1
|
Selvaraj D, Dhayabaran NK, Mahizhnan A. An insight on pollutant removal mechanisms in phycoremediation of textile wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124714-124734. [PMID: 35708812 DOI: 10.1007/s11356-022-21307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Pollutants, including dyes and heavy metals from textile industrial discharge, adversely affect the surface and groundwater resources, and pose a severe risk to the living organisms in the ecosystem. Phycoremediation of wastewater is now an emerging trend, as it is colossally available, inexpensive, eco-friendly, and has many other benefits, with high removal efficiency for undesirable substances, when compared to conventional treatment methods. Algae have a good binding affinity toward nutrients and toxic compounds because of various functional groups on its cell surface by following the mechanisms such as biosorption, bioaccumulation, or alternate biodegradation pathway. Algae-based treatments generate bioenergy feedstock as sludge, mitigate CO2, synthesize high-value-added products, and release oxygenated effluent. Algae when converted into activated carbon also show good potential against contaminants, because of its higher binding efficiency and surface area. This review provides an extensive analysis of different mechanisms involved in removal of undesirable and hazardous substances from textile wastewater using algae as green technology. It could be founded that both biosorption and biodegradation mechanisms were responsible for the removal of dye, organic, and inorganic pollutants. But for the heavy metals removal, biosorption results in higher removal efficiency. Overall, phycoremediation is a convenient technique for substantial conserving of energy demand, reducing greenhouse gas emissions, and removing pollutants.
Collapse
Affiliation(s)
- Durgadevi Selvaraj
- Environmental Biotechnology Laboratory, Department of Chemical Engineering, National Institute of Technology, Tamil Nadu, Tiruchirappalli, 620015, India
| | - Navamani Kartic Dhayabaran
- Environmental Biotechnology Laboratory, Department of Chemical Engineering, National Institute of Technology, Tamil Nadu, Tiruchirappalli, 620015, India
| | - Arivazhagan Mahizhnan
- Environmental Biotechnology Laboratory, Department of Chemical Engineering, National Institute of Technology, Tamil Nadu, Tiruchirappalli, 620015, India.
| |
Collapse
|
2
|
Chang E, Lammers LN, Pallud C. High-affinity amide-lanthanide adsorption to gram-positive soil bacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:417-421. [PMID: 37150598 PMCID: PMC10472515 DOI: 10.1111/1758-2229.13162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/27/2023] [Indexed: 05/09/2023]
Abstract
The gram-positive soil bacterium, Arthrobacter nicotianae, uses multiple organic acid functional groups to adsorb lanthanides onto its cell surface. At relevant soil pH conditions of 4.0-6.0, many of these functional groups are de-protonated and available for cation sorption and metal immobilization. However, among the plethora of naturally occurring site types, A. nicotianae is shown to possess high-affinity amide and phosphate sites that disproportionately affect lanthanide adsorption to the cell wall. We quantify neodymium (Nd)-selective site types, reporting an amide-Nd stability constant of log10 K = 6.41 ± 0.23 that is comparable to sorption via phosphate-based moieties. These sites are two to three orders of magnitude more selective for Nd than the adsorption of divalent metals to ubiquitous carboxyl-based moieties. This implies the importance of lanthanide biosorption in the context of metal transport in subsurface systems despite trace concentrations of lanthanides found in the natural environment.
Collapse
Affiliation(s)
- Elliot Chang
- Department of Environmental Science, Policy, and ManagementUniversity of California – BerkeleyBerkeleyCaliforniaUSA
| | - Laura N. Lammers
- Department of Environmental Science, Policy, and ManagementUniversity of California – BerkeleyBerkeleyCaliforniaUSA
- Energy Geosciences DivisionE.O. Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Céline Pallud
- Department of Environmental Science, Policy, and ManagementUniversity of California – BerkeleyBerkeleyCaliforniaUSA
| |
Collapse
|
3
|
Abstract
Wastewater containing low concentrations of rare earth ions not only constitutes a waste of rare earth resources but also threatens the surrounding environment. It is therefore necessary to develop environmentally friendly methods of recovering rare earth ions. The spores produced by Bacillus are resistant to extreme environments and are effective in the bioadsorption of rare earth ions, but their adsorption behaviors and mechanisms are not well understood. In this study, the cells and spores of Bacillus subtilis PS533 and PS4150 were used as biosorbents, and their adsorption of terbium ions was compared under different conditions. The adsorption characteristics of the spores were investigated, as were the possible mechanisms of interaction between the spores and rare earth ions. The results showed that the PS4150 spores had the best adsorption effect on Tb(III), with the removal percentage reaching 95.2%. Based on a computational simulation, SEM observation, XRD, XPS, and FTIR analyses, it was suggested that the adsorption of Tb(III) by the spores conforms to the pseudo−second−order kinetics and the Langmuir adsorption isotherm model. This indicates that the adsorption process mainly consists of chemical adsorption, and that groups such as amino, hydroxyl, methyl, and phosphate, which are found on the surface of the spores, are involved in the bioadsorption process. All of these findings suggest that Bacillus subtilis spores can be used as a potential biosorbent for the recovery of rare earth ions from wastewater.
Collapse
|
4
|
Quantitative evaluation of mercury adsorption and removal efficacy of Spirulina (Arthrospira platensis) powder in mice. Arch Microbiol 2022; 204:387. [PMID: 35696005 DOI: 10.1007/s00203-022-03005-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 11/02/2022]
Abstract
Spirulina is a blue-green alga, grown in alkaline water and used for detoxification of several toxic metal ions. Apart from its nutritional value, it is also used for the decontamination of toxic metal ions. Therefore, present study was envisaged to evaluate the adsorption and removal efficiency of Spirulina powder for mercury. The adsorption efficiency of Spirulina was evaluated in terms of weight of adsorbent, contact time, simulated gastric (SGF) and intestinal (SIF) fluid, and mercury concentration. In vivo removal efficacy of Spirulina for mercury was evaluated in mice. The mercury content in major tissues, urine and feces was estimated. The whole tissue retention and excretion of mercury after treatment with Spirulina were taken as a measure of its metal ions removal efficacy. Activated charcoal was taken as a standard adsorbent for comparative study. The maximum adsorption capacity of Spirulina and charcoal for mercury was found to be 66.667 and 158.730 mg g-1 in water, 83.33 and 94.340 mg g-1 in SGF and 125.0 and 133.33 mg g-1 in SIF, respectively. In mice, Spirulina and activated charcoal were significantly reduced the mercury deposition in tissues and facilitated their excretion through feces. Spirulina has shown good adsorption and removal efficacy like activated charcoal. Therefore, Spirulina can be used as a potential adsorbent to remove mercury from the body.
Collapse
|
5
|
Removal of yttrium from rare-earth wastewater by Serratia marcescens: biosorption optimization and mechanisms studies. Sci Rep 2022; 12:4861. [PMID: 35318347 PMCID: PMC8941142 DOI: 10.1038/s41598-022-08542-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/02/2022] [Indexed: 01/11/2023] Open
Abstract
The discharge of yttrium containing wastewater is a potential risk to human health. Although biosorption is a promising method to remove yttrium from wastewater, whereas the application of it is limited due to the lack of efficient biosorbents. In this study, the removal of yttrium from wastewater using Serratia marcescens as a biosorbent was conducted. The effects of six parameters including pH (2–5.5), initial yttrium concentration (10–110 mg/L), biosorbent dosage (0.1–0.5 g/L), biosorption time (10–700 min), stirring speed (50–300 rpm) and temperature (20–60 °C) were evaluated. The main parameters were optimized using response surface methodology. The results showed that the adsorption capacity reached 123.65 mg/g at the optimized conditions. The biosorption mechanism was revealed based on a combined analysis using field emission transmission electron microscope-energy dispersion spectrum, Fourier transform infrared spectrophotometer, and X-ray photoelectron spectroscopy. These results revealed that the hydroxyl, carboxyl, and amino groups were the adsorption functional groups for yttrium ions. Biosorption of yttrium by S. marcescens is under the combination of ion exchange, electrostatic attraction and complexation. These findings indicated that S. marcescens can be used as an efficient biosorbent to remove yttrium from wastewater. In addition, its adsorption capacity can be further improved by the enhancement of adsorption functional groups on the surface through chemical modification.
Collapse
|
6
|
Mandal P, Kretzschmar J, Drobot B. Not just a background: pH buffers do interact with lanthanide ions-a Europium(III) case study. J Biol Inorg Chem 2022; 27:249-260. [PMID: 35150337 PMCID: PMC8907096 DOI: 10.1007/s00775-022-01930-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/14/2022] [Indexed: 12/23/2022]
Abstract
The interaction between Eu(III) ion and different pH buffers, popular in biology and biochemistry, viz. HEPES, PIPES, MES, MOPS, and TRIS, has been studied by solution nuclear magnetic resonance spectroscopy (NMR) and time-resolved laser-induced fluorescence spectroscopy (TRLFS) techniques. The Good's buffers reveal non-negligible interaction with Eu(III) as determined from their complex stability constants, where the sites of interaction are the morpholine and piperazine nitrogen atoms, respectively. In contrast, TRIS buffer shows practically no affinity towards Eu(III). Therefore, when investigating lanthanides, TRIS buffer should be preferred over Good's buffers.
Collapse
Affiliation(s)
- Poulami Mandal
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Jerome Kretzschmar
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Björn Drobot
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328, Dresden, Germany.
| |
Collapse
|
7
|
Singh S, Kumar V, Gupta P, Ray M, Kumar A. The synergy of mercury biosorption through Brevundimonas sp. IITISM22: Kinetics, isotherm, and thermodynamic modeling. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125653. [PMID: 34088177 DOI: 10.1016/j.jhazmat.2021.125653] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/25/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
This research experiment was conducted to investigate the potential of Brevundimonas species IITISM22 to remove mercury by using live biomass of bacterial cells at 298, 308, and 318 K. Characterization of bio-sorbent was done by FT-IR and SEM-EDX. The prime functional groups accountable for binding Hg were OH, -NH2, -CH, -SH and -COO. The deformed bacterial structure was seen after Hg adsorption over the bacterial cell. Influences of different experimental factors, such as pH, temperature, contact time, Hg concentration, and biomass dose was examined. IITISM22 exhibited the highest Hg absorption at pH 6.5, contact time of 4 h, and showed an increased adsorption capacity while increasing the concentration of Hg. Kinetics were recommended by pseudo-second-order for adsorption process and isotherm was adequately defined by the Linear Langmuir isotherm model (KL) = 1.4, 1.2, 0.9 mg/l; (RL) = 0.020, 0.015, 0.013, respectively than Freundlich isotherm model. The Activation energy (Ea) of biosorption calculated were (131.10 KJ/mole) by using Arrhenius equation, and the thermodynamic parameters were ΔG⸰ (-41.03, -16.33, -16.12 KJ/mol), ΔH⸰ (-36.87 KJ/mol) and ΔS⸰ (-194.03 J/mol), respectively. These findings suggest that the removal process was based on chemisorption and the biosorption was exothermic. The result of the current experiment indicated that the IITISM22 could be an authentic biosorbent for Hg detoxification.
Collapse
Affiliation(s)
- Shalini Singh
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Vipin Kumar
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India.
| | - Pratishtha Gupta
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Madhurya Ray
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Ashok Kumar
- Department of Applied Chemistry, BBAU University (A Central University), Lucknow 226025, India
| |
Collapse
|
8
|
Extracellular and Intracellular Lanthanide Accumulation in the Methylotrophic Beijerinckiaceae Bacterium RH AL1. Appl Environ Microbiol 2021; 87:e0314420. [PMID: 33893117 PMCID: PMC8316094 DOI: 10.1128/aem.03144-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent work with Methylorubrum extorquens AM1 identified intracellular, cytoplasmic lanthanide storage in an organism that harnesses these metals for its metabolism. Here, we describe the extracellular and intracellular accumulation of lanthanides in the Beijerinckiaceae bacterium RH AL1, a newly isolated and recently characterized methylotroph. Using ultrathin-section transmission electron microscopy (TEM), freeze fracture TEM (FFTEM), and energy-dispersive X-ray spectroscopy, we demonstrated that strain RH AL1 accumulates lanthanides extracellularly at outer membrane vesicles (OMVs) and stores them in the periplasm. High-resolution elemental analyses of biomass samples revealed that strain RH AL1 can accumulate ions of different lanthanide species, with a preference for heavier lanthanides. Its methanol oxidation machinery is supposedly adapted to light lanthanides, and their selective uptake is mediated by dedicated uptake mechanisms. Based on transcriptome sequencing (RNA-seq) analysis, these presumably include the previously characterized TonB-ABC transport system encoded by the lut cluster but potentially also a type VI secretion system. A high level of constitutive expression of genes coding for lanthanide-dependent enzymes suggested that strain RH AL1 maintains a stable transcript pool to flexibly respond to changing lanthanide availability. Genes coding for lanthanide-dependent enzymes are broadly distributed taxonomically. Our results support the hypothesis that central aspects of lanthanide-dependent metabolism partially differ between the various taxa. IMPORTANCE Although multiple pieces of evidence have been added to the puzzle of lanthanide-dependent metabolism, we are still far from understanding the physiological role of lanthanides. Given how widespread lanthanide-dependent enzymes are, only limited information is available with respect to how lanthanides are taken up and stored in an organism. Our research complements work with commonly studied model organisms and showed the localized storage of lanthanides in the periplasm. This storage occurred at comparably low concentrations. Strain RH AL1 is able to accumulate lanthanide ions extracellularly and to selectively utilize lighter lanthanides. The Beijerinckiaceae bacterium RH AL1 might be an attractive target for developing biorecovery strategies to obtain these economically highly demanded metals in environmentally friendly ways.
Collapse
|
9
|
Ruiz-Fresneda MA, Lopez-Fernandez M, Martinez-Moreno MF, Cherkouk A, Ju-Nam Y, Ojeda JJ, Moll H, Merroun ML. Molecular Binding of Eu III/Cm III by S tenotrophomonas bentonitica and Its Impact on the Safety of Future Geodisposal of Radioactive Waste. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15180-15190. [PMID: 33185105 DOI: 10.1021/acs.est.0c02418] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microbial communities occurring in reference materials for artificial barriers (e.g., bentonites) in future deep geological repositories of radioactive waste can influence the migration behavior of radionuclides such as curium (CmIII). This study investigates the molecular interactions between CmIII and its inactive analogue europium (EuIII) with the indigenous bentonite bacterium Stenotrophomonas bentonitica at environmentally relevant concentrations. Potentiometric studies showed a remarkably high concentration of phosphates at the bacterial cell wall compared to other bacteria, revealing the great potential of S. bentonitica for metal binding. Infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed the role of phosphates and carboxylate groups from the cell envelope in the bioassociation of EuIII. Additionally, time-resolved laser-induced fluorescence spectroscopy (TRLFS) identified phosphoryl and carboxyl groups from bacterial envelopes, among other released complexing agents, to be involved in the EuIII and CmIII coordination. The ability of this bacterium to form a biofilm at the surface of bentonites allows them to immobilize trivalent lanthanide and actinides in the environment.
Collapse
Affiliation(s)
| | | | | | - Andrea Cherkouk
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Dresden, Germany
| | - Yon Ju-Nam
- Systems and Process Engineering Centre, College of Engineering, Swansea University, Swansea, U.K
| | - Jesus J Ojeda
- Systems and Process Engineering Centre, College of Engineering, Swansea University, Swansea, U.K
| | - Henry Moll
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Dresden, Germany
| | | |
Collapse
|
10
|
Adekanmbi EO, Giduthuri AT, Carv BA, Counts J, Moberly JG, Srivastava SK. Application of dielectrophoresis towards characterization of rare earth elements biosorption by Cupriavidus necator. Anal Chim Acta 2020; 1129:150-157. [DOI: 10.1016/j.aca.2020.07.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/05/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022]
|
11
|
Biosorption of Rare Earth Elements by Different Microorganisms in Acidic Solutions. METALS 2020. [DOI: 10.3390/met10070954] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acidic solutions from metal bioleaching processes usually contain mixtures of metals in different concentrations which need to be separated and concentrated in downstream processing. Aim of this study was to explore and compare biosorption of rare earth elements (REE) by different microorganisms in acidic solutions. Biosorption of REE by bacteria and fungi showed element selective biosorption. The gram-positive bacterium Bacillus subtilis showed a higher selectivity to ytterbium (Yb) and lutetium (Lu) than the gram-negative bacteria Leisingera methylohalidivorans and Phaeobacter inhibens. In contrast, the tested fungi (Catenulostroma chromoblastomyces, Pichia sp.) showed a preference for the middle rare earth elements. Algae exhibited a low biosorption performance. Additionally, for B. subtilis and one yeast (Pichia sp.), better results were achieved with living than dead biomass. This study compares for the first time biosorption of different microorganisms at standardized conditions at low pH und application related conditions.
Collapse
|
12
|
Park D, Middleton A, Smith R, Deblonde G, Laudal D, Theaker N, Hsu-Kim H, Jiao Y. A biosorption-based approach for selective extraction of rare earth elements from coal byproducts. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116726] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
13
|
Brewer A, Chang E, Park DM, Kou T, Li Y, Lammers LN, Jiao Y. Recovery of Rare Earth Elements from Geothermal Fluids through Bacterial Cell Surface Adsorption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7714-7723. [PMID: 31198021 DOI: 10.1021/acs.est.9b00301] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The increasing demand for rare earth elements (REEs) in the modern economy motivates the development of novel strategies for cost-effective REE recovery from nontraditional feedstocks. We previously engineered E. coli to express lanthanide binding tags on the cell surface, which increased the REE biosorption capacity and selectivity. Here we examined how REE adsorption by the engineered E. coli is affected by various geochemical factors relevant to geothermal fluids, including total dissolved solids (TDS), temperature, pH, and the presence of specific competing metals. REE biosorption is robust to TDS, with high REE recovery efficiency and selectivity observed with TDS as high as 165,000 ppm. Among several metals tested, U, Al, and Pb were found to be the most competitive, causing >25% reduction in REE biosorption when present at concentrations ∼3- to 11-fold higher than the REEs. Optimal REE biosorption occurred between pH 5-6, and sorption capacity was reduced by ∼65% at pH 2. REE recovery efficiency and selectivity increased as a function of temperature up to ∼70 °C due to the thermodynamic properties of metal complexation on the bacterial surface. Together, these data define the optimal and boundary conditions for biosorption and demonstrate its potential utility for selective REE recovery from geofluids.
Collapse
Affiliation(s)
- Aaron Brewer
- Physical and Life Science Directorate , Lawrence Livermore National Laboratory , Livermore , California 94550 , United States
- Department of Earth and Space Sciences , University of Washington , Seattle , Washington 98185 , United States
| | - Elliot Chang
- Department of Environmental Science, Policy, and Management , University of California Berkeley , Berkeley , California 94270 , United States
| | - Dan M Park
- Physical and Life Science Directorate , Lawrence Livermore National Laboratory , Livermore , California 94550 , United States
| | - Tianyi Kou
- Chemistry and Biochemistry Department , University of California Santa Cruz , Santa Cruz , California 95064 , United States
| | - Yat Li
- Chemistry and Biochemistry Department , University of California Santa Cruz , Santa Cruz , California 95064 , United States
| | - Laura N Lammers
- Department of Environmental Science, Policy, and Management , University of California Berkeley , Berkeley , California 94270 , United States
| | - Yongqin Jiao
- Physical and Life Science Directorate , Lawrence Livermore National Laboratory , Livermore , California 94550 , United States
| |
Collapse
|
14
|
B A, Talasila S, Rajesh V, N. R. Removal of Europium from aqueous solution using Saccharomyces cerevisiae immobilized in glutaraldehyde cross-linked chitosan. SEP SCI TECHNOL 2018. [DOI: 10.1080/01496395.2018.1556303] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Arunraj B
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India
| | - Sathvika Talasila
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India
| | - Vidya Rajesh
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India
| | - Rajesh N.
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India
| |
Collapse
|
15
|
Bio-recycling of metals: Recycling of technical products using biological applications. Biotechnol Adv 2018; 36:1048-1062. [PMID: 29555455 DOI: 10.1016/j.biotechadv.2018.03.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 03/05/2018] [Accepted: 03/11/2018] [Indexed: 11/21/2022]
Abstract
The increasing demand of different essential metals as a consequence of the development of new technologies, especially in the so called "low carbon technologies" require the development of innovative technologies that enable an economic and environmentally friendly metal recovery from primary and secondary resources. There is serious concern that the demand of some critical elements might exceed the present supply within a few years, thus necessitating the development of novel strategies and technologies to meet the requirements of industry and society. Besides an improvement of exploitation and processing of ores, the more urgent issue of recycling of strategic metals has to be enforced. However, current recycling rates are very low due to the increasing complexity of products and the low content of certain critical elements, thus hindering an economic metal recovery. On the other hand, increasing environmental consciousness as well as limitations of classical methods require innovative recycling methodologies in order to enable a circular economy. Modern biotechnologies can contribute to solve some of the problems related to metal recycling. These approaches use natural properties of organisms, bio-compounds, and biomolecules to interact with minerals, materials, metals, or metal ions such as surface attachment, mineral dissolution, transformation, and metal complexation. Further, modern genetic approaches, e.g. realized by synthetic biology, enable the smart design of new chemicals. The article presents some recent developments in the fields of bioleaching, biosorption, bioreduction, and bioflotation, and their use for metal recovery from different waste materials. Currently only few of these developments are commercialized. Major limitations are high costs in comparison to conventional methods and low element selectivity. The article discusses future trends to overcome these barriers. Especially interdisciplinary approaches, the combination of different technologies, the inclusion of modern genetic methods, as well as the consideration of existing, yet unexplored natural resources will push innovations in these fields.
Collapse
|
16
|
Zong P, Cao D, Cheng Y, Wang S, Hayat T, Alharbi NS, Guo Z, Zhao Y, He C. Enhanced performance for Eu(iii) ion remediation using magnetic multiwalled carbon nanotubes functionalized with carboxymethyl cellulose nanoparticles synthesized by plasma technology. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00901e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of sodium carboxymethyl cellulose/iron oxides/MWCNTs composites by a plasma technique and their application to the decontamination of europium ions from aqueous solutions under controlled laboratory conditions.
Collapse
Affiliation(s)
- Pengfei Zong
- School of Chemical Engineering and Technology
- North University of China
- Taiyuan
- P. R. China
| | - Duanlin Cao
- School of Chemical Engineering and Technology
- North University of China
- Taiyuan
- P. R. China
| | - Yuan Cheng
- School of Chemical Engineering and Technology
- North University of China
- Taiyuan
- P. R. China
| | - Shoufang Wang
- School of Chemical Engineering and Technology
- North University of China
- Taiyuan
- P. R. China
| | - Tasawar Hayat
- Department of Mathematics
- Quaid-I-Azam University
- Islamabad
- Pakistan
- NAAM Research Group
| | - Njud S. Alharbi
- Biotechnology Research Group
- Department of Biological Sciences
- Faculty of Science
- King Abdulaziz University
- Jeddah
| | - Zhiqiang Guo
- School of Resources and Environmental Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Yaolin Zhao
- School of Nuclear Science and Technology
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Chaohui He
- School of Nuclear Science and Technology
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| |
Collapse
|
17
|
Kurvet I, Juganson K, Vija H, Sihtmäe M, Blinova I, Syvertsen-Wiig G, Kahru A. Toxicity of Nine (Doped) Rare Earth Metal Oxides and Respective Individual Metals to Aquatic Microorganisms Vibrio fischeri and Tetrahymena thermophila. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E754. [PMID: 28773114 PMCID: PMC5551797 DOI: 10.3390/ma10070754] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/13/2017] [Accepted: 06/30/2017] [Indexed: 01/31/2023]
Abstract
Despite the increasing use of rare earth elements (REEs) and oxides (REOs) in various technologies, the information on their ecotoxicological hazard is scarce. Here, the effects of La3+, Ce3+, Pr3+, Nd3+, Gd3+, CeO₂, and eight doped REOs to marine bacteria Vibrio fischeri and freshwater protozoa Tetrahymena thermophila were studied in parallel with REO dopant metals (Co2+, Fe3+, Mn2+, Ni2+, Sr2+). The highest concentrations of REOs tested were 100 mg/L with protozoa in deionized water and 500 mg/L with bacteria in 2% NaCl. Although (i) most REOs produced reactive oxygen species; (ii) all studied soluble REEs were toxic to bacteria (half-effective concentration, EC50 3.5-21 mg metal/L; minimal bactericidal concentration, MBC 6.3-63 mg/L) and to protozoa (EC50 28-42 mg/L); and (iii) also some dopant metals (Ni2+, Fe3+) proved toxic (EC50 ≤ 3 mg/L), no toxicity of REOs to protozoa (EC50 > 100 mg/L) and bacteria (EC50 > 500 mg/L; MBC > 500 mg/L) was observed except for La₂NiO₄ (MBC 25 mg/L). According to kinetics of V. fischeri bioluminescence, the toxicity of REEs was triggered by disturbing cellular membrane integrity. Fortunately, as REEs and REOs are currently produced in moderate amounts and form in the environment insoluble salts and/or oxides, they apparently present no harm to aquatic bacteria and protozoa.
Collapse
Affiliation(s)
- Imbi Kurvet
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Katre Juganson
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
- School of Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia.
| | - Heiki Vija
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Mariliis Sihtmäe
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Irina Blinova
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | | | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia.
| |
Collapse
|
18
|
Pan X, Wu W, Lü J, Chen Z, Li L, Rao W, Guan X. Biosorption and extraction of europium by Bacillus thuringiensis strain. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2016.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Guo Y, Du W, Wang S, Tan L. RETRACTED: The biosorption of Sr(II) on Bacillus subtilis: A combined batch and modeling study. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.05.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Park JH, Chon HT. Characterization of cadmium biosorption by Exiguobacterium sp. isolated from farmland soil near Cu-Pb-Zn mine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:11814-11822. [PMID: 26951224 DOI: 10.1007/s11356-016-6335-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
Bacteria have the ability to bind heavy metals on their cell wall. Biosorption is a passive and energy-independent mechanism to adsorb heavy metals. The efficiency of heavy metal biosorption can vary depending on several factors such as the growth phase of bacteria, solution pH, and existence of competitive heavy metals. In this study, Exiguobacterium sp. isolated from farmland soil near a mine site were used, and optimal conditions for Cd biosorption in solution were investigated. As bacterial growth progressed, Cd biosorption increased, which is attributed to changes in the structure and composition of the cell wall during bacterial growth. The biosorption process was rapid and was completed within 30 min. Cadmium biosorption was highest at pH 7 due to the dissociation of hydrogen ions and the increase of negative charges with increasing pH. In the mixed metal solution of Cd, Pb, and Zn, the amount of biosorption was in the order of Pb>Cd>Zn while in a single metal solution, the order was Cd≥Pb>Zn. The maximum adsorption capacity for Cd by the isolated bacteria was 15.6 mg/g biomass, which was calculated from the Langmuir isotherm model. Different adsorption efficiencies under various environmental conditions indicate that, to control metal mobility, the conditions for biosorption should be optimized before applying bacteria. The results showed that the isolated bacteria can be used to immobilize metals in metal-contaminated wastewater.
Collapse
Affiliation(s)
- Jin Hee Park
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahang-no, Yuseong-gu, Daejeon, 34132, Republic of Korea.
| | - Hyo-Taek Chon
- Department of Energy Resources Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
21
|
Fujita Y, Barnes J, Eslamimanesh A, Lencka MM, Anderko A, Riman RE, Navrotsky A. Effects of Simulated Rare Earth Recycling Wastewaters on Biological Nitrification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:9460-8. [PMID: 26132866 PMCID: PMC5380465 DOI: 10.1021/acs.est.5b01753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Increasing rare earth element (REE) supplies by recycling and expanded ore processing will result in generation of new wastewaters. In some cases, disposal to a sewage treatment plant may be favored, but plant performance must be maintained. To assess the potential effects of such wastewaters on biological treatment, model nitrifying organisms Nitrosomonas europaea and Nitrobacter winogradskyi were exposed to simulated wastewaters containing varying levels of yttrium or europium (10, 50, and 100 ppm), and the extractant tributyl phosphate (TBP, at 0.1 g/L). Y and Eu additions at 50 and 100 ppm inhibited N. europaea, even when virtually all of the REE was insoluble. Provision of TBP with Eu increased N. europaea inhibition, although TBP alone did not substantially alter activity. For N. winogradskyi cultures, Eu or Y additions at all tested levels induced significant inhibition, and nitrification shut down completely with TBP addition. REE solubility was calculated using the previously developed MSE (Mixed-Solvent Electrolyte) thermodynamic model. The model calculations reveal a strong pH dependence of solubility, typically controlled by the precipitation of REE hydroxides but also likely affected by the formation of unknown phosphate phases, which determined aqueous concentrations experienced by the microorganisms.
Collapse
Affiliation(s)
- Yoshiko Fujita
- Idaho National Laboratory, Idaho Falls, ID 83415
- Corresponding Author Contact Information: ; Tel. (+1) 208-526-1242; Fax (+1) 208 526 0828, . Mail Stop: 83415-2203
| | - Joni Barnes
- Idaho National Laboratory, Idaho Falls, ID 83415
| | - Ali Eslamimanesh
- OLI Systems Inc., 240 Cedar Knolls Road, Suite 301, Cedar Knolls, NJ 07927
| | | | - Andrzej Anderko
- OLI Systems Inc., 240 Cedar Knolls Road, Suite 301, Cedar Knolls, NJ 07927
| | - Richard E. Riman
- Rutgers, The State University of New Jersey, Department of Materials Science and Engineering, 607 Taylor Road, Piscataway, NJ 08855
| | - Alexandra Navrotsky
- Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, Davis, CA 95616
| |
Collapse
|
22
|
Investigation of metal sorption behavior of Slp1 from Lysinibacillus sphaericus JG-B53: a combined study using QCM-D, ICP-MS and AFM. Biometals 2014; 27:1337-49. [DOI: 10.1007/s10534-014-9794-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/21/2014] [Indexed: 10/24/2022]
|
23
|
Martinez RE, Pourret O, Takahashi Y. Modeling of rare earth element sorption to the Gram positive Bacillus subtilis bacteria surface. J Colloid Interface Sci 2013; 413:106-11. [PMID: 24183437 DOI: 10.1016/j.jcis.2013.09.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 09/14/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
In this study, rare earth element (REE) binding constants and site concentration on the Gram+ bacteria surfaces were quantified using a multi-site Langmuir isotherm model, along with a linear programming regression method (LPM), applied to fit experimental REE sorption data. This approach found one discrete REE binding site on the Gram+ Bacillus subtilis surface for the pH range of 2.5-4.5. Average log10 REE binding constants for a site j on these bacteria ranged from 1.08±0.04 to 1.40±0.04 for the light REE (LREE: La to Eu), and from 1.36±0.03 to 2.18±0.14 for the heavy REE (HREE: Gd to Lu) at the highest biomass concentration of 1.3 g/L of B. subtilis bacteria. Similar values were obtained for bacteria concentrations of 0.39 and 0.67 g/L indicating the independence of REE sorption constants on biomass concentration. Within the experimental pH range in this study, B. subtilis was shown to have a lower affinity for LREE (e.g. La, Ce, Pr, Nd) and a higher affinity for HREE (e.g. Tm, Yb, Lu) suggesting an enrichment of HREE on the surface of Gram+ bacteria. Total surface binding site concentrations of 6.73±0.06 to 5.67±0.06 and 5.53±0.07 to 4.54±0.03 mol/g of bacteria were observed for LREE and HREE respectively, with the exception of Y, which showed a total site concentration of 9.53±0.03, and a log K(REE,j) of 1.46±0.02 for a biomass content of 1.3 g/L. The difference in these values (e.g. a lower affinity and increased binding site concentration for LREE, and the contrary for the HREE) suggests a distinction between the LREE and HREE binding modes to the Gram+ bacteria reactive surface at low pH. This further implies that HREE may bind more than one monoprotic reactive group on the cell surface. A multisite Langmuir isotherm approach along with the LPM regression method, not requiring prior knowledge of the number or concentration of cell surface REE complexation sites, were able to distinguish between the sorption constant and binding site concentration patterns of LREE and HREE on the Gram+ B. subtilis surface. This approach quantified the enrichment of Tm, Yb and Lu on the bacteria surface and it has therefore proven to be a useful tool for the study of natural reactive sorbent materials controlling REE partitioning in the natural environment.
Collapse
Affiliation(s)
- Raul E Martinez
- Insitut für Geo- und Umweltnaturwissenschaften, Albert-Ludwigs Universität, Albertstraße 23b, D-79104 Freiburg, Germany.
| | | | | |
Collapse
|
24
|
Moriwaki H, Yamamoto H. Interactions of microorganisms with rare earth ions and their utilization for separation and environmental technology. Appl Microbiol Biotechnol 2012; 97:1-8. [DOI: 10.1007/s00253-012-4519-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/10/2012] [Accepted: 10/14/2012] [Indexed: 11/29/2022]
|
25
|
Sorption of europium by malt spent rootlets, a low cost biosorbent: effect of pH, kinetics and equilibrium studies. J Radioanal Nucl Chem 2012. [DOI: 10.1007/s10967-012-1956-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Ohnuki T, Yoshida T. Interactions of the Rare Earth Elements–Desferrioxamine B Complexes with Pseudomonas fluorescens and γ-Al2O3. CHEM LETT 2012. [DOI: 10.1246/cl.2012.98] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Collins RN, Saito T, Aoyagi N, Payne TE, Kimura T, Waite TD. Applications of time-resolved laser fluorescence spectroscopy to the environmental biogeochemistry of actinides. JOURNAL OF ENVIRONMENTAL QUALITY 2011; 40:731-741. [PMID: 21546659 DOI: 10.2134/jeq2010.0166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Time-resolved laser fluorescence spectroscopy (TRLFS) is a useful means of identifying certain actinide species resulting from various biogeochemical processes. In general, TRLFS differentiates chemical species of a fluorescent metal ion through analysis of different excitation and emission spectra and decay lifetimes. Although this spectroscopic technique has largely been applied to the analysis of actinide and lanthanide ions having fluorescence decay lifetimes on the order of microseconds, such as UO , Cm, and Eu, continuing development of ultra-fast and cryogenic TRLFS systems offers the possibility to obtain speciation information on metal ions having room-temperature fluorescence decay lifetimes on the order of nanoseconds to picoseconds. The main advantage of TRLFS over other advanced spectroscopic techniques is the ability to determine in situ metal speciation at environmentally relevant micromolar to picomolar concentrations. In the context of environmental biogeochemistry, TRLFS has principally been applied to studies of (i) metal speciation in aqueous and solid phases and (ii) the coordination environment of metal ions sorbed to mineral and bacterial surfaces. In this review, the principles of TRLFS are described, and the literature reporting the application of this methodology to the speciation of actinides in systems of biogeochemical interest is assessed. Significant developments in TRLFS methodology and advanced data analysis are highlighted, and we outline how these developments have the potential to further our mechanistic understanding of actinide biogeochemistry.
Collapse
Affiliation(s)
- Richard N Collins
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
28
|
De Gusseme B, Du Laing G, Hennebel T, Renard P, Chidambaram D, Fitts JP, Bruneel E, Van Driessche I, Verbeken K, Boon N, Verstraete W. Virus removal by biogenic cerium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:6350-6356. [PMID: 20704235 DOI: 10.1021/es100100p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The rare earth element cerium has been known to exert antifungal and antibacterial properties in the oxidation states +III and +IV. This study reports on an innovative strategy for virus removal in drinking water by the combination of Ce(III) on a bacterial carrier matrix. The biogenic cerium (bio-Ce) was produced by addition of aqueous Ce(III) to actively growing cultures of either freshwater manganese-oxidizing bacteria (MOB) Leptothrix discophora or Pseudomonas putida MnB29. X-ray absorption spectroscopy results indicated that Ce remained in its trivalent state on the bacterial surface. The spectra were consistent with Ce(III) ions associated with the phosphoryl groups of the bacterial cell wall. In disinfection assays using a bacteriophage as model, it was demonstrated that bio-Ce exhibited antiviral properties. A 4.4 log decrease of the phage was observed after 2 h of contact with 50 mg L(-1) bio-Ce. Given the fact that virus removal with 50 mg L(-1) Ce(III) as CeNO(3) was lower, the presence of the bacterial carrier matrix in bio-Ce significantly enhanced virus removal.
Collapse
Affiliation(s)
- Bart De Gusseme
- Laboratory of Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ngwenya BT, Magennis M, Olive V, Mosselmans JFW, Ellam RM. Discrete site surface complexation constants for lanthanide adsorption to bacteria as determined by experiments and linear free energy relationships. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:650-656. [PMID: 20000843 DOI: 10.1021/es9014234] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bacteria are abundant in many natural and engineered environments where they are thought to exert important controls on the cycling, mobility, bioavailability, and toxicity of metal contaminants. In order to probe their role in moderating the behavior of lanthanides, pH-dependent adsorption edges of 13 individual lanthanides and yttrium to the Gram-negative bacterium Pantoea agglomerans were used to generate discrete site surface complexation constants. The calculated surface complexation constants were compared with stability constants estimated using linear free energy relationships based on a number of hydroxyl-containing ligands. The experimental data suggests that lanthanide adsorption edges below pH 6.5 are consistent with adsorption to phosphate groups for the light and some of the middle lanthanides (La to Gd), whereas some of the middle and heavy lanthanides appear to favor carboxyl co-ordination (Tb to Yb), although exceptions occur in each grouping. The experimentally derived surface complexation constants for carboxyl coordination were of similar magnitude to stability constants estimated from linear free energy correlations using fulvic acid stability constants. The implication is that the adsorption of lanthanides to bacterial surfaces could be modeled reasonably well using lanthanide stability constants for natural organic matter, except perhaps at low pH where phosphate binding dominates.
Collapse
Affiliation(s)
- Bryne T Ngwenya
- Microbial Geochemistry Laboratory, School of GeoSciences, University of Edinburgh, Edinburgh EH9 3JW.
| | | | | | | | | |
Collapse
|
30
|
Ozaki T, Gillow JB, Kimura T, Ohnuki T, Yoshida Z, Francis AJ. Sorption behavior of europium(III) and curium(III) on the cell surfaces of microorganisms. RADIOCHIM ACTA 2009. [DOI: 10.1524/ract.92.9.741.55006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
SummaryWe investigated the association of europium(III) and curium(III) with the microorganismsChlorella vulgaris,Bacillus subtilis,Pseudomonas fluorescens,Halomonassp.,Halobacterium salinarum, andHalobacterium halobium. We determined the kinetics and distribution coefficients (Kd) for Eu(III) and Cm(III) sorption at pH 3-5 by batch experiments, and evaluated the number of water molecules in the inner-sphere (NH₂O) and the degree of strength of ligand field (RE/M) for Eu(III) by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Exudates fromC. vulgaris,Halomonassp., andH. halobiumhad an affinity for Eu(III) and Cm(III). The logKdof Eu(III) and Cm(III) showed that their sorption was not fully due to the exchange with three protons on the functional groups on cell surfaces. The halophilic microorganisms (Halomonassp.,Halobacterium salinarum,H. halobium) showed almost no pH dependence in logKd, indicating that an exchange with Na+on the functional groups was involved in their sorption. The Δ NH₂O(=9-NH₂O) for Eu(III) onC. vulgariswas 1-3, while that for the other microorganisms was over 3, demonstrating that the coordination of Eu(III) withC. vulgariswas predominantly an outer-spherical process. TheRE/Mfor Eu(III) on halophilic microorganisms was 2.5-5, while that for non-halophilic ones was 1-2.5. This finding suggests that the coordination environment of Eu(III) on the halophilic microorganisms is more complicated than that on the other three non-halophilic ones.
Collapse
|
31
|
Physical and chemical effects of extracellular polymers (EPS) on Zn adsorption to Bacillus licheniformis S-86. J Colloid Interface Sci 2009; 337:381-9. [DOI: 10.1016/j.jcis.2009.05.067] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/07/2009] [Accepted: 05/27/2009] [Indexed: 11/18/2022]
|
32
|
Abstract
We investigated the interaction of UO(2)(2+) with peptidoglycan (PG), the main part of the outer membrane of Gram-positive bacteria, by potentiometric titration and time-resolved laser-induced fluorescence spectroscopy (TRLFS) over a wide pH (2.0 to 9.0) and concentration range (10(-5) to 10(-4) M U(vi), 0.01 to 0.2 g L(-1) PG). With potentiometry two different dissociation constants for the carboxyl sites of glutamic acid and diaminopimelic acid (pK(a) = 4.55 +/- 0.02 and 6.31 +/- 0.01), and one averaged pK(a) for hydroxyl and amino groups (which are not distinguishable) (9.56 +/- 0.03) and the site densities could be identified. With potentiometry three different uranyl PG complexes were ascertained: two 1 : 1 uranyl carboxyl complexes R-COO-UO(2)(+), one with the glutamic acid carboxyl group (log beta(110) = 4.02 +/- 0.03), which has a very small formation ratio, and one with the diaminopimelic acid carboxyl group (log beta(110) = 7.28 +/- 0.03), and a mixed 1 : 1 : 1 complex with additional hydroxyl or amino coordination, R-COO-UO(2)((+))-A(i)-R (A(i) = NH(2) or O(-)) (log beta(1110) = 14.95 +/- 0.02). With TRLFS, also three, but different, species could be identified: a 1 : 1 uranyl carboxyl complex R-COO-UO(2)(+) (log beta(110) = 6.9 +/- 0.2), additionally a 1 : 2 uranyl carboxyl complex (R-COO)(2)-UO(2) (log beta(120) = 12.1 +/- 0.2), both with diaminopimelic acid carboxyl groups, and the mixed species R-COO-UO(2)((+))-A(i)-R (A(i) = NH(2) or O(-)) (log beta(1110) = 14.5 +/- 0.1). The results are in accordance within the errors of determination.
Collapse
Affiliation(s)
- Astrid Barkleit
- Institute of Radiochemistry, Forschungszentrum Dresden-Rossendorf e.V., P.O Box 510119, D-01314, Dresden, Germany.
| | | | | |
Collapse
|
33
|
Li J, Lin Q, Zhang X, Yan Y. Kinetic parameters and mechanisms of the batch biosorption of Cr(VI) and Cr(III) onto Leersia hexandra Swartz biomass. J Colloid Interface Sci 2009; 333:71-7. [DOI: 10.1016/j.jcis.2009.02.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 01/01/2009] [Accepted: 02/08/2009] [Indexed: 10/21/2022]
|
34
|
Vlachou A, Symeopoulos BD, Koutinas AA. A comparative study of neodymium sorption by yeast cells. RADIOCHIM ACTA 2009. [DOI: 10.1524/ract.2009.1632] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Li XM, Liao DX, Xu XQ, Yang Q, Zeng GM, Zheng W, Guo L. Kinetic studies for the biosorption of lead and copper ions by Penicillium simplicissimum immobilized within loofa sponge. JOURNAL OF HAZARDOUS MATERIALS 2008; 159:610-615. [PMID: 18403109 DOI: 10.1016/j.jhazmat.2008.02.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 01/19/2008] [Accepted: 02/21/2008] [Indexed: 05/26/2023]
Abstract
Biosorption potential of Penicillium simplicissimum (Penicillium sp.) immobilized within loofa sponge (PSILS) for lead and copper from aqueous media was explored. The effects of pH, contact time and initial concentration were studied in batch experiments. The maximum uptake of metal ions was obtained at pH 5.0. Biosorption equilibrium was established by 60 min. The pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models were applied to study the kinetics of the biosorption processes. The pseudo-second-order kinetic model provided the best correlation (R(2)>0.999) of the experimental data compared to the pseudo-first-order and intraparticle diffusion kinetic models. The maximum heavy metal ions adsorbed was found to be 152.6 and 112.3mg/g for Pb(II) and Cu(II), respectively. It was found that the biosorption of both Pb(II) and Cu(II) on PSILS was correlated well (R(Pb)(2)=0.999 and R(Cu)(2)=0.9978) with the Langmuir equation as compared to Freundlich isotherm equation under the concentration range studied. PSILS was regenerated by washing with a 100mM solution of HCl. The desorption efficiency was as high as 98%. The PSILS was reused in five adsorption-desorption cycles with negligible decrease in biosorption capacity. The present work showed that PSILS was an efficient biosorbent for removal of heavy metal ions from aqueous solution.
Collapse
Affiliation(s)
- Xiao-Ming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China.
| | | | | | | | | | | | | |
Collapse
|
36
|
Live bacterial cells as analytical tools for speciation analysis: Hypothetical or practical? Trends Analyt Chem 2006. [DOI: 10.1016/j.trac.2006.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Han X, Wong YS, Tam NFY. Surface complexation mechanism and modeling in Cr(III) biosorption by a microalgal isolate, Chlorella miniata. J Colloid Interface Sci 2006; 303:365-71. [PMID: 16962604 DOI: 10.1016/j.jcis.2006.08.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 08/08/2006] [Accepted: 08/08/2006] [Indexed: 10/24/2022]
Abstract
The mechanism involved in the removal of Cr(III) by a green microalgal isolate, Chlorella miniata, was examined based on a series of batch experiments and microscopic analyses, and a mathematical model was proposed. Results showed that Cr(III) biosorption increased with the increase of pH from 2.0 to 4.5, and no significant changes in biosorption outside this pH range. Langmuir isotherm indicated that the maximum Cr(III) sorption capacity of Chlorella miniata was 14.17, 28.72, and 41.12 mg g(-1) biomass at pH 3.0, 4.0, and 4.5, respectively. Results from desorption studies, SEM (scanning electron microscopy), TEM (transmission electron microscopy), and EDX (energy-dispersive X-ray spectroscope) analyses confirmed that surface complexation was the main process involved in Cr(III) biosorption. Potentiometric titration revealed that carboxyl (pKa1 = 4.10), phosphonate (pKa2 = 6.36) and amine (pKa3 = 8.47) functional groups on the surface of Chlorella miniata were the possible sites for Cr uptake, and their average amounts were 0.53, 0.39, and 0.36 mmol g(-1) biomass, respectively. A surface complexation model further indicated that carboxyl group played the main role in Cr(III) complexation, with a binding constant of K11 = 1.87 x 10(-4) and K12 = 6.11 x 10(-4) for Cr3+ and Cr(OH)2+, respectively. This model also suggested that the hydroxy species was more easily to complex with the cell surface of Chlorella miniata.
Collapse
Affiliation(s)
- Xu Han
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | | | | |
Collapse
|
38
|
Naja G, Mustin C, Berthelin J, Volesky B. Lead biosorption study with Rhizopus arrhizus using a metal-based titration technique. J Colloid Interface Sci 2005; 292:537-43. [PMID: 15979634 DOI: 10.1016/j.jcis.2005.05.098] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 04/12/2005] [Accepted: 05/28/2005] [Indexed: 11/19/2022]
Abstract
Acid-base and metal-based potentiometric titration methods were used to analyze sorption mechanisms of lead by Rhizopus arrhizus fungal biomass. Biosorption was not considered globally but as the result of successive sorption reactions on various binding sites with different selectivities. Precipitation occurred rapidly when lead concentration increased. Lead was sorbed essentially by carboxylic groups and by phosphates and sulfonates (less abundant) of the organic matter. The lead affinity to carboxylic, sulfonate and phosphate binding sites depended on the association coefficient with proton or counter-ion and on the spatial distribution of the surface sites promoting the formation of mono- or bi-dentate complexes. Chemical bonds and binding sites were confirmed using microscopic and spectroscopic techniques (IR, MET-EDAX). It appeared that although the total organic acidity was reached, number of ionized and free carboxylic groups were not involved in lead sorption reactions. In spite of lead speciation in the solution, surface micro-precipitation was observed and the two processes, surface adsorption and micro-precipitation, are sequential and possibly overlapping. At low concentrations (<10(-6) M) adsorption is the dominant phenomenon and beyond (>10(-5) M) surface clusters appeared before the predicted solution precipitation phenomenon.
Collapse
Affiliation(s)
- Ghinwa Naja
- Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
39
|
Chojnacka K, Chojnacki A, Górecka H. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. CHEMOSPHERE 2005; 59:75-84. [PMID: 15698647 DOI: 10.1016/j.chemosphere.2004.10.005] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 07/29/2004] [Accepted: 10/01/2004] [Indexed: 05/24/2023]
Abstract
The process of biosorption of heavy metal ions (Cr3+, Cd2+, Cu2+) by blue-green algae Spirulina sp. is discussed in this paper. Spirulina sp. was found to be a very efficient biosorbent. The aim of the present study was to investigate quantitatively the potential binding sites present at the surface of Spirulina sp., using both potentiometric titrations and adsorption isotherms. The kinetic experiments showed that the process equilibrium was reached quickly, in less than 5-10 min. It was found that the equilibrium dependence between biosorption capacity and bulk metal ion concentration could be described with Langmuir equation. This suggests that the mechanism of biosorption is rather chemisorption than physical adsorption and was further confirmed by the low surface area associated with physical adsorption and by the presence of cations that appeared in the solution after biosorption. The maximum contribution of physical adsorption in the overall biosorption process was evaluated as 3.7%. It was proposed that functional groups on the cell surface contributed to the binding of metal ions by a biosorbent via equilibrium reaction. Three functional groups capable of cation exchange were identified on the cell surface. The biomass was described as weakly acidic ion exchanger. Since deprotonation of each functional group depends on pH, the process of biosorption is strongly pH-dependent. This was confirmed in the biosorption experiments carried out at different pH. The contribution of functional groups in the biosorption process was confirmed by chemical modification of the groups. Chemically blocked groups did not show neither biosorption nor ion-exchange capabilities. It has been shown that growth conditions can affect the metal adsorption properties of microalgae. The paper also discusses desorption characteristics of the biosorbent. The criteria for desorption were high elution efficiency and preservation of biosorptive properties. Desorbent that possessed these characteristics was nitric acid.
Collapse
Affiliation(s)
- Katarzyna Chojnacka
- Institute of Chemical Engineering and Heating Equipment, Wrocław University of Technology, ul. Norwida 4/6, 50-373 Wrocław, Poland.
| | | | | |
Collapse
|