, temperature, and rotation speed were 7.5, 100 mL/250 mL, 5%, 28 °C, and 180 rpm, respectively. The optimized media: sucrose 36.23 g L(-1), yeast extract 3.32 g L(-1), sodium chloride 1.13 g L(-1), and calcium chloride 0.20 g L(-1). The maximum predicted yield of EPS was 10.1163 g L(-1) under these conditions. The validation data was 10.012 g L(-1), which could strongly confirm the correlation between the experimental and theoretical values. Gas Chromatography analysis revealed that the polymer was made up of mannose and glucose in the ratio of 1:1. Infrared spectroscopy showed that the polysaccharide had β-D-pyranoid configuration and contained no other substituent. Graded by different multiples of alcohol after specific degradation by enzyme and then detected by LC-ESI-MS, the EPS structure was β-D-Glcp-(1, 4)-β-D-Manp-(1, 4)-β-D-Glcp-(1, 4)-β-D-Manp. The moisture retention ability of the EPS was found to be superior to glycerol and only a little inferior to hyaluronic acid (HA), which presented potential application value in cosmetics and clinical medicine fields.
Collapse
Affiliation(s)
- Li Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | | | | | | |
Collapse
|
24
|
Wang X, Wang Y, Wu M, Zhang X. Determination of molecular weights and monosaccharide compositions in Abelmoschus manihot polysaccharides. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2012. [DOI: 10.1134/s0036024412070321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Wang Y, Kang W, Hong LJ, Hai WL, Wang XY, Tang HF, Tian XR. Triterpenoid saponins from the root of Anemone tomentosa. J Nat Med 2012; 67:70-7. [DOI: 10.1007/s11418-012-0649-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/14/2012] [Indexed: 11/30/2022]
|
26
|
Hydrolysis optimization of mannan, curdlan and cell walls from Endomyces fibuliger grown in mussel processing wastewaters. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Clayton SJ, Clegg CD, Bristow AW, Gregory PJ, Headon DM, Murray PJ. Movement of newly assimilated 13C carbon in the grass Lolium perenne and its incorporation into rhizosphere microbial DNA. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:535-540. [PMID: 20112266 DOI: 10.1002/rcm.4392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
One of the key processes that drives rhizosphere microbial activity is the exudation of soluble organic carbon (C) by plant roots. We describe an experiment designed to determine the impact of defoliation on the partitioning and movement of C in grass (Lolium perenne L.), soil and grass-sterile sand microcosms, using a (13)CO(2) pulse-labelling method. The pulse-derived (13)C in the shoots declined over time, but that of the roots remained stable throughout the experiment. There were peaks in the atom% (13)C of rhizosphere CO(2) in the first few hours after labelling probably due to root respiration, and again at around 100 h. The second peak was only seen in the soil microcosms and not in those with sterilised sand as the growth medium, indicating possible microbial activity. Incorporation of the (13)C label into the microbial biomass increased at 100 h when incorporation into replicating cells, as indicated by the amounts of the label in the microbial DNA, started to increase. These results indicate that the rhizosphere environment is conducive to bacterial growth and replication. The results also show that defoliation had no impact on the pattern of movement of (13)C from plant roots into the microbial population in the rhizosphere.
Collapse
Affiliation(s)
- S J Clayton
- North Wyke Research, Okehampton EX20 2SB, UK
| | | | | | | | | | | |
Collapse
|
28
|
Chen KC, Hsieh CL, Huang KD, Ker YB, Chyau CC, Peng RY. Anticancer activity of rhamnoallosan against DU-145 cells is kinetically complementary to coexisting Polyphenolics in Psidium guajava budding leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:6114-6122. [PMID: 19552430 DOI: 10.1021/jf901268w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Psidium guajava L. is a valuable farm fruit plant having many medicinal uses. Previously its budding leaves (PE) were shown to contain huge amounts of soluble polyphenolics (SP) including (in mg/g) gallic acid (348), catechin (102), epicatechin (60), rutin (100), quercetin (102), and rutin (100) and to exhibit potent anticancer activity. However, reconstitution of these polyphenolics recovered only 40% of the original bioactivity, and the soluble carbohydrate (SC) portion in PE was suspected to contribute the remaining. PE contained a novel rhamnoallosan, which had a carbohydrate/protein (w/w) ratio = 29.06%/10.27% (=2.83, average molecular mass of 5029 kDa), characteristically evidencing a peptidoglycan, consisting of a composition (mole % ratio) of rhamnose/allose/arabinose/tallose/xylose/fucose/glucose/mannose/galactose = 36.05:24.24:8.76:7.95:7.37:5.90:3.69:3.19:2.85 and of amino acid (in wt %) glycine/leucine/proline/alanine/methionine/isoleucine/valine/histidine/tyrosine/phenylalanine/cysteine/aspartic acid/lysine/glutamic acid = 37.12:12.68:10.05:8.97:5.99:4.89:4.83:4.25:4.05:2.78:1.86:1.10:0.73:0.70. Kinetic analysis showed comparable apparent cell-killing rate coefficients (k(app)) to be 4.03 x 10(3) and 2.92 x 10(3) cells mg(-1) h(-1), respectively, by SP and SC, evidencing the complementary anti-DU-145 bioactivity in nature.
Collapse
Affiliation(s)
- Kuan-Chou Chen
- Department of Urology, Taipei Medical University Shuang Ho Hospital, Taipei Medical University, Xin-Yi District, Taipei 110, Taiwan
| | | | | | | | | | | |
Collapse
|
29
|
Clayton SJ, Read DB, Murray PJ, Gregory PJ. Exudation of alcohol and aldehyde sugars from roots of defoliated Lolium perenne L. grown under sterile conditions. J Chem Ecol 2008; 34:1411-21. [PMID: 18815840 DOI: 10.1007/s10886-008-9536-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 07/30/2008] [Accepted: 08/14/2008] [Indexed: 11/29/2022]
Abstract
Root exudates were collected over a 27 day period from defoliated and non-defoliated Lolium perenne L. plants grown under sterile conditions in microlysimeters. Eleven individual sugars, including both aldehyde and alcohol sugars, were identified and quantified with a gas chromatograph-mass spectrometer (GC-MS). There was no change in the number of sugars present between 7 and 27 days, but the exudation of alcohol sugars decreased rapidly at about day 12. Xylose and glucose were present in the largest amounts. Defoliation initially increased the total amount of sugars in the exudates, but continuous defoliation reduced total sugar exudation by 16% and induced changes in the exudation patterns of individual sugars. Defoliation enhanced exudation of erythritol, threitol, and xylitol, reduced exudation of glucose and arabitol, but had little effect on the amounts of other sugars exuded. The more complex 6 C, 5 OH aldehyde sugars, especially glucose, showed changes earlier and to a greater extent (17 days), than the 5 C, 4 OH (xylose and ribose) and 6 C 4 OH (fucose) aldehyde groups. These findings confirm the general finding that repeated defoliation reduces the quantity of total sugars exuded, but the pattern of release of individual sugars is complex and variable.
Collapse
|
30
|
Structural analysis and characterization of a mucopolysaccharide isolated from roots of cassava (Manihot esculenta Crantz L.). Food Hydrocoll 2008. [DOI: 10.1016/j.foodhyd.2006.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Ye F, Yan X, Xu J, Chen H. Determination of aldoses and ketoses by GC-MS using differential derivatisation. PHYTOCHEMICAL ANALYSIS : PCA 2006; 17:379-83. [PMID: 17144244 DOI: 10.1002/pca.928] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A method has been established by which to determine aldoses and ketoses in plant material simultaneously. Monosaccharides were extracted by sonication with 80% ethanol and sugar oximes formed by treatment of the resultant extract with hydroxylamine and pyridine at 90 degrees C. After reaction, one aliquot of the product was derivatised with acetic anhydride at 90 degrees C, whilst a second aliquot was silylated with HMDS and TMCS at 80 degrees C. Both reaction mixtures were analysed by GC-MS in the SIM mode. Quantivation was linear within the range 1-4 microg/mL and the detection limit for monosaccharides was 5-25 ng/mL. The absolute recoveries were between 73.0 and 90.2% and the RSDs were 3.1-10.0%. This method was applied to analyse the free monosaccharides in Lyceum barbarum L.; eight monosaccharides were present in amounts between 0.26 and 368.65 microg/mg.
Collapse
Affiliation(s)
- Fangting Ye
- Marine Biotechnology Laboratory, Ningbo University, Ningbo 315211, People's Republic of China
| | | | | | | |
Collapse
|
32
|
Isolation and characterization of extracellular polysaccharides produced by Pseudomonas fluorescens Biovar II. Carbohydr Polym 2005. [DOI: 10.1016/j.carbpol.2005.04.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Mounier E, Hallet S, Chèneby D, Benizri E, Gruet Y, Nguyen C, Piutti S, Robin C, Slezack-Deschaumes S, Martin-Laurent F, Germon JC, Philippot L. Influence of maize mucilage on the diversity and activity of the denitrifying community. Environ Microbiol 2004; 6:301-12. [PMID: 14871213 DOI: 10.1111/j.1462-2920.2004.00571.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to understand the effect of the maize rhizosphere on denitrification, the diversity and the activity of the denitrifying community were studied in soil amended with maize mucilage. Diversity of the denitrifying community was investigated by polymerase chain reaction (PCR) amplification of total community DNA extracted from soils using gene fragments, encoding the nitrate reductase (narG) and the nitrous oxide reductase (nosZ), as molecular markers. To assess the underlying diversity, PCR products were cloned and 10 gene libraries were obtained for each targeted gene. Libraries containing 738 and 713 narG and nosZ clones, respectively, were screened by restriction fragment analysis, and grouped based on their RFLP (restriction fragment length polymorphism) patterns. In all, 117 and 171 different clone families have been identified for narG and nosZ and representatives of RFLP families containing at least two clones were sequenced. Rarefaction curves of both genes did not reach a clear saturation, indicating that analysis of an increasing number of clones would have revealed further diversity. Recovered NarG sequences were related to NarG from Actinomycetales and from Proteobacteria but most of them are not related to NarG from known bacteria. In contrast, most of the NosZ sequences were related to NosZ from alpha, beta, and gammaProteobacteria. Denitrifying activity was monitored by incubating the control and amended soils anaerobically in presence of acetylene. The N2O production rates revealed denitrifying activity to be greater in amended soil than in control soil. Altogether, our results revealed that mucilage addition to the soil results in a strong impact on the activity of the denitrifying community and minor changes on its diversity.
Collapse
Affiliation(s)
- E Mounier
- UMR INRA 1229 Microbiologie et Géochimie des Sols, 17, rue Sully, B. V. 86510, 21065 Dijon Cedex France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kladnik A, Vilhar B, Chourey PS, Dermastia M. Sucrose synthase isozyme SUS1 in the maize root cap is preferentially localized in the endopolyploid outer cells. ACTA ACUST UNITED AC 2004. [DOI: 10.1139/b03-143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure of the maize (Zea mays L.) root cap was studied to quantitatively evaluate the relationship among the size of the cells, their endopolyploidy level, and the abundance of the sucrose synthase isozyme SUS1. Median longitudinal root cap sections were analysed using immunolocalization, quantitative DNA staining, and image cytometry. Both the immunolocalization signal for the SUS1 protein and the endopolyploidy level increased from calyptrogen towards the root cap periphery and were thus the highest in the outer cells. These cells had a nuclear DNA content of mostly 8C or higher and the largest volumes of all root cap cells. The high amount of SUS1 protein in the outer, endopolyploid cells suggests an association between endoreduplication and the abundance of this enzyme. The outer cells are involved in mucilage production; hence, there is a possibility that sucrose synthase provides monosaccharide precursors for mucilage synthesis.Key words: nuclear DNA amount, endoreduplication, immunolocalization, image cytometry, Zea mays L.
Collapse
|
35
|
Read DB, Bengough AG, Gregory PJ, Crawford JW, Robinson D, Scrimgeour CM, Young IM, Zhang K, Zhang X. Plant roots release phospholipid surfactants that modify the physical and chemical properties of soil. THE NEW PHYTOLOGIST 2003; 157:315-326. [PMID: 33873634 DOI: 10.1046/j.1469-8137.2003.00665.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• Plant root mucilages contain powerful surfactants that will alter the interaction of soil solids with water and ions, and the rates of microbial processes. • The lipid composition of maize, lupin and wheat root mucilages was analysed by thin layer chromatography and gas chromatography-mass spectrometry. A commercially available phosphatidylcholine (lecithin), chemically similar to the phospholipid surfactants identified in the mucilages, was then used to evaluate its effects on selected soil properties. • The lipids found in the mucilages were principally phosphatidylcholines, composed mainly of saturated fatty acids, in contrast to the lipids extracted from root tissues. In soil at low tension, lecithin reduced the water content at any particular tension by as much as 10 and 50% in soil and acid-washed sand, respectively. Lecithin decreased the amount of phosphate adsorption in soil and increased the phosphate concentration in solution by 10%. The surfactant also reduced net rates of ammonium consumption and nitrate production in soil. • These experiments provide the first evidence we are aware of that plant-released surfactants will significantly modify the biophysical environment of the rhizosphere.
Collapse
Affiliation(s)
- D B Read
- Department of Soil Science, The University of Reading, Whiteknights, PO Box 233, Reading, RG6 6DW
| | - A G Bengough
- Soil-Plant Dynamics Unit, Scottish Crop Research Institute, Dundee, DD2 5DA
| | - P J Gregory
- Department of Soil Science, The University of Reading, Whiteknights, PO Box 233, Reading, RG6 6DW
| | - J W Crawford
- SIMBIOS Centre, School of Science and Engineering, University of Abertay Dundee, Bell St., Dundee DD1 1HG
| | - D Robinson
- Department of Plant and Soil Science, University of Aberdeen, Aberdeen AB24 3UU
| | - C M Scrimgeour
- Soil-Plant Dynamics Unit, Scottish Crop Research Institute, Dundee, DD2 5DA
| | - I M Young
- SIMBIOS Centre, School of Science and Engineering, University of Abertay Dundee, Bell St., Dundee DD1 1HG
| | - K Zhang
- Soil-Plant Dynamics Unit, Scottish Crop Research Institute, Dundee, DD2 5DA
| | - X Zhang
- Soil-Plant Dynamics Unit, Scottish Crop Research Institute, Dundee, DD2 5DA
| |
Collapse
|