1
|
Zábrady M, Hrdinová V, Müller B, Conrad U, Hejátko J, Janda L. Targeted in vivo inhibition of specific protein-protein interactions using recombinant antibodies. PLoS One 2014; 9:e109875. [PMID: 25299686 PMCID: PMC4192540 DOI: 10.1371/journal.pone.0109875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/04/2014] [Indexed: 11/19/2022] Open
Abstract
With the growing availability of genomic sequence information, there is an increasing need for gene function analysis. Antibody-mediated "silencing" represents an intriguing alternative for the precise inhibition of a particular function of biomolecules. Here, we describe a method for selecting recombinant antibodies with a specific purpose in mind, which is to inhibit intrinsic protein-protein interactions in the cytosol of plant cells. Experimental procedures were designed for conveniently evaluating desired properties of recombinant antibodies in consecutive steps. Our selection method was successfully used to develop a recombinant antibody inhibiting the interaction of ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 3 with such of its upstream interaction partners as the receiver domain of CYTOKININ INDEPENDENT HISTIDINE KINASE 1. The specific down-regulation of the cytokinin signaling pathway in vivo demonstrates the validity of our approach. This selection method can serve as a prototype for developing unique recombinant antibodies able to interfere with virtually any biomolecule in the living cell.
Collapse
Affiliation(s)
- Matej Zábrady
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Vendula Hrdinová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Bruno Müller
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Udo Conrad
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Jan Hejátko
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lubomír Janda
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
2
|
Pellis M, Pardon E, Zolghadr K, Rothbauer U, Vincke C, Kinne J, Dierynck I, Hertogs K, Leonhardt H, Messens J, Muyldermans S, Conrath K. A bacterial-two-hybrid selection system for one-step isolation of intracellularly functional Nanobodies. Arch Biochem Biophys 2012; 526:114-23. [PMID: 22583807 DOI: 10.1016/j.abb.2012.04.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/24/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
Abstract
Camel single-domain antibody fragments or Nanobodies, are practical in a wide range of applications. Their unique biochemical and biophysical properties permit an intracellular expression and antigen targeting. The availability of an efficient intracellular selection step would immediately identify the best intracellularly performing functional antibody fragments. Therefore, we assessed a bacterial-two-hybrid system to retrieve such Nanobodies. With GFP as an antigen we demonstrate that antigen-specific Nanobodies of sub-micromolar affinity and stability above 30 kJ/mol, at a titer of 10(-4) can be retrieved in a single-step selection. This was further proven practically by the successful recovery from an 'immune' library of multiple stable, antigen-specific Nanobodies of good affinity for HIV-1 integrase or nucleoside hydrolase. The sequence diversity, intrinsic domain stability, antigen-specificity and affinity of these binders compare favorably to those that were retrieved in parallel by phage display pannings.
Collapse
Affiliation(s)
- Mireille Pellis
- Laboratory Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Zhou C, Przedborski S. Intrabody and Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2008; 1792:634-42. [PMID: 18834937 DOI: 10.1016/j.bbadis.2008.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 08/22/2008] [Accepted: 09/03/2008] [Indexed: 10/21/2022]
Abstract
The intrabody technology has become a promising therapeutic avenue for a variety of incurable diseases. This technology is an intracellular application of gene-engineered antibodies, aimed at ablating the abnormal function of intracellular molecules. Parkinson's disease (PD) is a common neurodegenerative disease with no cure. Recent studies have explored possible intrabody applications against alpha-synuclein (alpha-syn), whose misfolding is believed to cause a familial form of PD. Here, we review the origin, production, and therapeutic mechanisms of intrabodies and the potential of intrabody protection against alpha-syn toxicity. Furthermore, we propose possible intrabody applications against leucine-rich repeat kinase 2 (LRRK2), whose mutations are the most frequent known cause of familial and sporadic PD.
Collapse
Affiliation(s)
- Chun Zhou
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
4
|
Visintin M, Meli GA, Cannistraci I, Cattaneo A. Intracellular antibodies for proteomics. J Immunol Methods 2004; 290:135-53. [PMID: 15261577 PMCID: PMC7126613 DOI: 10.1016/j.jim.2004.04.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2004] [Indexed: 11/03/2022]
Abstract
The intracellular antibody technology has many applications for proteomics studies. The potential of intracellular antibodies for the systematic study of the proteome has been made possible by the development of new experimental strategies that allow the selection of antibodies under conditions of intracellular expression. The Intracellular Antibody Capture Technology (IACT) is an in vivo two-hybrid-based method originally developed for the selection of antibodies readily folded for ectopic expression. IACT has been used for the rapid and effective identification of novel antigen-antibody pairs in intracellular compartments and for the in vivo identification of epitopes recognized by selected intracellular antibodies. IACT opens the way to the use of intracellular antibody technology for large-scale applications in proteomics. In its present format, its use is however somewhat limited by the need of a preselection of the input phage antibody libraries on protein antigens or by the construction of an antibody library from mice immunized against the target protein(s), to provide an enriched input library to compensate for the suboptimal efficiency of transformation of the yeast cells. These enrichment steps require expressing the corresponding proteins, which represents a severe bottleneck for the scaling up of the technology. We describe here the construction of a single pot library of intracellular antibodies (SPLINT), a naïve library of scFv fragments expressed directly in the yeast cytoplasm in a format such that antigen-specific intrabodies can be isolated directly from gene sequences, with no manipulation whatsoever of the corresponding proteins. We describe also the isolation from SPLINT of a panel of intrabodies against a number of different proteins. The application of SPLINT on a genome-wide scale should help the systematic study of the functional organization of cell proteome.
Collapse
Affiliation(s)
- Michela Visintin
- Lay Line Genomics SpA, Via di Castel Romano 100, 00128 Rome, Italy
| | - Giovanni Antonio Meli
- International School for Advanced Studies (SISSA), Padriciano 99, 34012 Trieste, Italy
| | | | - Antonino Cattaneo
- Lay Line Genomics SpA, Via di Castel Romano 100, 00128 Rome, Italy
- International School for Advanced Studies (SISSA), Padriciano 99, 34012 Trieste, Italy
- Corresponding author. Lay Line Genomics SpA, Via di Castel Romano 100, 00128 Rome, Italy
| |
Collapse
|
5
|
Intrabodies: Development and Application in Functional Genomics and Therapy. Antibodies (Basel) 2004. [DOI: 10.1007/978-1-4419-8877-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
6
|
Gennari F, Mehta S, Wang Y, St Clair Tallarico A, Palu G, Marasco WA. Direct Phage to Intrabody Screening (DPIS): Demonstration by Isolation of Cytosolic Intrabodies Against the TES1 Site of Epstein Barr Virus Latent Membrane Protein 1 (LMP1) that Block NF-κB Transactivation. J Mol Biol 2004; 335:193-207. [PMID: 14659750 DOI: 10.1016/j.jmb.2003.09.073] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The expression of intracellular antibodies (intrabodies) in eukaryotic cells has provided a powerful tool to manipulate microbial and cellular signaling pathways in a highly precise manner. However, there have been several technical issues that have restricted their more widespread use. In particular, single-chain antibodies (sFv) have been reported to fold poorly in the reducing environment of the cytoplasm and as such there has been a reluctance to use sFv-phage libraries as a source of intrabodies unless a pre-selection step to identify these rare sFvs from natural libraries or libraries of engineering sFvs that could fold properly in the absence of disulfide bonds were used. Here, we investigated whether target specific sFvs that are isolated from a 15 billion member non-immune human sFv-phage display library could be directly screened in pools as intrabodies without prior knowledge of their individual identity or purity within pools of antigen-specific sFvs. As the target, we used a synthetic transformation effector site 1 (TES1) polypeptide comprising the membrane-most proximal 34 amino acid residues of the carboxy-terminal cytoplasmic tail of the oncogenic latent membrane protein 1 (LMP1) of Epstein Barr virus, which serves as a docking site for adapter proteins of the tumor necrosis factor (TNF) receptor (TNFR)-associated factor (TRAF) family. Anti-TES1 sFvs, initially identified by phage ELISA screens, were grouped into pools according to the absorbance reading of the antigen-specific phage ELISA assays and then transferred as pools into eukaryotic expression vectors and expressed as cytoplasmic intrabodies. Using the pooling strategy, there was no loss of individual anti-TES1 sFvs in the transfer from prokaryotic to eukaryotic expression vectors. In addition, the initial assignments into sFv pools based on phage ELISA readings allowed the segregation of individual anti-TES1 sFvs into discrete or minimally overlapping intrabody pools. Further assessment of the biological activity of the anti-TES1 intrabody pools demonstrated that they were all able to selectively block F-LMP1-induced NFkappaB activity that was mediated through the TES1-site and to bind LMP1 protein with high efficiency. This direct phage to intrabody screening (DPIS) strategy should allow investigators to bypass much of the in vitro sFv characterization that is often not predictive of in vivo intrabody function and provide a more efficient use of large native and synthetic sFv phage libraries already in existence to identify intrabodies that are active in vivo.
Collapse
Affiliation(s)
- Francesca Gennari
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street-JFB824, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
7
|
Reinman M, Jäntti J, Alfthan K, Keränen S, Söderlund H, Takkinen K. Functional inactivation of the conserved Sem1p in yeast by intrabodies. Yeast 2003; 20:1071-84. [PMID: 12961755 DOI: 10.1002/yea.1027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Intrabody technology was applied to characterize the function and intracellular localization of a highly conserved Saccharomyces cerevisiae Sem1 protein. DSS1, the mammalian homologue of Sem1p, is functionally conserved between yeast and mammalian cells, and in mammalian cells physically interacts with the strong tumour supressor BRCA2. Yeast and the generated intrabodies are thus expected to offer a useful system for studies on Sem1p/DSS1 function. Sem1p-specific antibody isolated from a phage display library was expressed intracellularily and targeted to either the cytosol or the nucleus of yeast cells. Analysis of the applicability of different antibody fragments as intrabodies showed that the Fab intrabody was expressed most efficiently. Expression of nuclear-targeted anti-Sem1p Fab intrabodies inhibited the growth of the sigma1278b yeast strain in a manner similar to deletion of the SEM1 gene. This indicates that the Fab intrabodies interact in vivo with Sem1p and result in inactivation of Sem1p. Localization of the Fab intrabody with or without the nuclear localization signal to the nucleus in Sem1p-dependent manner suggests that Sem1p mediates the nuclear transport of the intrabody without any targeting signal. Our results suggest that Sem1p function in yeast cells is in part manifested in the nucleus.
Collapse
Affiliation(s)
- Mirka Reinman
- VTT Biotechnology, P.O. Box 1500, FIN-02044 VTT, Finland.
| | | | | | | | | | | |
Collapse
|
8
|
Tanaka T, Lobato MN, Rabbitts TH. Single domain intracellular antibodies: a minimal fragment for direct in vivo selection of antigen-specific intrabodies. J Mol Biol 2003; 331:1109-20. [PMID: 12927545 DOI: 10.1016/s0022-2836(03)00836-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is a major need in target validation and therapeutic applications for molecules that can interfere with protein function inside cells. Intracellular antibodies (intrabodies) can bind to specific targets in cells but isolation of intrabodies is currently difficult. Intrabodies are normally single chain Fv fragments comprising variable domains of the immunoglobulin heavy (VH) and light chains (VL). We now demonstrate that single VH domains have excellent intracellular properties of solubility, stability and expression within the cells of higher organisms and can exhibit specific antigen recognition in vivo. We have used this intracellular single variable domain (IDab) format, based on a previously characterised intrabody consensus scaffold, to generate diverse intrabody libraries for direct in vivo screening. IDabs were isolated using two distinct antigens and affinities of isolated IDabs ranged between 20 nM and 200 nM. Moreover, IDabs selected for binding to the RAS protein could inhibit RAS-dependent oncogenic transformation of NIH3T3 cells. The IDab format is therefore ideal for in vivo intrabody use. This approach to intrabodies obviates the need for phage antibody libraries, avoids the requirement for production of antigen in vitro and allows for direct selection of intrabodies in vivo.
Collapse
Affiliation(s)
- Tomoyuki Tanaka
- MRC Laboratory of Molecular Biology, Hills Road, CB2 2QH, Cambridge, UK
| | | | | |
Collapse
|
9
|
Sibler AP, Nordhammer A, Masson M, Martineau P, Travé G, Weiss E. Nucleocytoplasmic shuttling of antigen in mammalian cells conferred by a soluble versus insoluble single-chain antibody fragment equipped with import/export signals. Exp Cell Res 2003; 286:276-87. [PMID: 12749856 DOI: 10.1016/s0014-4827(03)00093-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ectopic expression of antibody fragments within mammalian cells is a challenging approach for interfering with or even blocking the biological function of the intracellular target. For this purpose, single-chain Fv (scFv) fragments are generally preferred. Here, by transfecting several mammalian cell lines, we compared the intracellular behavior of two scFvs (13R4 and 1F4) that strongly differ in their requirement of disulphide bonding for the formation of active molecules in bacteria. The scFv 13R4, which is correctly folded in the bacterial cytoplasm, was solubly expressed in all cell lines tested and was distributed in their cytoplasm and nucleus, as well. In addition, by appending to the 13R4 molecules the SV40 T-antigen nuclear localisation signal (NLS) tag, cytoplasmic-coexpressed antigen was efficiently retargeted to the nucleus. Compared to the scFv 13R4, the scFv 1F4, which needs to be secreted in bacteria for activity, accumulated, even with the NLS tag, as insoluble aggregates within the cytoplasm of the transfected cells, thereby severely disturbing fundamental functions of cell physiology. Furthermore, by replacing the NLS tag with a leucine-rich nuclear export signal (NES), the scFv 13R4 was exclusively located in the cytoplasm, whereas the similarly modified scFv 1F4 still promoted cell death. Coexpression of NES-tagged 13R4 fragments with nuclear antigen promoted its efficient retargeting to the cytoplasm. This dominant effect of the NES tag was also observed after exchange of the nuclear signals between the scFv 13R4 and its antigen. Taken together, the results indicate that scFvs that are active in the cytoplasm of bacteria may behave similarly in mammalian cells and that the requirement of their conserved disulphide bridges for activity is a limiting factor for mediating the nuclear import/export of target in a mammalian cell context. The described shuttling effect of antigen conferred by a soluble scFv may represent the basis of a reliable in vivo assay of effective protein- protein interactions.
Collapse
Affiliation(s)
- Annie-Paule Sibler
- Biotechnologie des Interactions Macromoléculaires, UMR 7100, Ecole Supérieure de Biotechnologie de Strasbourg, boulevard Sébastien Brant, 67400 Illkirch, France
| | | | | | | | | | | |
Collapse
|
10
|
der Maur AA, Zahnd C, Fischer F, Spinelli S, Honegger A, Cambillau C, Escher D, Plückthun A, Barberis A. Direct in vivo screening of intrabody libraries constructed on a highly stable single-chain framework. J Biol Chem 2002; 277:45075-85. [PMID: 12215438 DOI: 10.1074/jbc.m205264200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Single-chain Fv antibody fragments (scFv) represent a convenient antibody format for intracellular expression in eukaryotic or prokaryotic cells. These so-called intrabodies have great potential in functional genomics as a tool to study the function of newly identified proteins in vivo, for example by binding-induced modulation of their activity or by blocking interactions with other proteins. However, the intracellular expression and activity of many single-chain Fvs are limited by their instability and folding efficiency in the reducing intracellular environment, where the highly conserved intrachain disulfide bonds do not form. In the present work, we used an in vivo selection system to isolate novel antigen-binding intrabodies. We screened two intrabody libraries carrying a randomized third hypervariable loop onto the heavy chain of a stable framework, which had been further optimized by random mutagenesis for better behavior in the selection system, and we biophysically characterized the selected variants to interpret the outcome of the selection. Our results show that single-framework intrabody libraries can be directly screened in vivo to rapidly select antigen-specific intrabodies.
Collapse
|
11
|
Fujiwara K, Poikonen K, Aleman L, Valtavaara M, Saksela K, Mayer BJ. A single-chain antibody/epitope system for functional analysis of protein-protein interactions. Biochemistry 2002; 41:12729-38. [PMID: 12379115 DOI: 10.1021/bi0263309] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein-protein interactions play a critical role in cellular processes such as signal transduction. Although many methods for identifying the binding partners of a protein of interest are available, it is currently difficult or impossible to assess the functional consequences of a specific interaction in vivo. To address this issue, we propose to modify proteins by addition of an artificial protein binding interface, thereby forcing them to interact in the cell in a pairwise fashion and allowing the functional consequences to be determined. For this purpose, we have developed an artificial binding interface consisting of a anti-Myc single-chain antibody (ScFv) and its peptide epitope. We found that the binding of an ScFv derived from anti-Myc monoclonal antibody 9E10 was relatively weak in vivo, so we selected an improved clone, 3DX, by in vitro mutagenesis and phage display. 3DX bound well to its epitope in a yeast two-hybrid system, and GST-fused 3DX also bound to several Myc-tagged proteins in mammalian cells. In vivo binding was relatively insensitive to the position of the ScFv in a fusion protein, but was improved by including multiple tandem copies of the Myc epitope in the binding partner. To test the system, we successfully replaced the SH3 domain-mediated interaction between the Abl tyrosine kinase and adaptor proteins Crk and Nck with an engineered interaction between 3DX and multiple Myc tags. We expect that this approach, which we term a functional interaction trap, will be a powerful proteomic tool for investigating protein-protein interactions.
Collapse
Affiliation(s)
- Kosaku Fujiwara
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06030-3301, USA
| | | | | | | | | | | |
Collapse
|
12
|
Target validation through protein-domain knockout – applications of intracellularly stable single-chain antibodies. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1477-3627(02)02172-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Visintin M, Settanni G, Maritan A, Graziosi S, Marks JD, Cattaneo A. The intracellular antibody capture technology (IACT): towards a consensus sequence for intracellular antibodies. J Mol Biol 2002; 317:73-83. [PMID: 11916379 DOI: 10.1006/jmbi.2002.5392] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe the application of an intracellular antibody capture technology (IACT) as a generic in vivo selection procedure for isolating intracellular antibodies or ICAbs. IACT was applied to the de novo selection of functional ICAbs against the microtubule-associated protein TAU, found in neurofibrillary lesions of Alzheimer's disease brains. A panel of 17 different ICAbs was created which bind TAU inside cells and the epitopes recognized by the selected ICAbs have been determined by an in vivo epitope mapping procedure. Finally, sequence analysis showed that the IACT-derived ICAbs are characterized by a common signature of conserved amino acid residues, suggesting that the IACT naturally selects a sort of "captured consensus sequence" for intracellular antibodies. The development of IACT, together with the possibility of scaling up in a high throughput and automated format, makes IACT a new enabling tool for target validation in functional genomics and global proteomics.
Collapse
Affiliation(s)
- Michela Visintin
- International School for Advanced Studies (SISSA) and INFM Unit, 34013 Trieste, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Tse E, Lobato MN, Forster A, Tanaka T, Chung GTY, Rabbitts TH. Intracellular antibody capture technology: application to selection of intracellular antibodies recognising the BCR-ABL oncogenic protein. J Mol Biol 2002; 317:85-94. [PMID: 11916380 DOI: 10.1006/jmbi.2002.5403] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expression of antibodies inside cells to ablate protein function has the potential for disease therapy and for target validation in functional genomics. However, due to inefficient expression or folding, only a few antibodies or antibody fragments, usually as single-chain Fv antibody fragments (scFv), bind their antigens in an intracellular environment. We have established a genetic-selection technology (intracellular antibody capture, IAC) to facilitate the isolation of functional intracellular scFv from a diverse repertoire. This approach comprises an in vitro library screen with scFv-expressing bacteriophage, employing bacterially expressed antigen, followed by a yeast in vivo antibody-antigen interaction screen of the sub-library of in vitro scFv antigen-binders. Accordingly, we have isolated panels of scFv that bind intracellularly to the BCR or the ABL parts of the BCR-ABL oncogenic protein. Sequence analysis of the intracellular antibody scFv panels revealed a sequence conservation indicating an intracellular antibody consensus for both VH and VL, which could form the basis for the de novo synthesis of intracellular antibody libraries to be used with intracellular antibody-capture technology.
Collapse
Affiliation(s)
- Eric Tse
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | | | |
Collapse
|
15
|
Morino K, Katsumi H, Akahori Y, Iba Y, Shinohara M, Ukai Y, Kohara Y, Kurosawa Y. Antibody fusions with fluorescent proteins: a versatile reagent for profiling protein expression. J Immunol Methods 2001; 257:175-84. [PMID: 11687251 DOI: 10.1016/s0022-1759(01)00462-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We developed a system by which antibodies, fused to fluorescent proteins with different wavelengths, can be prepared within a month against various antigens. An antibody library composed of a large number of single-chain Fv-CL fragment was constructed by means of a phage-display system. The constructs were designed to facilitate changing of the protein forms by simple enzyme manipulation. In the present study, we adopted a molecular form of antibody in which a single-chain Fv-CL fragment is fused with a green fluorescent protein (GFP) or red fluorescent protein (RFP). In addition, a His-tag was inserted between CL and GFP (or RFP). We describe the utility of this system using Caenorhabditis elegans embryo as a model.
Collapse
Affiliation(s)
- K Morino
- Institute for Antibody, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Desiderio A, Franconi R, Lopez M, Villani ME, Viti F, Chiaraluce R, Consalvi V, Neri D, Benvenuto E. A semi-synthetic repertoire of intrinsically stable antibody fragments derived from a single-framework scaffold. J Mol Biol 2001; 310:603-15. [PMID: 11439027 DOI: 10.1006/jmbi.2001.4756] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the design, construction and use of an antibody bacteriophage display library built on the scaffold of a single-chain variable fragment (scFv) previously proven to be functionally expressed in the reducing environment of both bacterial and plant cytoplasm and endowed with intrinsic high thermodynamic stability. Four amino acid residues of the third hypervariable loop (CDR3) of both VH and VL were combinatorially mutated, generating a repertoire of approximately 5x10(7) independent scFvs, cloned in a phagemid vector. The ability of the antibody phage library to yield specific binders was tested by biopanning against several antigens. Successful selection of fully active scFvs was obtained, confirming the notion that combinatorial mutagenesis of few amino acid residues centrally located in the antigen-binding site is sufficient to provide binding specificities against virtually any target. High yields of both soluble and phage antibodies were obtained in Escherichia coli. Maintenance of the cognate scFv antibody stability in the newly selected scFv fragments was demonstrated by guanidinium chloride denaturation/renaturation studies and by soluble antibody expression in the bacterial cytoplasm. The antibody library described here allows the isolation of new stable binding specificities, potentially exploitable as immunochemical reagents for intracellular applications.
Collapse
Affiliation(s)
- A Desiderio
- Divisione Biotecnologie e Agricoltura, ENEA, C.R. Casaccia, Roma, I-00100, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|