1
|
Chen TY, Marín-López A, Raduwan H, Fikrig E. Aedes aegypti adiponectin receptor-like protein signaling facilitates Zika virus infection. mBio 2024; 15:e0243324. [PMID: 39373507 PMCID: PMC11559040 DOI: 10.1128/mbio.02433-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024] Open
Abstract
The Aedes aegypti mosquito plays a critical role in the transmission of viral diseases, including Zika virus, which poses significant public health challenges. Understanding the complex interactions between mosquitoes and viruses is paramount for the development of effective control strategies. In this study, we demonstrate that silencing the A. aegypti adiponectin receptor-like protein (AaARLP) results in a reduction of Zika virus infection. Transcriptomic analysis identified alterations in several trypsin genes and further revealed that AaARLP-knockdown mosquitoes had diminished trypsin activity. Moreover, silencing of selected trypsins resulted in a similar delay in Zika virus infection in mosquitoes, further highlighting the connection between the AaARLP and trypsin. Overall, our findings demonstrate that AaARLP signaling is important for Zika virus infection of A. aegypti. IMPORTANCE Arboviruses pose a significant threat to public health, with mosquitoes, especially Aedes aegypti, being a major vector for their transmission. Gaining insight into the complex interaction between mosquitoes and viruses is essential to build successful control strategies. In this study, we identified a novel pathway connecting the A. aegypti adiponectin receptor-like protein and its association with trypsin, key enzymes involved in blood digestion. Furthermore, we demonstrated the significance of signaling via the adiponectin receptor-like protein in virus infection within the mosquito. Together, our discoveries illuminate mosquito metabolic pathways essential in viral infection.
Collapse
Affiliation(s)
- Tse-Yu Chen
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Hamidah Raduwan
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Malta LGF, Koerich LB, D'Ávila Pessoa GC, Araujo RN, Sant'Anna MRV, Pereira MH, Gontijo NF. Clogmia albipunctata (Williston, 1893) midgut physiology: pH control and functional relationship with Lower Diptera (nematoceran) especially with hematophagous species. Comp Biochem Physiol A Mol Integr Physiol 2024; 290:111584. [PMID: 38224901 DOI: 10.1016/j.cbpa.2024.111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Clogmia albipunctata (Williston, 1893) is a non-hematophagous insect belonging to the order Diptera, suborder Nematocera (Lower Diptera) and family Psychodidae. In the present work, we investigated how C. albipunctata control their midgut pH under different physiological conditions, comparing their midgut physiology with some nematoceran hematophagous species. The C. albipunctata midgut pH was measured after ingestion of sugar, protein and under the effect of the alkalinizing hormone released in the hemolymph of the hematophagous sand fly Lutzomyia longipalpis obtained just after a blood meal. The midgut pH of unfed or sugar-fed C. albipunctata is 5.5-6, and its midgut underwent alkalinization after protein ingestion or under treatment with hemolymph collected from blood fed L. longipalpis. These results suggested that in nematocerans, mechanisms for pH control seem shared between hematophagous and non-hematophagous species. This kind of pH control is convenient for successful blood digestion. The independent evolution of many hematophagous groups from the Lower Diptera suggests that characteristics involved in midgut pH control were already present in non-hematophagous species and represent a readiness for adaptation to this feeding mode.
Collapse
Affiliation(s)
- Luccas Gabriel Ferreira Malta
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo Barbosa Koerich
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Grasielle Caldas D'Ávila Pessoa
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo N Araujo
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Mauricio Roberto Viana Sant'Anna
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Marcos H Pereira
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Nelder Figueiredo Gontijo
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Mantilla-Granados JS, Castellanos JE, Velandia-Romero ML. A tangled threesome: understanding arbovirus infection in Aedes spp. and the effect of the mosquito microbiota. Front Microbiol 2024; 14:1287519. [PMID: 38235434 PMCID: PMC10792067 DOI: 10.3389/fmicb.2023.1287519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Arboviral infections transmitted by Aedes spp. mosquitoes are a major threat to human health, particularly in tropical regions but are expanding to temperate regions. The ability of Aedes aegypti and Aedes albopictus to transmit multiple arboviruses involves a complex relationship between mosquitoes and the virus, with recent discoveries shedding light on it. Furthermore, this relationship is not solely between mosquitoes and arboviruses, but also involves the mosquito microbiome. Here, we aimed to construct a comprehensive review of the latest information about the arbovirus infection process in A. aegypti and A. albopictus, the source of mosquito microbiota, and its interaction with the arbovirus infection process, in terms of its implications for vectorial competence. First, we summarized studies showing a new mechanism for arbovirus infection at the cellular level, recently described innate immunological pathways, and the mechanism of adaptive response in mosquitoes. Second, we addressed the general sources of the Aedes mosquito microbiota (bacteria, fungi, and viruses) during their life cycle, and the geographical reports of the most common microbiota in adults mosquitoes. How the microbiota interacts directly or indirectly with arbovirus transmission, thereby modifying vectorial competence. We highlight the complexity of this tripartite relationship, influenced by intrinsic and extrinsic conditions at different geographical scales, with many gaps to fill and promising directions for developing strategies to control arbovirus transmission and to gain a better understanding of vectorial competence. The interactions between mosquitoes, arboviruses and their associated microbiota are yet to be investigated in depth.
Collapse
Affiliation(s)
- Juan S. Mantilla-Granados
- Saneamiento Ecológico, Salud y Medio Ambiente, Universidad El Bosque, Vicerrectoría de Investigaciones, Bogotá, Colombia
| | - Jaime E. Castellanos
- Grupo de Virología, Universidad El Bosque, Vicerrectoría de Investigaciones, Bogotá, Colombia
| | | |
Collapse
|
4
|
Nuss AB, Gulia-Nuss M. Trypsin, the Major Proteolytic Enzyme for Blood Digestion in the Mosquito Midgut. Cold Spring Harb Protoc 2023; 2023:pdb.top107656. [PMID: 36787964 DOI: 10.1101/pdb.top107656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
When a female mosquito takes a blood meal, proteolytic activity surges in the midgut. Trypsin-like serine proteases are the major endoproteolytic enzyme induced by feeding in mosquitoes. The mosquito midgut lacks trypsin activity before the blood meal, but in most anautogenous mosquitoes, trypsin activity increases continuously up to 30 h after feeding and subsequently returns to baseline levels by 60 h. Trypsin activity in mosquitoes is restricted entirely to the posterior midgut lumen, where blood is stored and digested. Trypsin enzyme activity can be quantitatively measured using the artificial Nα-benzoyl-DL-arginine 4-nitroanilide hydrochloride substrate, a method described in our associated protocol.
Collapse
Affiliation(s)
- Andrew B Nuss
- Department of Biochemistry and Molecular Biology, Veterinary, and Rangeland Sciences, University of Nevada, Reno, Nevada 89557, USA
- Department of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, Nevada 89557, USA
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, Veterinary, and Rangeland Sciences, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
5
|
Bellekom B, Bailey A, England M, Langlands Z, Lewis OT, Hackett TD. Effects of storage conditions and digestion time on DNA amplification of biting midge (Culicoides) blood meals. Parasit Vectors 2023; 16:13. [PMID: 36635709 PMCID: PMC9837887 DOI: 10.1186/s13071-022-05607-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/02/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Molecular analysis of blood meals is increasingly used to identify the hosts of biting insects such as midges and mosquitoes. Successful host identification depends on the availability of sufficient host DNA template for PCR amplification, making it important to understand how amplification success changes under different storage conditions and with different durations of blood meal digestion within the insect gut before being placed into the storage medium. METHOD We characterised and compared the digestion profile of two species of Culicoides over a 96-h period using a novel set of general vertebrate primers targeting the 16S rRNA gene. A set number of individuals from each species were killed over 13 time points post-blood feeding and preserved in 95% ethanol. Samples were stored either at ambient room temperature or in a - 20 °C freezer to examine the effect of storage condition on the PCR amplification success of host DNA. RESULTS We found that amplification success across the 96-h sampling period post-feeding was reduced from 96 to 6% and 96% to 14% for Culicoides nubeculosus and Culicoides sonorensis, respectively. We found no effect of storage condition on PCR amplification success, and storage in 95% ethanol was sufficient to maintain high rates of amplifiable host DNA for at least 9 months, even at room temperature. CONCLUSIONS These findings highlight the limited time frame during which an individual may contain amplifiable host DNA and demonstrate the importance of timely sample capture and processing post-blood feeding. Moreover, storage in 95% ethanol alone is sufficient to limit host DNA degradation. These results are relevant to the design of studies investigating the biting behaviour and disease transmission potential of Culicoides and other biting Diptera.
Collapse
Affiliation(s)
- Ben Bellekom
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ UK
| | - Abigail Bailey
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ UK
| | - Marion England
- grid.63622.330000 0004 0388 7540The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF UK
| | - Zoe Langlands
- grid.63622.330000 0004 0388 7540The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF UK
| | - Owen T. Lewis
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ UK
| | - Talya D. Hackett
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ UK
| |
Collapse
|
6
|
Borovsky D, Verhaert P, Rougé P, Powell CA, De Loof A. Culex quinquefasciatus Late Trypsin Biosynthesis Is Translationally Regulated by Trypsin Modulating Oostatic Factor. Front Physiol 2021; 12:764061. [PMID: 34867469 PMCID: PMC8637831 DOI: 10.3389/fphys.2021.764061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/12/2021] [Indexed: 12/02/2022] Open
Abstract
Trypsin is a serine protease that is synthesized by the gut epithelial cells of female mosquitoes; it is the enzyme that digests the blood meal. To study its molecular regulation, Culex quinquefasciatus late trypsin was purified by diethylaminoethyl (DEAE), affinity, and C18 reverse-phase high performance liquid chromatography (HPLC) steps, and the N-terminal amino acid sequence was determined for molecular cloning. Five overlapping segments of the late trypsin cDNA were amplified by PCR, cloned, and the full sequence (855 bp) was characterized. Three-dimensional models of the pro-trypsin and activated trypsin were built and compared with other trypsin models. Trypsin modulating oostatic factor (TMOF) concentrations in the hemolymph were determined by ELISA and compared with trypsin activity in the gut after the blood meal. The results showed that there was an increase in TMOF concentrations circulating in the hemolymph which has correlated to the reduction of trypsin activity in the mosquito gut. Northern blot analysis of the trypsin transcripts after the blood meal indicated that trypsin activity also followed the increase and decrease of the trypsin transcript. Injections of different amounts of TMOF (0.025 to 50 μg) decreased the amounts of trypsin in the gut. However, Northern blot analysis showed that TMOF injections did not cause a decrease in trypsin transcript abundance, indicating that TMOF probably affected trypsin translation.
Collapse
Affiliation(s)
- Dov Borovsky
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Pierre Rougé
- UMR 152 Pharma-Dev, Institut de Recherche et Développement, Université Toulouse 3, Faculté des Sciences Pharmaceutiques, Toulouse, France
| | - Charles A Powell
- UF-IFAS Indian River Research and Education Center, Fort Pierce, FL, United States
| | | |
Collapse
|
7
|
Henriques BS, Gomes B, Oliveira PL, Garcia EDS, Azambuja P, Genta FA. Characterization of the Temporal Pattern of Blood Protein Digestion in Rhodnius prolixus: First Description of Early and Late Gut Cathepsins. Front Physiol 2021; 11:509310. [PMID: 33519496 PMCID: PMC7838648 DOI: 10.3389/fphys.2020.509310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/24/2020] [Indexed: 11/18/2022] Open
Abstract
Rhodnius prolixus is one important vector for the parasite Trypanosoma cruzi in Latin America, where Chagas disease is a significant health issue. Although R. prolixus is a model for investigations of vector–parasite interaction and transmission, not much has been done recently to further comprehend its protein digestion. In this work, gut proteolysis was characterized using new fluorogenic substrates, including optimum pH, inhibition profiles, and tissue and temporal expression patterns. Each protease possessed a particular tissue prevalence and activity cycle after feeding. Cathepsin L had a higher activity in the posterior midgut lumen, being characterized by a plateau of high activities during several days in the intermediate phase of digestion. Cathepsin D showed high activity levels in the tissue homogenates and in the luminal content of the posterior midgut, with a single peak 5 days after blood feeding. Aminopeptidases are highly associated with the midgut wall, where the highest activity is located. Assays with proteinaceous substrates as casein, hemoglobin, and serum albumin revealed different activity profiles, with some evidence of biphasic temporal proteolytic patterns. Cathepsin D genes are preferentially expressed in the anterior midgut, while cathepsin L genes are mainly located in the posterior portion of the midgut, with specific sets of genes being differently expressed in the initial, intermediate, or late phases of blood digestion. Significance Statement This is the first description in a non-dipteran hematophagous species of a sequential protease secretion system based on midgut cathepsins instead of the most common insect digestive serine proteases (trypsins and chymotrypsins). The midgut of R. prolixus (Hemiptera) shows a different temporal expression of proteases in the initial, intermediate, and late stages of blood digestion. In this respect, a different timing in protease secretion may be an example of adaptative convergence in blood-sucking vectors from different orders. Expanding the knowledge about gut physiology in triatomine vectors may contribute to the development of new control strategies, aiming the blocking of parasite transmission.
Collapse
Affiliation(s)
- Bianca Santos Henriques
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil
| | - Bruno Gomes
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil
| | - Pedro Lagerblad Oliveira
- National Institute of Science and Technology for Molecular Entomology (INCT-EM), Cidade Universitária, Rio de Janeiro, Brazil.,Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elói de Souza Garcia
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil.,National Institute of Science and Technology for Molecular Entomology (INCT-EM), Cidade Universitária, Rio de Janeiro, Brazil
| | - Patrícia Azambuja
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil.,National Institute of Science and Technology for Molecular Entomology (INCT-EM), Cidade Universitária, Rio de Janeiro, Brazil
| | - Fernando Ariel Genta
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil.,National Institute of Science and Technology for Molecular Entomology (INCT-EM), Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Aedes aegypti post-emergence transcriptome: Unveiling the molecular basis for the hematophagic and gonotrophic capacitation. PLoS Negl Trop Dis 2021; 15:e0008915. [PMID: 33406161 PMCID: PMC7815146 DOI: 10.1371/journal.pntd.0008915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 01/19/2021] [Accepted: 10/22/2020] [Indexed: 01/01/2023] Open
Abstract
The adult females of Aedes aegypti mosquitoes are facultative hematophagous insects but they are unable to feed on blood right after pupae emergence. The maturation process that takes place during the first post-emergence days, hereafter named hematophagic and gonotrophic capacitation, comprises a set of molecular and physiological changes that prepare the females for the first gonotrophic cycle. Notwithstanding, the molecular bases underlying mosquito hematophagic and gonotrophic capacitation remain obscure. Here, we investigated the molecular and biochemical changes in adult Ae. aegypti along the first four days post-emergence, prior to a blood meal. We performed a RNA-Seq analysis of the head and body, comparing male and female gene expression time courses. A total of 811 and 203 genes were differentially expressed, respectively in the body and head, and both body parts showed early, mid, and late female-specific expression profiles. Female-specific up-regulation of genes involved in muscle development and the oxidative phosphorylation pathway were remarkable features observed in the head. Functional assessment of mitochondrial oxygen consumption in heads showed a gradual increase in respiratory capacity and ATP-linked respiration as a consequence of induced mitochondrial biogenesis and content over time. This pattern strongly suggests that boosting oxidative phosphorylation in heads is a required step towards blood sucking habit. Several salivary gland genes, proteases, and genes involved in DNA replication and repair, ribosome biogenesis, and juvenile hormone signaling were up-regulated specifically in the female body, which may reflect the gonotrophic capacitation. This comprehensive description of molecular and biochemical mechanisms of the hematophagic and gonotrophic capacitation in mosquitoes unravels potentially new targets for vector control.
Collapse
|
9
|
Zhang X, Raikhel AS. Hormonal regulation of microRNA expression dynamics in the gut of the yellow fever mosquito Aedes aegypti. RNA Biol 2020; 18:1682-1691. [PMID: 33317406 DOI: 10.1080/15476286.2020.1864181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The yellow fever mosquito Aedes aegypti is an obligatory blood feeder and a major arboviral disease vector, evoking severe public health concerns worldwide. In adult female mosquitoes, the gut is critical for blood digestion and pathogen entry. We aimed for a systematic exploration of microRNA expression dynamics in the gut during the gonadotrophic cycle. Small RNA libraries were constructed from female mosquito gut tissues at five time points. Unsupervised hierarchical clustering revealed three expression clusters (early, mid and late) peaking at sequential time points - 24, 48 and 72 h posteclosion. Differentially expressed miRNAs were identified at 24 h post-blood meal (PBM). Depletions of Methoprene-tolerant [Met; the juvenile hormone (JH) receptor] and Ecdysone receptor [EcR; the receptor to 20-hydroxyecdysone (20E)] were performed using dsRNA to these genes to investigate impacts on microRNA expressions. Our results suggest that Met-mediated signalling downregulates miRNA expression from the early cluster and upregulates that from the late cluster. EcR signalling either up- or downregulated miRNA levels at 24 h PBM, indicating a differential effect of this receptor in miRNA gene expression. Furthermore, miR-281, which is the most abundant miRNA in the gut tissue, is induced and repressed by Met- and EcR-mediated signalling, respectively. Systematic depletion using synthetic antagomir and phenotype examinations indicate that miR-281 is obligatory for the normal progression of blood digestion, ovarian development and reproduction. Collectively, this study unveils expression dynamics of microRNAs in the female gut tissue during the gonadotrophic cycle and demonstrates that they are affected by JH and 20E signalling.
Collapse
Affiliation(s)
- Xiufeng Zhang
- Department of Entomology and Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Alexander S Raikhel
- Department of Entomology and Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
| |
Collapse
|
10
|
Petchampai N, Isoe J, Horvath TD, Dagan S, Tan L, Lorenzi PL, Hawke DH, Scaraffia PY. Mass spectrometry-based stable-isotope tracing uncovers metabolic alterations in pyruvate kinase-deficient Aedes aegypti mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 121:103366. [PMID: 32276114 PMCID: PMC7249512 DOI: 10.1016/j.ibmb.2020.103366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 05/11/2023]
Abstract
A recent in vitro characterization of a recombinant pyruvate kinase (PK) from Aedes aegypti mosquitoes demonstrated that the enzyme is uniquely regulated by multiple allosteric effectors. Here, we further explored PK gene and protein expression, and enzymatic activity in key metabolic tissues of mosquitoes maintained under different nutritional conditions. We also studied the metabolic effects of PK depletion using several techniques including RNA interference and mass spectrometry-based stable-isotope tracing. Transcriptional analysis showed a dynamic post-feeding PK mRNA expression pattern within and across mosquito tissues, whereas corresponding protein levels remained stable throughout the time course analyzed. Nevertheless, PK activity significantly differed in the fat body of sucrose-, blood-fed, and starved mosquitoes. Genetic silencing of PK did not alter survival in blood-fed females maintained on sucrose. However, an enhanced survivorship was observed in PK-deficient females maintained under different nutritional regimens. Our results indicate that mosquitoes overcame PK deficiency by up-regulating the expression of genes encoding NADP-malic enzyme-1, phosphoenolpyruvate carboxykinase-1, phosphoglycerate dehydrogenase and glutamate dehydrogenase, and by decreasing glucose oxidation and metabolic pathways associated with ammonia detoxification. Taken together, our data demonstrate that PK confers to A. aegypti a metabolic plasticity to tightly regulate both carbon and nitrogen metabolism.
Collapse
Affiliation(s)
- Natthida Petchampai
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Jun Isoe
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Thomas D Horvath
- Department of Bioinformatics and Computational Biology, Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shai Dagan
- Israel Institute for Biological Research (IIBR), Ness Ziona, 74100, Israel
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David H Hawke
- Department of Systems Biology, Proteomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Patricia Y Scaraffia
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
11
|
Abdeltawab MSA, Rifaie SA, Shoeib EY, El-Latif HAA, Badawi M, Salama WH, El-Aal AAA. Insights into the impact of Ivermectin on some protein aspects linked to Culex pipiens digestion and immunity. Parasitol Res 2019; 119:55-62. [DOI: 10.1007/s00436-019-06539-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 11/03/2019] [Indexed: 02/08/2023]
|
12
|
Knockout of juvenile hormone receptor, Methoprene-tolerant, induces black larval phenotype in the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci U S A 2019; 116:21501-21507. [PMID: 31570611 PMCID: PMC6815201 DOI: 10.1073/pnas.1905729116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Juvenile hormone (JH) analogs are used to control mosquitoes. However, both larval development and action of JH analogs are not well studied in these insects because RNA interference does not work well. A multiple single guide RNA-based CRISPR/Cas9 genome-editing method was used to knockout the methoprene-tolerant gene (Met, a JH receptor). The Met knockout larvae showed precocious development of pupal cuticle and expression of pupal/adult genes involved in the synthesis and melanization of cuticle and blood meal digestion. The methods developed here could help to overcome the major hurdle in functional genomics studies in Aedes aegypti and facilitate advances in understanding larval development and mode of action of JH analogs. The yellow fever mosquito, Aedes aegypti, vectors human pathogens. Juvenile hormones (JH) control almost every aspect of an insect’s life, and JH analogs are currently used to control mosquito larvae. Since RNA interference does not work efficiently during the larval stages of this insect, JH regulation of larval development and mode of action of JH analogs are not well studied. To overcome this limitation, we used a multiple single guide RNA-based CRISPR/Cas9 genome-editing method to knockout the methoprene-tolerant (Met) gene coding for a JH receptor. The Met knockout larvae exhibited a black larval phenotype during the L3 (third instar larvae) and L4 (fourth instar larvae) stages and died before pupation. However, Met knockout did not affect embryonic development or the L1 and L2 stages. Microscopy studies revealed the precocious synthesis of a dark pupal cuticle during the L3 and L4 stages. Gene expression analysis showed that Krüppel homolog 1, a key transcription factor in JH action, was down-regulated, but genes coding for proteins involved in melanization, pupal and adult cuticle synthesis, and blood meal digestion in adults were up-regulated in L4 Met mutants. These data suggest that, during the L3 and L4 stages, Met mediates JH suppression of pupal/adult genes involved in the synthesis and melanization of the cuticle and blood meal digestion. These results help to advance our knowledge of JH regulation of larval development and the mode of action of JH analogs in Ae. aegypti.
Collapse
|
13
|
Nouzova M, Clifton ME, Noriega FG. Mosquito adaptations to hematophagia impact pathogen transmission. CURRENT OPINION IN INSECT SCIENCE 2019; 34:21-26. [PMID: 31247413 DOI: 10.1016/j.cois.2019.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/28/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Mosquito-borne diseases such as Dengue fever, Chikungunya, and Malaria are critical threats to public health in many parts of the world. Female mosquitoes have evolved multiple adaptive mechanisms to hematophagy, including the ability to efficiently draw and digest blood, as well as the ability to eliminate excess fluids and toxic by-products of blood digestion. Pathogenic agents enter the mosquito digestive tract with the blood meal and need to travel through the midgut and into the hemocele in order to reach the salivary glands and infect a new host. Pathogens need to adjust to these hostile gut, hemocele, and salivary gland environments, and when possible influence the physiology and behavior of their hosts to enhance transmission.
Collapse
Affiliation(s)
- Marcela Nouzova
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University, Miami, FL, USA; Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech Republic
| | - Mark E Clifton
- North Shore Mosquito Abatement District, Northfield, IL, USA
| | - Fernando G Noriega
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
14
|
Borovsky D, Hancock RG, Rougé P, Powell CA, Shatters RG. Juvenile hormone affects the splicing of Culex quinquefasciatus early trypsin messenger RNA. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 99:e21506. [PMID: 30176073 DOI: 10.1002/arch.21506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 08/14/2018] [Accepted: 08/15/2015] [Indexed: 06/08/2023]
Abstract
The full length of Culex quiquefasciatus early trypsin has been cloned and sequenced and a three-dimensional (3D) model of the enzyme was built showing that the enzyme has the canonical trypsin's active pocket containing H78, D123, S129, and D128. The biosynthesis of juvenile hormone (JH) III by the corpora allata (CA) in female Cx. quiquefasciatus is sugar-dependent. Females that were maintained on water after emergence synthesize very little JH III, JH III bisepoxide, and methyl farnesoate (MF) (3.8, 1.1, and 0.8 fmol/4 hr/CA, respectively). One hour after sugar feeding, the synthesis of JH III and JH III bisepoxide reached a maximum (11.3 and 5.9 fmol/4 hr/CA, respectively) whereas MF biosynthesis reached a maximum at 24 hr (5.2 fmol/4 hr/CA). The early trypsin is transcribed with a short intron (51 nt) is spliced when JH III biosynthesis is high in sugar fed and at 1 hr after the blood meal (22 and 15 fmol/4 hr/CA, respectively). We investigated the transcriptional and posttranscriptional regulation of the early trypsin gene showing that JH III concentrations influence splicing. In the absence JH III the unspliced transcript is linked by a phosphoamide bond at the 5'-end to RNA ribonuleoprotein (RNP). The biosynthesis of the early trypsin was followed in ligated abdomens (without CA) of newly emerged females that fed blood by enema. Our results show that the early trypsin biosynthesis depends on sugar and blood feeding, whereas the late trypsin biosynthesis does not depend on sugar feeding, or JH III biosynthesis. Downregulating the early trypsin transcript does not affect the late trypsin.
Collapse
Affiliation(s)
- Dov Borovsky
- Horticultural Research Laboratory, USDA-ARS, Fort Pierce, Florida
| | - Robert G Hancock
- Department of Biology, Metropolitan State University of Denver, Denver, Colorado
| | - Pierre Rougé
- Faculté des Sciences Pharmaceutiques, UMR 152 Pharma-Dev, Université Toulouse 3, Toulouse Cedex 09, France
| | - Charles A Powell
- Department of Plant Pathology, Indian River Research and Education Center, University of Florida, Fort Pierce, Florida
| | | |
Collapse
|
15
|
Whiten SR, Ray WK, Helm RF, Adelman ZN. Characterization of the adult Aedes aegypti early midgut peritrophic matrix proteome using LC-MS. PLoS One 2018; 13:e0194734. [PMID: 29570734 PMCID: PMC5865745 DOI: 10.1371/journal.pone.0194734] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/08/2018] [Indexed: 02/01/2023] Open
Abstract
The Aedes aegypti mosquito is the principal vector of arboviruses such as dengue, chikungunya, yellow fever, and Zika virus. These arboviruses are transmitted during adult female mosquito bloodfeeding. While these viruses must transverse the midgut to replicate, the blood meal must also reach the midgut to be digested, absorbed, or excreted, as aggregation of blood meal metabolites can be toxic to the female mosquito midgut. The midgut peritrophic matrix (PM), a semipermeable extracellular layer comprised of chitin fibrils, glycoproteins, and proteoglycans, is one such mechanism of protection for the mosquito midgut. However, this structure has not been characterized for adult female Ae. aegypti. We conducted a mass spectrometry based proteomic analysis to identify proteins that comprise or are associated with the adult female Ae. aegypti early midgut PM. Altogether, 474 unique proteins were identified, with 115 predicted as secreted. GO-term enrichment analysis revealed an abundance of serine-type proteases and several known and novel intestinal mucins. In addition, approximately 10% of the peptides identified corresponded to known salivary proteins, indicating Ae. aegypti mosquitoes extensively swallow their own salivary secretions. However, the physiological relevance of this remains unclear, and further studies are needed to determine PM proteins integral for midgut protection from blood meal derived toxicity and pathogen protection. Finally, we describe substantial discordance between previously described transcriptionally changes observed in the midgut in response to a bloodmeal and the presence of the corresponding protein in the PM. Data are available via ProteomeXchange with identifier PXD007627.
Collapse
Affiliation(s)
- Shavonn R. Whiten
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - W. Keith Ray
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Richard F. Helm
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Zach N. Adelman
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
16
|
Baia-da-Silva DC, Alvarez LCS, Lizcano OV, Costa FTM, Lopes SCP, Orfanó AS, Pascoal DO, Nacif-Pimenta R, Rodriguez IC, Guerra MDGVB, Lacerda MVG, Secundino NFC, Monteiro WM, Pimenta PFP. The role of the peritrophic matrix and red blood cell concentration in Plasmodium vivax infection of Anopheles aquasalis. Parasit Vectors 2018; 11:148. [PMID: 29510729 PMCID: PMC5840820 DOI: 10.1186/s13071-018-2752-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/26/2018] [Indexed: 12/31/2022] Open
Abstract
Background Plasmodium vivax is predominant in the Amazon region, and enhanced knowledge of its development inside a natural vector, Anopheles aquasalis, is critical for future strategies aimed at blocking parasite development. The peritrophic matrix (PM), a chitinous layer produced by the mosquito midgut in response to blood ingestion, is a protective barrier against pathogens. Plasmodium can only complete its life-cycle, and consequently be transmitted to a new host, after successfully passing this barrier. Interestingly, fully engorged mosquitoes that had a complete blood meal form a thicker, well-developed PM than ones that feed in small amounts. The amount of red blood cells (RBC) in the blood meal directly influences the production of digestive enzymes and can protect parasites from being killed during the meal digestion. A specific study interrupting the development of the PM associated with the proteolytic activity inhibition, and distinct RBC concentrations, during the P. vivax infection of the New World malaria vector An. aquasalis is expected to clarify whether these factors affect the parasite development. Results Absence of PM in the vector caused a significant reduction in P. vivax infection. However, the association of chitinase with trypsin inhibitor restored infection rates to those of mosquitoes with a structured PM. Also, only the ingestion of trypsin inhibitor by non-chitinase treated mosquitoes increased the infection intensity. Moreover, the RBC concentration in the infected P. vivax blood meal directly influenced the infection rate and its intensity. A straight correlation was observed between RBC concentrations and infection intensity. Conclusions This study established that there is a balance between the PM role, RBC concentration and digestive enzyme activity influencing the establishment and development of P. vivax infection inside An. aquasalis. Our results indicate that the absence of PM in the midgut facilitates digestive enzyme dispersion throughout the blood meal, causing direct damage to P. vivax. On the other hand, high RBC concentrations support a better and thick, well-developed PM and protect P. vivax from being killed. Further studies of this complex system may provide insights into other details of the malaria vector response to P. vivax infection.
Collapse
Affiliation(s)
- Djane Clarys Baia-da-Silva
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | - Luis Carlos Salazar Alvarez
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | - Omaira Vera Lizcano
- Grupo de Investigación QUIBIO, Departamento de Biología, Universidad Santiago de Cali, Valle del Cauca, Colombia
| | - Fabio Trindade Maranhão Costa
- Department of Genetics, Evolution and Bioagents, Institute of Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Stefanie Costa Pinto Lopes
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brazil.,Instituto Leônidas & Maria Deane, Fiocruz, Manaus, AM, Brazil
| | - Alessandra Silva Orfanó
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz-Minas Gerais, Belo Horizonte, MG, Brazil
| | - Denner Oliveira Pascoal
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
| | - Rafael Nacif-Pimenta
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz-Minas Gerais, Belo Horizonte, MG, Brazil
| | - Iria Cabral Rodriguez
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
| | - Maria das Graças Vale Barbosa Guerra
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | - Marcus Vinicius Guimarães Lacerda
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brazil.,Instituto Leônidas & Maria Deane, Fiocruz, Manaus, AM, Brazil
| | | | - Wuelton Marcelo Monteiro
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | - Paulo Filemon Paolucci Pimenta
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brazil. .,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brazil. .,Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz-Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
17
|
Angleró-Rodríguez YI, Talyuli OA, Blumberg BJ, Kang S, Demby C, Shields A, Carlson J, Jupatanakul N, Dimopoulos G. An Aedes aegypti-associated fungus increases susceptibility to dengue virus by modulating gut trypsin activity. eLife 2017; 6. [PMID: 29205153 PMCID: PMC5716662 DOI: 10.7554/elife.28844] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/13/2017] [Indexed: 01/26/2023] Open
Abstract
Transmission of dengue virus (DENV) requires successful completion of the infection cycle in the Aedes aegypti vector, which is initiated in the midgut tissue after ingestion of an infectious blood meal. While certain Ae. aegypti midgut-associated bacteria influence virus infection, little is known about the midgut-associated fungi (mycobiota), and how its members might influence susceptibility to DENV infection. We show that a Talaromyces (Tsp_PR) fungus, isolated from field-caught Ae. aegypti, render the mosquito more permissive to DENV infection. This modulation is attributed to a profound down-regulation of digestive enzyme genes and trypsin activity, upon exposure to Tsp_PR-secreted factors. In conclusion, we show for the first time that a natural mosquito gut-associated fungus can alter Ae. aegypti physiology in a way that facilitates pathogen infection.
Collapse
Affiliation(s)
- Yesseinia I Angleró-Rodríguez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Octavio Ac Talyuli
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Benjamin J Blumberg
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Seokyoung Kang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Celia Demby
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Alicia Shields
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Jenny Carlson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Natapong Jupatanakul
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| |
Collapse
|
18
|
Liu HW, Li YS, Tang X, Guo PC, Wang DD, Zhou CY, Xia QY, Zhao P. A midgut-specific serine protease, BmSP36, is involved in dietary protein digestion in the silkworm, Bombyx mori. INSECT SCIENCE 2017; 24:753-767. [PMID: 27311916 DOI: 10.1111/1744-7917.12369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
Serine proteases play important roles in digestion and immune responses during insect development. In the present study, the serine protease gene BmSP36, which encodes a 292-residue protein, was cloned from the midgut cells of Bombyx mori. BmSP36 contains an intact catalytic triad (H57, D102 and S195) and a conserved substrate-binding site (G189, H216 and G226), suggesting that it is a serine protease with chymotrypsin-like specificity. The temporal and spatial expression patterns of BmSP36 indicated that its messenger RNA and protein expression mainly occurred in the midgut at the feeding stages. Western blotting, immunofluorescence and liquid chromatography-tandem mass spectrometry analyses revealed secretion of BmSP36 protein from epithelial cells into the midgut lumen. The transcriptional and translational expression of BmSP36 was down-regulated after starvation but up-regulated after refeeding. Moreover, expression of the BmSP36 gene could be up-regulated by a juvenile hormone analogue. These results enable us to better define the potential role of BmSP36 in dietary protein digestion at the feeding stages during larval development.
Collapse
Affiliation(s)
- Hua-Wei Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - You-Shan Li
- Vitamin D Research Institute, Shaanxi Sci-Tech University, Hanzhong, Shaanxi Province, China
| | - Xin Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Peng-Chao Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Dan-Dan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Chun-Yan Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qing-You Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
19
|
Rivera-Pérez C, Clifton ME, Noriega FG. How micronutrients influence the physiology of mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2017; 23:112-117. [PMID: 29129275 PMCID: PMC5695569 DOI: 10.1016/j.cois.2017.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 05/11/2023]
Abstract
Micronutrients or non-energetic nutrients (NEN) are needed in reduced amounts, but are essential for many mosquito physiological processes that influence biological traits from vector competence to reproductive capacity. The NEN include amino acids (AA), vitamins, salts, metals and sterols. Free AA plays critical roles controlling most physiological processes, from digestion to reproduction. Particularly proline connects metabolic pathways in energy production, flight physiology and ammonia detoxification. Metal, in particular iron and calcium, salts, sterol and vitamin homeostasis are critical for cell signaling, respiration, metabolism and reproduction. Micronutrient homeostasis influence the symbiotic relationships with microorganisms, having important implications in mosquitoes' nutrition, physiology and behavior, as well as in mosquito immunity and vector competence.
Collapse
Affiliation(s)
| | | | - Fernando G Noriega
- Department of Biological Sciences, Florida International University, Miami, FL, USA; Biomolecular Science Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
20
|
Cao X, Gulati M, Jiang H. Serine protease-related proteins in the malaria mosquito, Anopheles gambiae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 88:48-62. [PMID: 28780069 PMCID: PMC5586530 DOI: 10.1016/j.ibmb.2017.07.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/25/2017] [Accepted: 07/29/2017] [Indexed: 05/27/2023]
Abstract
Insect serine proteases (SPs) and serine protease homologs (SPHs) participate in digestion, defense, development, and other physiological processes. In mosquitoes, some clip-domain SPs and SPHs (i.e. CLIPs) have been investigated for possible roles in antiparasitic responses. In a recent test aimed at improving quality of gene models in the Anopheles gambiae genome using RNA-seq data, we observed various discrepancies between gene models in AgamP4.5 and corresponding sequences selected from those modeled by Cufflinks, Trinity and Bridger. Here we report a comparative analysis of the 337 SP-related proteins in A. gambiae by examining their domain structures, sequence diversity, chromosomal locations, and expression patterns. One hundred and ten CLIPs contain 1 to 5 clip domains in addition to their protease domains (PDs) or non-catalytic, protease-like domains (PLDs). They are divided into five subgroups: CLIPAs (22) are clip1-5-PLD; CLIPBs (29), CLIPCs (12) and CLIPDs (14) are mainly clip-PD; most CLIPEs (33) have a domain structure of PD/PLD-PLD-clip-PLD0-1. While expression of the CLIP genes in group-1 is generally low and detected in various tissue- and stage-specific RNA-seq libraries, some putative GPs/GPHs (i.e. single domain gut SPs/SPHs) in group-2 are highly expressed in midgut, whole larva or whole adult libraries. In comparison, 46 SPs, 26 SPHs, and 37 multi-domain SPs/SPHs (i.e. PD/PLD-PLD≥1) in group-3 do not seem to be specifically expressed in digestive tract. There are 16 SPs and 2 SPH containing other types of putative regulatory domains (e.g. LDLa, CUB, Gd). Of the 337 SP and SPH genes, 159 were sorted into 46 groups (2-8 members/group) based on similar phylogenetic tree position, chromosomal location, and expression profile. This information and analysis, including improved gene models and protein sequences, constitute a solid foundation for functional analysis of the SP-related proteins in A. gambiae.
Collapse
Affiliation(s)
- Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Mansi Gulati
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
21
|
Torquato RJS, Lu S, Martins NH, Tanaka AS, Pereira PJB. High-resolution structure of a Kazal-type serine protease inhibitor from the dengue vector Aedes aegypti. Acta Crystallogr F Struct Biol Commun 2017; 73:469-475. [PMID: 28777090 PMCID: PMC5544004 DOI: 10.1107/s2053230x17010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/05/2017] [Indexed: 11/11/2022] Open
Abstract
Blood-feeding exoparasites are rich sources of protease inhibitors, and the mosquito Aedes aegypti, which is a vector of Dengue virus, Yellow fever virus, Chikungunya virus and Zika virus, is no exception. AaTI is a single-domain, noncanonical Kazal-type serine proteinase inhibitor from A. aegypti that recognizes both digestive trypsin-like serine proteinases and the central protease in blood clotting, thrombin, albeit with an affinity that is three orders of magnitude lower. Here, the 1.4 Å resolution crystal structure of AaTI is reported from extremely tightly packed crystals (∼22% solvent content), revealing the structural determinants for the observed inhibitory profile of this molecule.
Collapse
Affiliation(s)
- Ricardo J. S. Torquato
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua 3 de Maio 100, 04044-020 São Paulo-SP, Brazil
| | - Stephen Lu
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua 3 de Maio 100, 04044-020 São Paulo-SP, Brazil
| | - Nadia Helena Martins
- Laboratório Nacional de Biociências – LNBio, Caixa Postal 6192, 13083-970 Campinas-SP, Brazil
| | - Aparecida S. Tanaka
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua 3 de Maio 100, 04044-020 São Paulo-SP, Brazil
| | - Pedro José Barbosa Pereira
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| |
Collapse
|
22
|
Sun Y, Wang Y, Liu W, Zhou JL, Zeng J, Wang XH, Jiang YR, Li DH, Qin L. Upregulation of a Trypsin-Like Serine Protease Gene in Antheraea pernyi (Lepidoptera: Saturniidae) Strains Exposed to Different Pathogens. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:941-948. [PMID: 28369437 DOI: 10.1093/jee/tox096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Indexed: 06/07/2023]
Abstract
Antheraea pernyi Guérin-Méneville is used for silk production and as a food resource. Its infection by exogenous pathogens, including microsporidia, fungi, bacteria, and virus, can lead to silkworm diseases, causing major economic losses. A trypsin-like serine protease gene (TLS) was found in A. pernyi transcriptome data resulting from two different infection experiments. The cDNA sequence of ApTLS was 1,020 bp in length and contained an open reading frame of 774 bp encoding a 257-amino acid protein (GenBank KF779933). The present study investigated the expression patterns of ApTLS after exposure to different pathogens, and in four different A. pernyi strains. Semiquantitative RT-PCR indicated that ApTLS was expressed in all developmental stages and was most expressed in the midgut. Quantitative real-time PCR indicated ApTLS was upregulated in the midgut of A. pernyi exposed to nucleopolyhedrovirus (ApNPV), Nosema pernyi, Enterococcus pernyi, and Beauveria bassiana infections, and the highest gene expression level was found under ApNPV infection. The strain Shenhuang No. 2 presented the lowest infection rate and the highest ApTLS gene expression level when exposed to ApNPV. Thus, ApTLS seems to be involved in innate defense reactions in A. pernyi.
Collapse
Affiliation(s)
- Ying Sun
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Liaoning Engineering and Technology Resource Center for Insect Resource, Shenyang 110866, China (; ; ; ; ; ; )
| | - Yong Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Liaoning Engineering and Technology Resource Center for Insect Resource, Shenyang 110866, China (; ; ; ; ; ; )
| | - Wei Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Jing-Lin Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Liaoning Engineering and Technology Resource Center for Insect Resource, Shenyang 110866, China (; ; ; ; ; ; )
| | - Jun Zeng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Liaoning Engineering and Technology Resource Center for Insect Resource, Shenyang 110866, China (; ; ; ; ; ; )
| | - Xiao-Hui Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Liaoning Engineering and Technology Resource Center for Insect Resource, Shenyang 110866, China (; ; ; ; ; ; )
| | - Yi-Ren Jiang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Liaoning Engineering and Technology Resource Center for Insect Resource, Shenyang 110866, China (; ; ; ; ; ; )
| | - Dong-Hua Li
- Yanbian Academy of Agricultural Sciences, Yanbian 133400, China
| | - Li Qin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Liaoning Engineering and Technology Resource Center for Insect Resource, Shenyang 110866, China ( ; ; ; ; ; ; )
- Corresponding author, e-mail:
| |
Collapse
|
23
|
Oliveira JHM, Talyuli OAC, Goncalves RLS, Paiva-Silva GO, Sorgine MHF, Alvarenga PH, Oliveira PL. Catalase protects Aedes aegypti from oxidative stress and increases midgut infection prevalence of Dengue but not Zika. PLoS Negl Trop Dis 2017; 11:e0005525. [PMID: 28379952 PMCID: PMC5393625 DOI: 10.1371/journal.pntd.0005525] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/17/2017] [Accepted: 03/24/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Digestion of blood in the midgut of Aedes aegypti results in the release of pro-oxidant molecules that can be toxic to the mosquito. We hypothesized that after a blood meal, the antioxidant capacity of the midgut is increased to protect cells against oxidative stress. Concomitantly, pathogens present in the blood ingested by mosquitoes, such as the arboviruses Dengue and Zika, also have to overcome the same oxidative challenge, and the antioxidant program induced by the insect is likely to influence infection status of the mosquito and its vectorial competence. METHODOLOGY/PRINCIPAL FINDINGS We found that blood-induced catalase mRNA and activity in the midgut peaked 24 h after feeding and returned to basal levels after the completion of digestion. RNAi-mediated silencing of catalase (AAEL013407-RB) reduced enzyme activity in the midgut epithelia, increased H2O2 leakage and decreased fecundity and lifespan when mosquitoes were fed H2O2. When infected with Dengue 4 and Zika virus, catalase-silenced mosquitoes showed no alteration in infection intensity (number of plaque forming units/midgut) 7 days after the infectious meal. However, catalase knockdown reduced Dengue 4, but not Zika, infection prevalence (percent of infected midguts). CONCLUSION/SIGNIFICANCE Here, we showed that blood ingestion triggers an antioxidant response in the midgut through the induction of catalase. This protection facilitates the establishment of Dengue virus in the midgut. Importantly, this mechanism appears to be specific for Dengue because catalase silencing did not change Zika virus prevalence. In summary, our data suggest that redox balance in the midgut modulates mosquito vectorial competence to arboviral infections.
Collapse
Affiliation(s)
- José Henrique M. Oliveira
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Octávio A. C. Talyuli
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Renata L. S. Goncalves
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Gabriela Oliveira Paiva-Silva
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brasil
| | - Marcos Henrique F. Sorgine
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brasil
| | - Patricia Hessab Alvarenga
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brasil
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Pedro L. Oliveira
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brasil
| |
Collapse
|
24
|
Vogel KJ, Valzania L, Coon KL, Brown MR, Strand MR. Transcriptome Sequencing Reveals Large-Scale Changes in Axenic Aedes aegypti Larvae. PLoS Negl Trop Dis 2017; 11:e0005273. [PMID: 28060822 PMCID: PMC5245907 DOI: 10.1371/journal.pntd.0005273] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/19/2017] [Accepted: 12/20/2016] [Indexed: 01/06/2023] Open
Abstract
Mosquitoes host communities of microbes in their digestive tract that consist primarily of bacteria. We previously reported that Aedes aegypti larvae colonized by a native community of bacteria and gnotobiotic larvae colonized by only Escherichia coli develop very similarly into adults, whereas axenic larvae never molt and die as first instars. In this study, we extended these findings by first comparing the growth and abundance of bacteria in conventional, gnotobiotic, and axenic larvae during the first instar. Results showed that conventional and gnotobiotic larvae exhibited no differences in growth, timing of molting, or number of bacteria in their digestive tract. Axenic larvae in contrast grew minimally and never achieved the critical size associated with molting by conventional and gnotobiotic larvae. In the second part of the study we compared patterns of gene expression in conventional, gnotobiotic and axenic larvae by conducting an RNAseq analysis of gut and nongut tissues (carcass) at 22 h post-hatching. Approximately 12% of Ae. aegypti transcripts were differentially expressed in axenic versus conventional or gnotobiotic larvae. However, this profile consisted primarily of transcripts in seven categories that included the down-regulation of select peptidases in the gut and up-regulation of several genes in the gut and carcass with roles in amino acid transport, hormonal signaling, and metabolism. Overall, our results indicate that axenic larvae exhibit alterations in gene expression consistent with defects in acquisition and assimilation of nutrients required for growth.
Collapse
Affiliation(s)
- Kevin J. Vogel
- Department of Entomology, The University of Georgia, Athens, Georgia, United States of America
- * E-mail: (KJV); (MRS)
| | - Luca Valzania
- Department of Entomology, The University of Georgia, Athens, Georgia, United States of America
| | - Kerri L. Coon
- Department of Entomology, The University of Georgia, Athens, Georgia, United States of America
| | - Mark R. Brown
- Department of Entomology, The University of Georgia, Athens, Georgia, United States of America
| | - Michael R. Strand
- Department of Entomology, The University of Georgia, Athens, Georgia, United States of America
- * E-mail: (KJV); (MRS)
| |
Collapse
|
25
|
Transcriptional Analysis of The Adaptive Digestive System of The Migratory Locust in Response to Plant Defensive Protease Inhibitors. Sci Rep 2016; 6:32460. [PMID: 27581362 PMCID: PMC5007527 DOI: 10.1038/srep32460] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/05/2016] [Indexed: 11/28/2022] Open
Abstract
Herbivorous insects evolved adaptive mechanisms to compensate for the presence of plant defensive protease inhibitors (PI) in their food. The underlying regulatory mechanisms of these compensatory responses remain largely elusive. In the current study, we investigated the initiation of this adaptive response in the migratory locust, Locusta migratoria, via microarray analysis of gut tissues. Four hours after dietary uptake of PIs, 114 and 150 transcripts were respectively found up- or downregulated. The results suggest a quick trade-off between compensating for potential loss of digestive activity on the one hand, and stress tolerance, defense, and structural integrity of the gut on the other hand. We additionally addressed the role of a group of related upregulated hexamerin-like proteins in the PI-induced response. Simultaneous knockdown of corresponding transcripts by means of RNA interference resulted in a reduced capacity of the locust nymphs to cope with the effects of PI. Moreover, since insect hexamerins have been shown to bind Juvenile Hormone (JH), we also investigated the effect of JH on the proteolytic digestion in L. migratoria. Our results indicate that JH has a stimulatory effect on the expression of three homologous chymotrypsin genes, while knocking down the JH receptor (methoprene tolerant) led to opposite effects.
Collapse
|
26
|
Bil M, Broeckx V, Landuyt B, Huybrechts R. Differential peptidomics highlights adipokinetic hormone as key player in regulating digestion in anautogenous flesh fly, Sarcophaga crassipalpis. Gen Comp Endocrinol 2014; 208:49-56. [PMID: 25234055 DOI: 10.1016/j.ygcen.2014.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/13/2014] [Accepted: 08/30/2014] [Indexed: 02/04/2023]
Abstract
Females of anautogenous flesh flies, Sarcophaga crassipalpis, need a protein meal in order to produce their first batch of eggs. This protein meal elicits an increase in midgut proteolytic activity that is under neuropeptidergic regulation. Time series of decapitation and rescue experiments of liver fed flies evidenced the need of a peptide factor released by corpora cardiaca (CC) within 4h post protein feeding in order to assure complete protein digestion. Q-Exactive quantitative differential peptidomics analysis on CC of sugar fed flies and flies 5h post protein feeding respectively, showed a unique consistent decrease in the stored amount of adipokinetic hormone (AKH) ranging between 16% up to 63%. Injection of AKH into liver fed decapitated flies as well as sugar fed intact flies resulted in dose dependent enhanced midgut proteolytic activity up to the level of intact protein fed flies. This suggests a key role of AKH in food depended reproduction.
Collapse
Affiliation(s)
- Magdalena Bil
- Research Group of Insect Physiology and Molecular Ethology, KU Leuven, Naamsestraat 59, B-3000, Belgium
| | - Valérie Broeckx
- Research Group of Functional Genomics and Proteomics, KU Leuven, Naamsestraat 59, B-3000, Belgium
| | - Bart Landuyt
- Research Group of Functional Genomics and Proteomics, KU Leuven, Naamsestraat 59, B-3000, Belgium
| | - Roger Huybrechts
- Research Group of Insect Physiology and Molecular Ethology, KU Leuven, Naamsestraat 59, B-3000, Belgium.
| |
Collapse
|
27
|
Trypsin isozymes in the lobster Panulirus argus (Latreille, 1804): from molecules to physiology. J Comp Physiol B 2014; 185:17-35. [PMID: 25192870 DOI: 10.1007/s00360-014-0851-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/10/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
Abstract
Trypsin enzymes have been studied in a wide variety of animal taxa due to their central role in protein digestion as well as in other important physiological and biotechnological processes. Crustacean trypsins exhibit a high number of isoforms. However, while differences in properties of isoenzymes are known to play important roles in regulating different physiological processes, there is little information on this aspect for decapod trypsins. The aim of this review is to integrate recent findings at the molecular level on trypsin enzymes of the spiny lobster Panulirus argus, into higher levels of organization (biochemical, organism) and to interpret those findings in relation to the feeding ecology of these crustaceans. Trypsin in lobster is a polymorphic enzyme, showing isoforms that differ in their biochemical features and catalytic efficiencies. Molecular studies suggest that polymorphism in lobster trypsins may be non-neutral. Trypsin isoenzymes are differentially regulated by dietary proteins, and it seems that some isoenzymes have undergone adaptive evolution coupled with a divergence in expression rate to increase fitness. This review highlights important but poorly studied issues in crustaceans in general, such as the relation among trypsin polymorphism, phenotypic (digestive) flexibility, digestion efficiency, and feeding ecology.
Collapse
|
28
|
The midgut of Aedes albopictus females expresses active trypsin-like serine peptidases. Parasit Vectors 2014; 7:253. [PMID: 24886160 PMCID: PMC4097087 DOI: 10.1186/1756-3305-7-253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 05/06/2014] [Indexed: 12/12/2022] Open
Abstract
Background Aedes albopictus is widely distributed across tropical and sub-tropical regions and is associated with the transmission of several arboviruses. Although this species is increasingly relevant to public health due its ability to successfully colonize both urban and rural habitats, favoring the dispersion of viral infections, little is known about its biochemical traits, with all assumptions made based on studies of A. aegypti. In previous studies we characterized the peptidase profile of pre-imaginal stages of A. albopictus and we reported the first proteomic analysis of the midgut from sugar-fed females of this insect species. Methods In the present work, we further analyzed the peptidase expression in the midgut of sugar-fed females using 1DE-substrate gel zymography, two-dimensional electrophoresis (2DE), mass spectrometry (MS), and protein identification based on similarity. Results The combination of zymography, in solution assays using fluorescent substrates and 2DE-MS/MS allowed us to identify the active serine peptidase “fingerprint” in the midgut of A. albopictus females. Zymographic analysis revealed a proteolytic profile composed of at least 13 bands ranging from ~25 to 250 kDa, which were identified as trypsin-like serine peptidases by using specific inhibitors of this class of enzymes. Concomitant use of the fluorogenic substrate Z-Phe-Arg-AMC and trypsin-like serine protease inhibitors corroborated the zymographic findings. Our proteomic approach allowed the identification of two different trypsin-like serine peptidases and one chymotrypsin in protein spots of the alkaline region in 2DE map of the A. albopictus female midgut. Identification of these protein coding genes was achieved by similarity to the A. aegypti genome sequences using Mascot and OMSSA search engines. Conclusion These results allowed us to detect, identify and characterize the expression of active trypsin-like serine peptidases in the midgut of sugar-fed A. albopictus females. In addition, proteomic analysis allowed us to confidently assign the expression of two trypsin genes and one chymotrypsin gene to the midgut of this mosquito. These results contribute to the gene annotation in this species of unknown genome and represent a small but important step toward the protein-level functional and localization assignment of trypsin-like serine peptidase genes in the Aedes genus.
Collapse
|
29
|
Pacey EK, O'Donnell MJ. Transport of H(+), Na(+) and K(+) across the posterior midgut of blood-fed mosquitoes (Aedes aegypti). JOURNAL OF INSECT PHYSIOLOGY 2014; 61:42-50. [PMID: 24406662 DOI: 10.1016/j.jinsphys.2013.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/03/2013] [Accepted: 12/28/2013] [Indexed: 06/03/2023]
Abstract
Following ingestion of a blood meal, the adult female mosquito undergoes a massive diuresis during which Na(+), Cl(-) and water are secreted at high rates by the Malpighian tubules. In the hours following completion of diuresis, digestion of the K(+)-rich blood cells provides a source of energy as well as amino acids for proteins in the developing eggs. Although the transport of inorganic ions by the Malpighian tubules of blood-fed mosquitoes has been extensively characterized, relatively little is known of the epithelial transport mechanisms responsible for movement of Na(+), H(+), and K(+) across the posterior midgut. In this paper we have used the Scanning Ion-selective Electrode Technique (SIET) to measure the basal (unstimulated) rates of transport of K(+), Na(+) and H(+) across the isolated posterior midgut at intervals after the blood meal. We have also measured luminal concentrations of Na(+) and K(+) and the transepithelial electrical potential at the same time points and have calculated the electrochemical potentials for Na(+), K(+) and H(+) across the midgut. SIET measurements reveal absorption (lumen to bath) of Na(+) and H(+) and secretion of K(+) for the first 2h after blood-feeding. By 24h after the meal, absorption of Na(+) and H(+) remains active while there is an electrochemical gradient favouring absorption of K(+). Inhibition by ouabain and Ba(2+) suggest a role for the Na(+)/K(+)-ATPase and K(+) channels in absorption of Na(+) and K(+), respectively. Inhibition of H(+) absorption by acetazolamide implicates carbonic anhydrase in transepithelial H(+) transport.
Collapse
Affiliation(s)
- Evan K Pacey
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton L8S 4K1, Canada
| | - Michael J O'Donnell
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton L8S 4K1, Canada.
| |
Collapse
|
30
|
Ribeiro JMC, Genta FA, Sorgine MHF, Logullo R, Mesquita RD, Paiva-Silva GO, Majerowicz D, Medeiros M, Koerich L, Terra WR, Ferreira C, Pimentel AC, Bisch PM, Leite DC, Diniz MMP, Junior JLDSGV, Da Silva ML, Araujo RN, Gandara ACP, Brosson S, Salmon D, Bousbata S, González-Caballero N, Silber AM, Alves-Bezerra M, Gondim KC, Silva-Neto MAC, Atella GC, Araujo H, Dias FA, Polycarpo C, Vionette-Amaral RJ, Fampa P, Melo ACA, Tanaka AS, Balczun C, Oliveira JHM, Gonçalves RLS, Lazoski C, Rivera-Pomar R, Diambra L, Schaub GA, Garcia ES, Azambuja P, Braz GRC, Oliveira PL. An insight into the transcriptome of the digestive tract of the bloodsucking bug, Rhodnius prolixus. PLoS Negl Trop Dis 2014; 8:e2594. [PMID: 24416461 PMCID: PMC3886914 DOI: 10.1371/journal.pntd.0002594] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/04/2013] [Indexed: 12/14/2022] Open
Abstract
The bloodsucking hemipteran Rhodnius prolixus is a vector of Chagas' disease, which affects 7-8 million people today in Latin America. In contrast to other hematophagous insects, the triatomine gut is compartmentalized into three segments that perform different functions during blood digestion. Here we report analysis of transcriptomes for each of the segments using pyrosequencing technology. Comparison of transcript frequency in digestive libraries with a whole-body library was used to evaluate expression levels. All classes of digestive enzymes were highly expressed, with a predominance of cysteine and aspartic proteinases, the latter showing a significant expansion through gene duplication. Although no protein digestion is known to occur in the anterior midgut (AM), protease transcripts were found, suggesting secretion as pro-enzymes, being possibly activated in the posterior midgut (PM). As expected, genes related to cytoskeleton, protein synthesis apparatus, protein traffic, and secretion were abundantly transcribed. Despite the absence of a chitinous peritrophic membrane in hemipterans - which have instead a lipidic perimicrovillar membrane lining over midgut epithelia - several gut-specific peritrophin transcripts were found, suggesting that these proteins perform functions other than being a structural component of the peritrophic membrane. Among immunity-related transcripts, while lysozymes and lectins were the most highly expressed, several genes belonging to the Toll pathway - found at low levels in the gut of most insects - were identified, contrasting with a low abundance of transcripts from IMD and STAT pathways. Analysis of transcripts related to lipid metabolism indicates that lipids play multiple roles, being a major energy source, a substrate for perimicrovillar membrane formation, and a source for hydrocarbons possibly to produce the wax layer of the hindgut. Transcripts related to amino acid metabolism showed an unanticipated priority for degradation of tyrosine, phenylalanine, and tryptophan. Analysis of transcripts related to signaling pathways suggested a role for MAP kinases, GTPases, and LKBP1/AMP kinases related to control of cell shape and polarity, possibly in connection with regulation of cell survival, response of pathogens and nutrients. Together, our findings present a new view of the triatomine digestive apparatus and will help us understand trypanosome interaction and allow insights into hemipteran metabolic adaptations to a blood-based diet.
Collapse
Affiliation(s)
- José M. C. Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Fernando A. Genta
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos H. F. Sorgine
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Logullo
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael D. Mesquita
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela O. Paiva-Silva
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David Majerowicz
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Medeiros
- Instituto Nacional de Metrologia Qualidade e Tecnologia, Diretoria de Metrologia Aplicada às Ciências da Vida, Programa de Biotecnologia, Prédio 27, CEP 25250-020, Duque de Caxias, Rio de Janeiro, Brazil
| | - Leonardo Koerich
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CEP 21944-970, Rio de Janeiro, Brazil
| | - Walter R. Terra
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Clélia Ferreira
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - André C. Pimentel
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo M. Bisch
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel C. Leite
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michelle M. P. Diniz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Lídio da S. G. V. Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Technological Innovation, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | - Manuela L. Da Silva
- Instituto Nacional de Metrologia Qualidade e Tecnologia, Diretoria de Metrologia Aplicada às Ciências da Vida, Programa de Biotecnologia, Prédio 27, CEP 25250-020, Duque de Caxias, Rio de Janeiro, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo N. Araujo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Parasitologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Caroline P. Gandara
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sébastien Brosson
- Institute for Molecular Biology and Medicine (IBMM), Université Libre de Bruxelles, Gosselies, Belgium
| | - Didier Salmon
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sabrina Bousbata
- Institute for Molecular Biology and Medicine (IBMM), Université Libre de Bruxelles, Gosselies, Belgium
| | | | - Ariel Mariano Silber
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Michele Alves-Bezerra
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia C. Gondim
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mário Alberto C. Silva-Neto
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia C. Atella
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helena Araujo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe A. Dias
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla Polycarpo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel J. Vionette-Amaral
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Fampa
- Instituto de Biologia, DBA, UFRRJ, Seropédica, Rio de Janeiro, Brazil
| | - Ana Claudia A. Melo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aparecida S. Tanaka
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carsten Balczun
- Zoology/Parasitology Group, Ruhr-Universität, Bochum, Germany
| | - José Henrique M. Oliveira
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata L. S. Gonçalves
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiano Lazoski
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CEP 21944-970, Rio de Janeiro, Brazil
| | - Rolando Rivera-Pomar
- Centro Regional de Estudios Genomicos, Universidad Nacional de La Plata, Florencio Varela, Argentina
- Centro de Bioinvestigaciones, Universidad Nacional del Noroeste de Buenos Aires, Pergamino, Argentina
| | - Luis Diambra
- Centro Regional de Estudios Genomicos, Universidad Nacional de La Plata, Florencio Varela, Argentina
| | | | - Elói S. Garcia
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Azambuja
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glória R. C. Braz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L. Oliveira
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Abrudan J, Ramalho-Ortigão M, O'Neil S, Stayback G, Wadsworth M, Bernard M, Shoue D, Emrich S, Lawyer P, Kamhawi S, Rowton ED, Lehane MJ, Bates PA, Valenzeula JG, Tomlinson C, Appelbaum E, Moeller D, Thiesing B, Dillon R, Clifton S, Lobo NF, Wilson RK, Collins FH, McDowell MA. The characterization of the Phlebotomus papatasi transcriptome. INSECT MOLECULAR BIOLOGY 2013; 22:211-232. [PMID: 23398403 PMCID: PMC3594503 DOI: 10.1111/imb.12015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
As important vectors of human disease, phlebotomine sand flies are of global significance to human health, transmitting several emerging and re-emerging infectious diseases. The most devastating of the sand fly transmitted infections are the leishmaniases, causing significant mortality and morbidity in both the Old and New World. Here we present the first global transcriptome analysis of the Old World vector of cutaneous leishmaniasis, Phlebotomus papatasi (Scopoli) and compare this transcriptome to that of the New World vector of visceral leishmaniasis, Lutzomyia longipalpis. A normalized cDNA library was constructed using pooled mRNA from Phlebotomus papatasi larvae, pupae, adult males and females fed sugar, blood, or blood infected with Leishmania major. A total of 47 615 generated sequences was cleaned and assembled into 17 120 unique transcripts. Of the assembled sequences, 50% (8837 sequences) were classified using Gene Ontology (GO) terms. This collection of transcripts is comprehensive, as demonstrated by the high number of different GO categories. An in-depth analysis revealed 245 sequences with putative homology to proteins involved in blood and sugar digestion, immune response and peritrophic matrix formation. Twelve of the novel genes, including one trypsin, two peptidoglycan recognition proteins (PGRP) and nine chymotrypsins, have a higher expression level during larval stages. Two novel chymotrypsins and one novel PGRP are abundantly expressed upon blood feeding. This study will greatly improve the available genomic resources for P. papatasi and will provide essential information for annotation of the full genome.
Collapse
Affiliation(s)
- Jenica Abrudan
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Marcelo Ramalho-Ortigão
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | | - Phillip Lawyer
- Intracellular Parasite Biology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Edgar D. Rowton
- Entomology Program, Walter Reed Army Institute of Research, 530 Robert Grant Ave., Silver Spring, MD 20910, USA
| | | | - Paul A. Bates
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, LA1 4YQ, UK
| | - Jesus G. Valenzeula
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Chad Tomlinson
- The Genome Institute at Washington University, St. Louis, Missouri, 63108, USA
| | - Elizabeth Appelbaum
- The Genome Institute at Washington University, St. Louis, Missouri, 63108, USA
| | - Deborah Moeller
- The Genome Institute at Washington University, St. Louis, Missouri, 63108, USA
| | - Brenda Thiesing
- The Genome Institute at Washington University, St. Louis, Missouri, 63108, USA
| | - Rod Dillon
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, LA1 4YQ, UK
| | - Sandra Clifton
- The Genome Institute at Washington University, St. Louis, Missouri, 63108, USA
| | - Neil F. Lobo
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Richard K. Wilson
- The Genome Institute at Washington University, St. Louis, Missouri, 63108, USA
| | - Frank H. Collins
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Mary Ann McDowell
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
32
|
Saboia-Vahia L, Borges-Veloso A, Mesquita-Rodrigues C, Cuervo P, Dias-Lopes G, Britto C, Silva APDB, De Jesus JB. Trypsin-like serine peptidase profiles in the egg, larval, and pupal stages of Aedes albopictus. Parasit Vectors 2013; 6:50. [PMID: 23445661 PMCID: PMC3606343 DOI: 10.1186/1756-3305-6-50] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/18/2013] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Aedes albopictus, a ubiquitous mosquito, is one of the main vectors of dengue and yellow fever, representing an important threat to public health worldwide. Peptidases play key roles in processes such as digestion, oogenesis, and metamorphosis of insects. However, most of the information on the proteolytic enzymes of mosquitoes is derived from insects in the adult stages and is often directed towards the understanding of blood digestion. The aim of this study was to investigate the expression of active peptidases from the preimaginal stages of Ae. albopictus. METHODS Ae. albopictus eggs, larvae, and pupae were analyzed using zymography with susbtrate-SDS-PAGE. The pH, temperature and peptidase inhibitor sensitivity was evaluated. In addition, the proteolytic activities of larval instars were assayed using the fluorogenic substrate Z-Phe-Arg-AMC. RESULTS The proteolytic profile of the larval stage was composed of 8 bands ranging from 17 to 130 kDa. These enzymes displayed activity in a broad range of pH values, from 5.5 to 10.0. The enzymatic profile of the eggs was similar to that of the larvae, although the proteolytic bands of the eggs showed lower intensities. The pupal stage showed a complex proteolytic pattern, with at least 6 bands with apparent molecular masses ranging from 30 to 150 kDa and optimal activity at pH 7.5. Peptidases from larval instars were active from 10°C to 60°C, with optimal activity at temperatures between 37°C and 50°C. The proteolytic profile of both the larval and pupal stages was inhibited by phenyl-methyl sulfonyl-fluoride (PMSF) and Nα-Tosyl L-lysine chloromethyl ketone hydrochloride (TLCK), indicating that the main peptidases expressed during these developmental stages are trypsin-like serine peptidases. CONCLUSION The preimaginal stages of Ae. albopictus exhibited a complex profile of trypsin-like serine peptidase activities. A comparative analysis of the active peptidase profiles revealed differential expression of trypsin-like isoforms among the preimaginal stages, suggesting that some of these enzymes are stage specific. Additionally, a comparison of the peptidase expression between larvae from eggs collected in the natural environment and larvae obtained from the eggs of female mosquitoes maintained in colonies for a long period of time demonstrated that the proteolytic profile is invariable under such conditions.
Collapse
Affiliation(s)
- Leonardo Saboia-Vahia
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - André Borges-Veloso
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Camila Mesquita-Rodrigues
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Patricia Cuervo
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Geovane Dias-Lopes
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Constança Britto
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Ana Paula de Barros Silva
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Jose B De Jesus
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Departamento de Engenharia de Biossistemas, Universidade Federal de São João Del Rey, Minas Gerais, Brazil
| |
Collapse
|
33
|
Stygar D, Michalczyk K, Dolezych B, Nakonieczny M, Migula P, Zaak M, Sawczyn T, Karcz-Socha I, Kukla M, Zwirska-Korczala K, Buldak R. Digestive enzymes activity in subsequent generations of Cameraria ohridella larvae harvested from horse chestnut trees after treatment with imidacloprid. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2013; 105:5-12. [PMID: 24238283 DOI: 10.1016/j.pestbp.2012.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 10/28/2012] [Accepted: 10/29/2012] [Indexed: 06/02/2023]
Abstract
In the present study we describe the effect of chloronicotinoid pesticide (imidacloprid) on the digestive enzymes activity of the Cameraria ohridella larvae after lasting 1 year sublethal exposure to imidacloprid pesticide. Caterpillars - L4 stage (fourth instar, hyperphagic tissue-feeding phase) - were collected from chemically protected white horse chestnut trees 1 year after imidacloprid treatment, and compared with caterpillars collected from non-treated trees in a previous study. Enzymes activity of α-amylase, disaccharidases, glycosidases and proteases was assayed. The presence of pesticide in ingested food changed the digestive enzymes profile of caterpillars. The analysis of correlations between different digestive enzymes showed many significant correlations (P<0.05) among glycolytic activities like β-glucosidase and α-galactosidase activities. Statistically significant correlations for proteolytic activity were found between trypsin and chymotrypsin activity and aminopeptidase activity that occurred only in the 1st generation. PCA distinguished five primary components with eigenvalues higher than 1, from which the first two explain almost 59% of analyzed results. Surprisingly, in the pesticide treated groups significantly higher activities of sucrase and lactase in relation to control were found. In general, glycosidase (α-glucosidase, β-glucosidase and β-galactosidase) activities showed a similar pattern of activity in different generations. These results contrast with those obtained with control larvae, where significant differences in activities of α-glucosidase, β-glucosidase and β-galactosidase may result from the different quantity and quality food intake by subsequent generations of larvae. No inter-generation differences in total proteolytic activity were observed in treated larvae. The absolute value of total proteolytic activity was higher than that in the control group. The pesticide present in the vascular system of the horse chestnut tree significantly affected some of the digestive enzymes activities and - in consequence - also interrelationships between enzymes, what may affect the food digestion.
Collapse
Affiliation(s)
- Dominika Stygar
- Department of Physiology in Zabrze, Medical University of Silesia in Katowice, ul. Jordana 19, PL 41-808 Zabrze, Poland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Park KH, Choi YC, Nam SH, Kim WT, Kim AY, Kim SY. Recombinant Expression and Enzyme Activity of Chymotrypsin-like Protease from Black Soldier Fly, Hermetia illucens (Diptera: Stratiomyidae). ACTA ACUST UNITED AC 2012. [DOI: 10.7852/ijie.2012.25.2.181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Borges-Veloso A, Saboia-Vahia L, Cuervo P, Pires RC, Britto C, Fernandes N, d'Avila-Levy CM, De Jesus JB. Proteolytic profiling and comparative analyses of active trypsin-like serine peptidases in preimaginal stages of Culex quinquefasciatus. Parasit Vectors 2012; 5:123. [PMID: 22892097 PMCID: PMC3453504 DOI: 10.1186/1756-3305-5-123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/12/2012] [Indexed: 11/10/2022] Open
Abstract
Background The mosquito Culex quinquefasciatu s, a widespread insect in tropical and sub-tropical regions of the world, is a vector of multiple arboviruses and parasites, and is considered an important risk to human and veterinary health. Proteolytic enzymes play crucial roles in the insect physiology including the modulation of embryonic development and food digestion. Therefore, these enzymes represent important targets for the development of new control strategies. This study presents zymographic characterization and comparative analysis of the proteolytic activity found in eggs, larval instars and pupae of Culex quinquefasciatus. Methods The proteolytic profiles of eggs, larvae and pupa of Cx. quinquefasciatus were characterized by SDS-PAGE co-polymerized with 0.1% gelatin, according to the pH, temperature and peptidase inhibitor sensitivity. In addition, the proteolytic activities were characterized in solution using 100 μM of the fluorogenic substrate Z-Phe-Arg-AMC. Results Comparison of the proteolytic profiles by substrate-SDS-PAGE from all preimaginal stages of the insect revealed qualitative and quantitative differences in the peptidase expression among eggs, larvae and pupae. Use of specific inhibitors revealed that the proteolytic activity from preimaginal stages is mostly due to trypsin-like serine peptidases that display optimal activity at alkaline pH. In-solution, proteolytic assays of the four larval instars using the fluorogenic substrate Z-Phe-Arg-AMC in the presence or absence of a trypsin-like serine peptidase inhibitor confirmed the results obtained by substrate-SDS-PAGE analysis. The trypsin-like serine peptidases of the four larval instars were functional over a wide range of temperatures, showing activities at 25°C and 65°C, with an optimal activity between 37°C and 50°C. Conclusion The combined use of zymography and in-solution assays, as performed in this study, allowed for a more detailed analysis of the repertoire of proteolytic enzymes in preimaginal stages of the insect. Finally, differences in the trypsin-like serine peptidase profile of preimaginal stages were observed, suggesting that such enzymes exert specific functions during the different stages of the life cycle of the insect.
Collapse
Affiliation(s)
- Andre Borges-Veloso
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Perera E, Rodríguez-Viera L, Rodríguez-Casariego J, Fraga I, Carrillo O, Martínez-Rodríguez G, Mancera JM. Dietary protein quality differentially regulates trypsin enzymes at the secretion and transcription level in Panulirus argus by distinct signaling pathways. J Exp Biol 2012; 215:853-62. [DOI: 10.1242/jeb.063925] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The effects of pelleted diets with different protein composition (fish, squid or soybean meals as main protein sources) on trypsin secretion and expression were studied in the lobster Panulirus argus. Trypsin secretion was shown to be maximal 4 h after ingestion. At this time, fish- and squid-based diets induced trypsin secretion, as well as up-regulation of the major trypsin isoform at the transcription level. While fish- and squid-based diets elicited a prandial response, soybean-based diet failed to stimulate the digestive gland to secrete trypsin into the gastric fluid or induce trypsin expression above the levels observed in fasting lobsters. In vitro assays showed that intact proteins rather than protein hydrolysates stimulate trypsin secretion in the lobster. However, the signal for trypsin transcription appears to be different to that for secretion and is probably mediated by the appearance of free amino acids in the digestive gland, suggesting a stepwise regulation of trypsin enzymes during digestion. We conclude that trypsin enzymes in P. argus are regulated at the transcription and secretion level by the quality of dietary proteins through two distinct signaling pathways. Our results indicate that protein digestion efficiency in spiny lobsters can be improved by selecting appropriated protein sources. However, other factors like the poor solubility of dietary proteins in dry diets could hamper further enhancement of digestion efficiency.
Collapse
Affiliation(s)
- Erick Perera
- Center for Marine Research, University of Havana, Cuba
| | | | | | | | | | | | - Juan M. Mancera
- Department of Biology, Faculty of Marine and Environmental Science, University of Cadiz, Spain
| |
Collapse
|
37
|
Bonizzoni M, Dunn WA, Campbell CL, Olson KE, Marinotti O, James AA. Strain Variation in the Transcriptome of the Dengue Fever Vector, Aedes aegypti. G3 (BETHESDA, MD.) 2012; 2:103-14. [PMID: 22384387 PMCID: PMC3276191 DOI: 10.1534/g3.111.001107] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/15/2011] [Indexed: 11/18/2022]
Abstract
Studies of transcriptome dynamics provide a basis for understanding functional elements of the genome and the complexity of gene regulation. The dengue vector mosquito, Aedes aegypti, exhibits great adaptability to diverse ecological conditions, is phenotypically polymorphic, and shows variation in vectorial capacity to arboviruses. Previous genome sequencing showed richness in repetitive DNA and transposable elements that can contribute to genome plasticity. Population genetic studies revealed a varying degree of worldwide genetic polymorphism. However, the extent of functional genetic polymorphism across strains is unknown. The transcriptomes of three Ae. aegypti strains, Chetumal (CTM), Rexville D-Puerto Rico (Rex-D) and Liverpool (LVP), were compared. CTM is more susceptible than Rex- D to infection by dengue virus serotype 2. A total of 4188 transcripts exhibit either no or small variation (<2-fold) among sugar-fed samples of the three strains and between sugar- and blood-fed samples within each strain, corresponding most likely to genes encoding products necessary for vital functions. Transcripts enriched in blood-fed mosquitoes encode proteins associated with catalytic activities, molecular transport, metabolism of lipids, carbohydrates and amino acids, and functions related to blood digestion and the progression of the gonotropic cycle. Significant qualitative and quantitative differences were found in individual transcripts among strains including differential representation of paralogous gene products. The majority of immunity-associated transcripts decreased in accumulation after a bloodmeal and the results are discussed in relation to the different susceptibility of CTM and Rex-D mosquitoes to DENV2 infection.
Collapse
Affiliation(s)
| | - W. Augustine Dunn
- Department of Molecular Biology and Biochemistry, and
- Institute for Genomics and Bioinformatics, University of California, Irvine, California 92697
| | | | - Ken E. Olson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523
| | | | - Anthony A. James
- Department of Molecular Biology and Biochemistry, and
- Department of Microbiology and Molecular Genetics, University of California, California, Irvine 92697
| |
Collapse
|
38
|
Kodrík D, Vinokurov K, Tomčala A, Socha R. The effect of adipokinetic hormone on midgut characteristics in Pyrrhocoris apterus L. (Heteroptera). JOURNAL OF INSECT PHYSIOLOGY 2012; 58:194-204. [PMID: 22119443 DOI: 10.1016/j.jinsphys.2011.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 05/31/2023]
Abstract
Digestive processes and the effect of adipokinetic hormone (Pyrap-AKH) on the amount of nutrients (lipids, proteins, and carbohydrates), and on the activity of digestive enzymes (lipases, peptidases, and carbohydrases) were studied in the midgut of the firebug, Pyrrhocoris apterus. The analyses were performed on samples of anterior (AM), middle (MM) and posterior (PM) midgut parts. The results revealed that the digestion of lipids, carbohydrates and proteins take place in the acidic milieu. The Pyrap-AKH treatment increased significantly the level of lipids and proteins in the midgut, and also the level of triacylglycerols (TGs) predominantly in the AM, and the level of diacylglycerols (DGs) in the MM. The increase was not uniform for all present TG and DG species - those containing the linoleic fatty acid were predominant. No hormonal effect on lipase activity was recorded, while peptidase and glucosidase activity was increased in the MM and PM. All these facts indicate that the Pyrap-AKH probably stimulates digestion by more intensive food ingestion or turnover, and perhaps by the stimulation of metabolite absorption; the activation of digestive enzymes seems to be secondary or controlled by other mechanisms.
Collapse
Affiliation(s)
- Dalibor Kodrík
- Institute of Entomology, Biology Centre, Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | | | | | | |
Collapse
|
39
|
Soares TS, Watanabe RM, Lemos FJ, Tanaka AS. Molecular characterization of genes encoding trypsin-like enzymes from Aedes aegypti larvae and identification of digestive enzymes. Gene 2011; 489:70-5. [DOI: 10.1016/j.gene.2011.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 07/25/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
|
40
|
Kim WT, Bae SW, Kim AY, Park KH, Lee SB, Choi YC, Han SM, Park YH, Koh YH. Characterization of the molecular features and expression patterns of two serine proteases in Hermetia illucens (Diptera: Stratiomyidae) larvae. BMB Rep 2011; 44:387-92. [DOI: 10.5483/bmbrep.2011.44.6.387] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
41
|
Zhao L, Chen J, Becnel JJ, Kline DL, Clark GG, Linthicum KJ. Identification and transcription profiling of trypsin in Aedes taeniorhynchus (Diptera: Culicidae): developmental regulation, blood feeding, and permethrin exposure. JOURNAL OF MEDICAL ENTOMOLOGY 2011; 48:546-553. [PMID: 21661315 DOI: 10.1603/me10211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The cDNA of a trypsin gene from Aedes (Ochlerotatus) taeniorhynchus (Weidemann) was cloned and sequenced. The full-length mRNA sequence (890 bp) for trypsin from Ae. taeniorhynchus (AetTryp1) was obtained, which encodes an open reading frame of 765 bp (i.e., 255 amino acids). To detect whether AetTryp is developmentally regulated, a quantitative real-time polymerase chain reaction was used to examine AetTrypl mRNA expression levels in different developmental stages of Ae. taeniorhynchus. AetTryp1 was expressed at low levels in egg, larval, and pupal stages, but was differentially expressed in adult Ae. taeniorhynchus, with highest levels found in 5-d-old female adults when compared with teneral adults. In addition, AetTryp1 mRNA expression differed between sexes, with expression levels much lower in males. However, in both males and females, there was a significant increase in AetTryp1 transcription levels as age increased and peaked in 5-d-old adults. AetTrypl expressed in 5-d-old female Ae. taeniorhynchus significantly increased after 30 min postblood feeding compared with the control. The AetTryp1 mRNA expression in 5-d-old female Ae. taeniorhynchus was affected by different concentrations of permethrin.
Collapse
Affiliation(s)
- Liming Zhao
- Biological Control of Pests Research Unit, Mid-Southern Area-United States Department of Agriculture-Agricultural Research Service, 59 Lee Road, Stoneville, MS 38776, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Mesquita-Rodrigues C, Saboia-Vahia L, Cuervo P, Levy CMD, Honorio NA, Domont GB, de Jesus JB. Expression of trypsin-like serine peptidases in pre-imaginal stages of Aedes aegypti (Diptera: Culicidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2011; 76:223-235. [PMID: 21308760 DOI: 10.1002/arch.20412] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This study reports the biochemical characterization and comparative analyses of highly active serine proteases in the larval and pupal developmental stages of Aedes aegypti (Linnaeus) using substrate-SDS-PAGE. Zymographic analysis of larval stadia detected proteolytic activity in 6-8 bands with apparent molecular masses ranging from 20 to 250 kDa, with activity observed from pH 5.5 to 10.0. The pupal stage showed a complex proteolytic activity in at least 11 bands with apparent Mr ranging from 25 to 250 kDa, and pH optimum at 10.0. The proteolytic activities of both larval and pupal stages were strongly inhibited by phenyl-methyl sulfonyl-fluoride and N-α-Tosyl-L-lysine chloromethyl ketone hydrochloride, indicating that the main proteases expressed by these developmental stages are trypsin-like serine proteases. The enzymes were active at temperatures ranging from 4 to 85°C, with optimal activity between 37 and 60°C, and low activity at 85°C. Comparative analysis between the proteolytic enzymes expressed by larvae and pupae showed that substantial changes in the expression of active trypsin-like serine proteases occur during the developmental cycle of A. aegypti.
Collapse
Affiliation(s)
- Camila Mesquita-Rodrigues
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
43
|
Zhou G, Isoe J, Day WA, Miesfeld RL. Alpha-COPI coatomer protein is required for rough endoplasmic reticulum whorl formation in mosquito midgut epithelial cells. PLoS One 2011; 6:e18150. [PMID: 21483820 PMCID: PMC3069061 DOI: 10.1371/journal.pone.0018150] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 02/22/2011] [Indexed: 11/18/2022] Open
Abstract
Background One of the early events in midgut epithelial cells of Aedes aegypti mosquitoes is the dynamic reorganization of rough endoplasmic reticulum (RER) whorl structures coincident with the onset of blood meal digestion. Based on our previous studies showing that feeding on an amino acid meal induces TOR signaling in Ae. aegypti, we used proteomics and RNAi to functionally identify midgut epithelial cell proteins that contribute to RER whorl formation. Methodology/Principal Findings Adult female Ae. aegypti mosquitoes were maintained on sugar alone (unfed), or fed an amino acid meal, and then midgut epithelial cells were analyzed by electron microscopy and protein biochemistry. The size and number of RER whorls in midgut epithelial cells were found to decrease significantly after feeding, and several KDEL-containing proteins were shown to have altered expression levels. LC-MS/MS mass spectrometry was used to analyze midgut microsomal proteins isolated from unfed and amino acid fed mosquitoes, and of the 127 proteins identified, 8 were chosen as candidate whorl forming proteins. Three candidate proteins were COPI coatomer subunits (alpha, beta, beta'), all of which appeared to be present at higher levels in microsomal fractions from unfed mosquitoes. Using RNAi to knockdown alpha-COPI expression, electron microscopy revealed that both the size and number of RER whorls were dramatically reduced in unfed mosquitoes, and moreover, that extended regions of swollen RER were prevalent in fed mosquitoes. Lastly, while a deficiency in alpha-COPI had no effect on early trypsin protein synthesis or secretion 3 hr post blood meal (PBM), expression of late phase proteases at 24 hr PBM was completely blocked. Conclusions alpha-COPI was found to be required for the formation of RER whorls in midgut epithelial cells of unfed Aa. aegypti mosquitoes, as well as for the expression of late phase midgut proteases.
Collapse
Affiliation(s)
- Guoli Zhou
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, United States of America
| | - Jun Isoe
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, United States of America
| | - W. Antony Day
- Arizona Research Labs, The University of Arizona, Tucson, Arizona, United States of America
| | - Roger L. Miesfeld
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
44
|
Ptitsyn AA, Reyes-Solis G, Saavedra-Rodriguez K, Betz J, Suchman EL, Carlson JO, Black WC. Rhythms and synchronization patterns in gene expression in the Aedes aegypti mosquito. BMC Genomics 2011; 12:153. [PMID: 21414217 PMCID: PMC3072344 DOI: 10.1186/1471-2164-12-153] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 03/17/2011] [Indexed: 12/11/2022] Open
Abstract
Background Aedes aegypti is arguably the most studied of all mosquito species in the laboratory and is the primary vector of both Dengue and Yellow Fever flaviviruses in the field. A large number of transcriptional studies have been made in the species and these usually report transcript quantities observed at a certain age or stage of development. However, circadian oscillation is an important characteristic of gene expression in many animals and plants, modulating both their physiology and behavior. Circadian gene expression in mosquito species has been previously reported but for only a few genes directly involved in the function of the molecular clock. Results Herein we analyze the transcription profiles of 21,494 messenger RNAs using an Ae. aegypti Agilent® microarray. Transcripts were quantified in adult female heads at 24 hours and then again at 72 hours and eight subsequent time points spaced four hours apart. We document circadian rhythms in multiple molecular pathways essential for growth, development, immune response, detoxification/pesticide resistance. Circadian rhythms were also noted in ribosomal protein genes used for normalization in reverse transcribed PCR (RT-PCR) to determine transcript abundance. We report pervasive oscillations and intricate synchronization patterns relevant to all known biological pathways. Conclusion These results argue strongly that transcriptional analyses either need to be made over time periods rather than confining analyses to a single time point or development stage or exceptional care needs to be made to synchronize all mosquitoes to be analyzed and compared among treatment groups.
Collapse
Affiliation(s)
- Andrey A Ptitsyn
- Center for Bioinformatics, Colorado State University, Fort Collins, CO 80525, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
A novel trypsin Kazal-type inhibitor from Aedes aegypti with thrombin coagulant inhibitory activity. Biochimie 2010; 92:933-9. [DOI: 10.1016/j.biochi.2010.03.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 03/26/2010] [Indexed: 11/21/2022]
|
46
|
Brackney DE, Isoe J, W C B, Zamora J, Foy BD, Miesfeld RL, Olson KE. Expression profiling and comparative analyses of seven midgut serine proteases from the yellow fever mosquito, Aedes aegypti. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:736-744. [PMID: 20100490 PMCID: PMC2878907 DOI: 10.1016/j.jinsphys.2010.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 01/14/2010] [Accepted: 01/15/2010] [Indexed: 05/28/2023]
Abstract
Aedes aegypti utilizes blood for energy production, egg maturation and replenishment of maternal reserves. The principle midgut enzymes responsible for bloodmeal digestion are endoproteolytic serine-type proteases within the S1.A subfamily. While there are hundreds of serine protease-like genes in the A. aegypti genome, only five are known to be expressed in the midgut. We describe the cloning, sequencing and expression profiling of seven additional serine proteases and provide a genomic and phylogenetic assessment of these findings. Of the seven genes, four are constitutively expressed and three are transcriptionally induced upon blood feeding. The amount of transcriptional induction is strongly correlated among these genes. Alignments reveal that, in general, the conserved catalytic triad, active site and accessory catalytic residues are maintained in these genes and phylogenetic analysis shows that these genes fall within three distinct clades; trypsins, chymotrypsins and serine collagenases. Interestingly, a previously described trypsin consistently arose with other serine collagenases in phylogenetic analyses. These results suggest that multiple gene duplications have arisen within the S1.A subfamily of midgut serine proteases and/or that A. aegypti has evolved an array of proteases with a broad range of substrate specificities for rapid, efficient digestion of bloodmeals.
Collapse
Affiliation(s)
- Doug E Brackney
- Arthropod Infectious Disease Laboratory, 1692 Campus Delivery, Department of Microbiology, Immunology and Pathology at Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Isoe J, Rascón AA, Kunz S, Miesfeld RL. Molecular genetic analysis of midgut serine proteases in Aedes aegypti mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:903-12. [PMID: 19883761 PMCID: PMC2818436 DOI: 10.1016/j.ibmb.2009.10.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 10/23/2009] [Accepted: 10/26/2009] [Indexed: 05/13/2023]
Abstract
Digestion of blood meal proteins by midgut proteases provides anautogenous mosquitoes with the nutrients required to complete the gonotrophic cycle. Inhibition of protein digestion in the midgut of blood feeding mosquitoes could therefore provide a strategy for population control. Based on recent reports indicating that the mechanism and regulation of protein digestion in blood fed female Aedes aegypti mosquitoes is more complex than previously thought, we used a robust RNAi knockdown method to investigate the role of four highly expressed midgut serine proteases in blood meal metabolism. We show by Western blotting that the early phase trypsin protein (AaET) is maximally expressed at 3 h post-blood meal (PBM), and that AaET is not required for the protein expression of three late phase serine proteases, AaLT (late trypsin), AaSPVI (5G1), and AaSPVII. Using the trypsin substrate analog BApNA to analyze in vitro enzyme activity in midgut extracts from single mosquitoes, we found that knockdown of AaSPVI expression caused a 77.6% decrease in late phase trypsin-like activity, whereas, knockdown of AaLT and AaSPVII expression had no significant effect on BApNA activity. In contrast, injection of AaLT, AaSPVI, and AaSPVII dsRNA inhibited degradation of endogenous serum albumin protein using an in vivo protease assay, as well as, significantly decreased egg production in both the first and second gonotrophic cycles (P < 0.001). These results demonstrate that AaLT, AaSPVI, and AaSPVII all contribute to blood protein digestion and oocyte maturation, even though AaSPVI is the only abundant midgut late phase serine protease that appears to function as a classic trypsin enzyme.
Collapse
Affiliation(s)
| | | | | | - Roger L. Miesfeld
- Corresponding author; Roger L. Miesfeld; . Department of Chemistry & Biochemistry, BioSciences West Room 518, 1041 E. Lowell St., University of Arizona, Tucson, AZ, 85721. Phone: (520) 626-2343, Fax: (520) 621-1697
| |
Collapse
|
48
|
Gonçalves RLS, Machado ACL, Paiva-Silva GO, Sorgine MHF, Momoli MM, Oliveira JHM, Vannier-Santos MA, Galina A, Oliveira PL, Oliveira MF. Blood-feeding induces reversible functional changes in flight muscle mitochondria of Aedes aegypti mosquito. PLoS One 2009; 4:e7854. [PMID: 19924237 PMCID: PMC2773413 DOI: 10.1371/journal.pone.0007854] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 10/21/2009] [Indexed: 11/18/2022] Open
Abstract
Background Hematophagy poses a challenge to blood-feeding organisms since products of blood digestion can exert cellular deleterious effects. Mitochondria perform multiple roles in cell biology acting as the site of aerobic energy-transducing pathways, and also an important source of reactive oxygen species (ROS), modulating redox metabolism. Therefore, regulation of mitochondrial function should be relevant for hematophagous arthropods. Here, we investigated the effects of blood-feeding on flight muscle (FM) mitochondria from the mosquito Aedes aegypti, a vector of dengue and yellow fever. Methodology/Principal Findings Blood-feeding caused a reversible reduction in mitochondrial oxygen consumption, an event that was parallel to blood digestion. These changes were most intense at 24 h after blood meal (ABM), the peak of blood digestion, when oxygen consumption was inhibited by 68%. Cytochromes c and a+a3 levels and cytochrome c oxidase activity of the electron transport chain were all reduced at 24 h ABM. Ultrastructural and molecular analyses of FM revealed that mitochondria fuse upon blood meal, a condition related to reduced ROS generation. Consistently, BF induced a reversible decrease in mitochondrial H2O2 formation during blood digestion, reaching their lowest values at 24 h ABM where a reduction of 51% was observed. Conclusion Blood-feeding triggers functional and structural changes in hematophagous insect mitochondria, which may represent an important adaptation to blood feeding.
Collapse
Affiliation(s)
- Renata L. S. Gonçalves
- Laboratório de Bioquímica Redox, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Inflamação e Metabolismo, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (INBEB), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina L. Machado
- Laboratório de Bioquímica Redox, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Inflamação e Metabolismo, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (INBEB), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela O. Paiva-Silva
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Marcos H. F. Sorgine
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Marisa M. Momoli
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Henrique M. Oliveira
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Marcos A. Vannier-Santos
- Laboratório de Biomorfologia Parasitária, Instituto de Pesquisa Gonçalo Moniz, Fiocruz, Salvador, Bahia, Brazil
| | - Antonio Galina
- Laboratório de Bioenergética & Fisiologia Mitocondrial, Instituto de Bioquímica Médica, Programa de Bioquímica e Biofísica Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L. Oliveira
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Marcus F. Oliveira
- Laboratório de Bioquímica Redox, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Inflamação e Metabolismo, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (INBEB), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
49
|
Sui YP, Wang JX, Zhao XF. The impacts of classical insect hormones on the expression profiles of a new digestive trypsin-like protease (TLP) from the cotton bollworm, Helicoverpa armigera. INSECT MOLECULAR BIOLOGY 2009; 18:443-452. [PMID: 19469806 DOI: 10.1111/j.1365-2583.2009.00884.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Trypsin proteinases perform important roles in the protein digestion of an insect midgut. A 1042 bp full-length cDNA was cloned from Helicoverpa armigera. The gene encoded a 32 kDa protein, with a predicted isoelectric point of 5.7. The amino acid sequence of the protein had a trypsin-like serine protease domain, and the gene was named Ha-TLP. The expression of the gene was tissue-specific and the transcript of Ha-TLP existed only in the midgut and was not found in the head-thorax, integument, fat body and haemocytes from 5th instar larvae, with similar expression levels between those in feeding larvae and in molting larvae. In the midgut, the gene transcription level declined from 6th instar 72 h after the larvae entered the wandering stage, and disappeared from 6th instar at 96 h until the pupal stage. By immunohistochemistry, Ha-TLP was detected in the cytoplasm of the midgut epithelial cells of the 6th instar feeding stage worms. The expression of Ha-TLP could be up-regulated by a juvenile hormone (JH) analog methoprene and down-regulated by 20-hydroxyecdysone (20E). These facts indicate that Ha-TLP was involved in food digestion during larval growth and probably up-regulated by JH and suppressed by extra 20E in vivo.
Collapse
Affiliation(s)
- Y-P Sui
- School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | | | | |
Collapse
|
50
|
Mayoral JG, Nouzova M, Yoshiyama M, Shinoda T, Hernandez-Martinez S, Dolghih E, Turjanski AG, Roitberg AE, Priestap H, Perez M, Mackenzie L, Li Y, Noriega FG. Molecular and functional characterization of a juvenile hormone acid methyltransferase expressed in the corpora allata of mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:31-7. [PMID: 18984053 PMCID: PMC2727726 DOI: 10.1016/j.ibmb.2008.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 09/12/2008] [Accepted: 09/18/2008] [Indexed: 05/09/2023]
Abstract
A juvenile hormone acid methyltransferase (JHAMT) was isolated as an abundant EST in a library of the corpora allata of the adult female mosquito Aedes aegypti. Its full length cDNA encodes a 278-aa protein that has 43% amino acid identity with BmJHAMT, a juvenile hormone acid methyltransferase previously cloned from Bombyx mori. Heterologous expression produced a recombinant protein that metabolizes farnesoic acid (FA) into methyl farnesoate, as well as juvenile hormone acid into juvenile hormone III (JH III) with exquisite stereo specificity. Real time PCR experiments showed that JHAMT mRNA levels are not an unequivocal indicator of JH III synthesis rates; the A. aegypti JHAMT gene, silent in female pupae, was transcriptionally activated just 4-6h before adult eclosion. Radiochemical methyltransferase assays using active and inactive corpora allata glands (CA) dissected from sugar and blood-fed females respectively, clearly indicated that significant levels of JHAMT enzymatic activity are present when the CA shows very low spontaneous rates of JH III synthesis. Having the last enzymes of the JH synthetic pathway readily available all the time might be critical for the adult female mosquito to sustain rapid dynamic changes in JH III synthesis in response to nutritional changes or peripheral influences, such as mating or feeding. These results suggest that this gene has different roles in the regulation of JH synthesis in pupal and adult female mosquitoes, and support the hypothesis that the rate-limiting steps in JH III synthesis in adult female mosquitoes are located before entrance of FA into the synthetic pathway.
Collapse
Affiliation(s)
- Jaime G. Mayoral
- Department of Biological Sciences, Florida International University, Miami, FL
| | - Marcela Nouzova
- Department of Biological Sciences, Florida International University, Miami, FL
| | | | - Tetsuro Shinoda
- National Institute of Agrobiological Sciences, Tsukuba, Japan
| | | | - Elena Dolghih
- Department of Chemistry Quantum Theory Project, University of Florida, Gainesville, FL
| | - Adrian G. Turjanski
- Departamento de Química Biológica y Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adrian E. Roitberg
- Department of Chemistry Quantum Theory Project, University of Florida, Gainesville, FL
| | - Horacio Priestap
- Department of Biological Sciences, Florida International University, Miami, FL
| | - Mario Perez
- Department of Biological Sciences, Florida International University, Miami, FL
| | - Lucy Mackenzie
- Department of Biological Sciences, Florida International University, Miami, FL
| | - Yiping Li
- Department of Biological Sciences, Florida International University, Miami, FL
| | - Fernando G. Noriega
- Department of Biological Sciences, Florida International University, Miami, FL
| |
Collapse
|