1
|
Pensar J, Puranen S, Arnold B, MacAlasdair N, Kuronen J, Tonkin-Hill G, Pesonen M, Xu Y, Sipola A, Sánchez-Busó L, Lees JA, Chewapreecha C, Bentley SD, Harris SR, Parkhill J, Croucher NJ, Corander J. Genome-wide epistasis and co-selection study using mutual information. Nucleic Acids Res 2019; 47:e112. [PMID: 31361894 PMCID: PMC6765119 DOI: 10.1093/nar/gkz656] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/09/2019] [Accepted: 07/19/2019] [Indexed: 01/19/2023] Open
Abstract
Covariance-based discovery of polymorphisms under co-selective pressure or epistasis has received considerable recent attention in population genomics. Both statistical modeling of the population level covariation of alleles across the chromosome and model-free testing of dependencies between pairs of polymorphisms have been shown to successfully uncover patterns of selection in bacterial populations. Here we introduce a model-free method, SpydrPick, whose computational efficiency enables analysis at the scale of pan-genomes of many bacteria. SpydrPick incorporates an efficient correction for population structure, which adjusts for the phylogenetic signal in the data without requiring an explicit phylogenetic tree. We also introduce a new type of visualization of the results similar to the Manhattan plots used in genome-wide association studies, which enables rapid exploration of the identified signals of co-evolution. Simulations demonstrate the usefulness of our method and give some insight to when this type of analysis is most likely to be successful. Application of the method to large population genomic datasets of two major human pathogens, Streptococcus pneumoniae and Neisseria meningitidis, revealed both previously identified and novel putative targets of co-selection related to virulence and antibiotic resistance, highlighting the potential of this approach to drive molecular discoveries, even in the absence of phenotypic data.
Collapse
Affiliation(s)
- Johan Pensar
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology (HIIT), Faculty of Science, University of Helsinki, FI-00014 Helsinki, Finland
| | - Santeri Puranen
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology (HIIT), Faculty of Science, University of Helsinki, FI-00014 Helsinki, Finland.,Department of Computer Science, Aalto University, Espoo, FI-00014, Finland
| | - Brian Arnold
- Division of Informatics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Neil MacAlasdair
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Juri Kuronen
- Department of Biostatistics, University of Oslo, Oslo, 0317, Norway
| | - Gerry Tonkin-Hill
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Maiju Pesonen
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology (HIIT), Faculty of Science, University of Helsinki, FI-00014 Helsinki, Finland.,Department of Computer Science, Aalto University, Espoo, FI-00014, Finland
| | - Yingying Xu
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology (HIIT), Faculty of Science, University of Helsinki, FI-00014 Helsinki, Finland.,Department of Computer Science, Aalto University, Espoo, FI-00014, Finland
| | - Aleksi Sipola
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology (HIIT), Faculty of Science, University of Helsinki, FI-00014 Helsinki, Finland
| | | | - John A Lees
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Claire Chewapreecha
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK.,Bioinformatics & Systems Biology program, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Simon R Harris
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, St. Mary's Campus, Imperial College London, London, W2 1PG, UK
| | - Jukka Corander
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology (HIIT), Faculty of Science, University of Helsinki, FI-00014 Helsinki, Finland.,Parasites and Microbes, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK.,Department of Biostatistics, University of Oslo, Oslo, 0317, Norway
| |
Collapse
|
2
|
Thornton LA, Burchell RK, Burton SE, Lopez-Villalobos N, Pereira D, MacEwan I, Fang C, Hatmodjo AC, Nelson MA, Grinberg A, Velathanthiri N, Gal A. The Effect of Urine Concentration and pH on the Growth of Escherichia Coli in Canine Urine In Vitro. J Vet Intern Med 2018; 32:752-756. [PMID: 29469957 PMCID: PMC5866962 DOI: 10.1111/jvim.15045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/11/2017] [Accepted: 12/19/2017] [Indexed: 11/28/2022] Open
Abstract
Background Lower urinary tract infections are common in dogs, and Escherichia coli is the most common bacterial pathogen isolated. The literature has conflicting evidence regarding the inhibitory effects of urine concentration and pH on E. coli growth. Hypothesis/Objectives To determine the effect of different pH and urine concentrations on E. coli growth in vitro. Animals Voided urine samples from 10 apparently healthy spayed female dogs were used. Methods A matrix of 9 urine specific gravity (USG; 1.010, 1.020, and 1.030) and pH (5.5, 7.0, and 8.5) combinations was prepared by diluting and titrating filtered voided urine samples. Three E. coli isolates were obtained from urine of female dogs with signs of lower urinary tract infection and cultured at different urine pH and USG combinations in wells of a microtiter plate. The number of E. coli colony‐forming units (CFU) per mL of urine was calculated after aerobic incubation of the urine at 37°C for 18 hours, and statistically compared. Results Significant differences were identified in the mean log CFU/mL among different combinations of pH and USG. The lowest log CFU/mL were observed in alkaline concentrated urine (pH 8.5 and USG 1.030). Conclusions and Clinical Importance Escherichia coli in vitro growth was higher in neutral to acidic and diluted urine compared to alkaline and concentrated urine. The impact of non‐alkalizing diluting diets on the incidence of E. coli lower urinary tract infections should be further explored.
Collapse
Affiliation(s)
- L A Thornton
- School of Veterinary Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| | - R K Burchell
- School of Veterinary Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| | - S E Burton
- School of Veterinary Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| | - N Lopez-Villalobos
- School of Veterinary Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| | - D Pereira
- School of Veterinary Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| | - I MacEwan
- School of Veterinary Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| | - C Fang
- School of Veterinary Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| | - A C Hatmodjo
- School of Veterinary Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| | - M A Nelson
- School of Veterinary Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| | - A Grinberg
- School of Veterinary Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| | - N Velathanthiri
- School of Veterinary Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| | - A Gal
- School of Veterinary Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| |
Collapse
|
3
|
Liu Y, Sun X, Di D, Feng Y, Jin F. Sample Preparation and Stability of Human Serum and Urine Based on HPLC-DAD for Metabonomics Studies. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.7.2156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Yuan H, Gadda G. Importance of a Serine Proximal to the C(4a) and N(5) Flavin Atoms for Hydride Transfer in Choline Oxidase. Biochemistry 2011; 50:770-9. [DOI: 10.1021/bi101837u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Giovanni Gadda
- Department of Chemistry
- Department of Biology
- The Center for Biotechnology and Drug Design
| |
Collapse
|
5
|
Quaye O, Cowins S, Gadda G. Contribution of flavin covalent linkage with histidine 99 to the reaction catalyzed by choline oxidase. J Biol Chem 2009; 284:16990-16997. [PMID: 19398559 DOI: 10.1074/jbc.m109.003715] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The FAD-dependent choline oxidase has a flavin cofactor covalently attached to the protein via histidine 99 through an 8alpha-N(3)-histidyl linkage. The enzyme catalyzes the four-electron oxidation of choline to glycine betaine, forming betaine aldehyde as an enzyme-bound intermediate. The variant form of choline oxidase in which the histidine residue has been replaced with asparagine was used to investigate the contribution of the 8alpha-N(3)-histidyl linkage of FAD to the protein toward the reaction catalyzed by the enzyme. Decreases of 10-fold and 30-fold in the k(cat)/K(m) and k(cat) values were observed as compared with wild-type choline oxidase at pH 10 and 25 degrees C, with no significant effect on k(cat)/K(O) using choline as substrate. Both the k(cat)/K(m) and k(cat) values increased with increasing pH to limiting values at high pH consistent with the participation of an unprotonated group in the reductive half-reaction and the overall turnover of the enzyme. The pH independence of both (D)(k(cat)/K(m)) and (D)k(cat), with average values of 9.2 +/- 3.3 and 7.4 +/- 0.5, respectively, is consistent with absence of external forward and reverse commitments to catalysis, and the chemical step of CH bond cleavage being rate-limiting for both the reductive half-reaction and the overall enzyme turnover. The temperature dependence of the (D)k(red) values suggests disruption of the preorganization in the asparagine variant enzyme. Altogether, the data presented in this study are consistent with the FAD-histidyl covalent linkage being important for the optimal positioning of the hydride ion donor and acceptor in the tunneling reaction catalyzed by choline oxidase.
Collapse
Affiliation(s)
- Osbourne Quaye
- From the Departments of Chemistry, Atlanta, Georgia 30302-4098
| | - Sharonda Cowins
- From the Departments of Chemistry, Atlanta, Georgia 30302-4098; Department of Chemistry, Albany State University, Albany, Georgia 31705
| | - Giovanni Gadda
- From the Departments of Chemistry, Atlanta, Georgia 30302-4098; Biology, Atlanta, Georgia 30302-4098; The Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098.
| |
Collapse
|
6
|
Finnegan S, Gadda G. Substitution of an active site valine uncovers a kinetically slow equilibrium between competent and incompetent forms of choline oxidase. Biochemistry 2009; 47:13850-61. [PMID: 19053262 DOI: 10.1021/bi801424p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enzymatic oxidation of choline to glycine betaine is of interest because organisms accumulate glycine betaine intracellularly in response to stress conditions. This is relevant for the genetic engineering of crops with economic interest that do not naturally possess efficient pathways for the synthesis of glycine betaine and for the potential development of drugs that target the glycine betaine biosynthetic pathway in human pathogens. To date, the best characterized choline-oxidizing enzyme is the flavin-dependent choline oxidase from Arthrobacter globiformis, for which structural, mechanistic, and biochemical data are available. Here, we have replaced a hydrophobic residue (Val464) lining the active site cavity close to the N(5) atom of the flavin with threonine or alanine to investigate its role in the reaction of choline oxidation catalyzed by choline oxidase. The reductive half-reactions of the enzyme variants containing Thr464 or Ala464 were investigated using substrate and solvent kinetic isotope effects, solvent viscosity effects, and proton inventories. Replacement of Val464 with threonine or alanine uncovered a kinetically slow equilibrium between a catalytically incompetent form of enzyme and an active species that can efficiently oxidize choline. In both variants, the active form of enzyme shows a decreased rate of hydroxyl proton abstraction from the alcohol substrate, with minimal changes in the subsequent rate of hydride ion transfer to the flavin. This study therefore establishes that a hydrophobic residue not directly participating in catalysis plays important roles in the reaction of choline oxidation catalyzed by choline oxidase.
Collapse
Affiliation(s)
- Steffan Finnegan
- Departments of Chemistry and Biology, The Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, USA
| | | |
Collapse
|
7
|
Gadda G, Fan F, Hoang JV. On the contribution of the positively charged headgroup of choline to substrate binding and catalysis in the reaction catalyzed by choline oxidase. Arch Biochem Biophys 2006; 451:182-7. [PMID: 16713988 DOI: 10.1016/j.abb.2006.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 04/07/2006] [Accepted: 04/07/2006] [Indexed: 11/20/2022]
Abstract
Recent kinetic studies established that the positive charge on the trimethylammonium group of choline plays an important role in substrate binding and specificity in the reaction catalyzed by choline oxidase. In the present study, pH and solvent viscosity effects with the isosteric analogue of choline 3,3-dimethyl-butan-1-ol have been used to further dissect the contribution of the substrate positive charge to substrate binding and catalysis in the reaction catalyzed by choline oxidase. Both the kcat and kcat/Km values with 3,3-dimethyl-butan-1-ol increased to limiting values that were approximately 3- and approximately 400-times lower than those observed with choline, defining pKa values that were similar to the thermodynamic pKa value of approximately 7.5 previously determined. No effects of increased solvent viscosity were observed on the kcat and kcat/Km values with the substrate analogue at pH 8, suggesting that the chemical step of substrate oxidation is fully rate-limiting for the overall turnover and the reductive half-reaction in which the alcohol substrate is oxidized to the aldehyde. The kcat/Km value for oxygen determined with the substrate analogue was pH-independent in the pH range from 6 to 10, with an average value that was approximately 75-times lower than that previously determined with choline as substrate. These data are consistent with the positive charge headgroup of choline playing important roles for substrate binding and flavin oxidation, with minimal contribution to substrate oxidation.
Collapse
Affiliation(s)
- Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-4098, USA.
| | | | | |
Collapse
|
8
|
Fan F, Germann MW, Gadda G. Mechanistic studies of choline oxidase with betaine aldehyde and its isosteric analogue 3,3-dimethylbutyraldehyde. Biochemistry 2006; 45:1979-86. [PMID: 16460045 DOI: 10.1021/bi0517537] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Choline oxidase catalyzes the four-electron oxidation of choline to glycine betaine via two sequential FAD-dependent reactions in which betaine aldehyde is formed as an intermediate. The chemical mechanism for the oxidation of choline catalyzed by choline oxidase was recently elucidated by using kinetic isotope effects [Fan, F., and Gadda, G. (2005) J. Am. Chem. Soc. 127, 2067-2074]. In this study, the oxidation of betaine aldehyde has been investigated by using spectroscopic and kinetic analyses with betaine aldehyde and its isosteric analogue 3,3-dimethylbutyraldehyde. The pH dependence of the kcat/Km and kcat values with betaine aldehyde showed that a catalytic base with a pKa of approximately 6.7 is required for betaine aldehyde oxidation. Complete reduction of the enzyme-bound flavin was observed in a stopped-flow spectrophotometer upon anaerobic mixing with betaine aldehyde or choline at pH 8, with similar k(red) values > or = 48 s(-1). In contrast, only 10-26% of the enzyme-bound flavin was reduced by 3,3-dimethylbutyraldehyde between pH 6 and 10. Furthermore, this compound acted as a competitive inhibitor versus choline. NMR spectroscopic analyses indicated that betaine aldehyde exists predominantly (99%) as a diol form in aqueous solution. In contrast, the thermodynamic equilibrium for 3,3-dimethylbutyraldehyde favors the aldehyde (> or = 65%) over the hydrated form in the pH range from 6 to 10. The keto species of 3,3-dimethylbutyraldehyde is reactive toward enzymic nucleophiles, as suggested by the kinetic data with NAD+-dependent yeast aldehyde dehydrogenase. The data presented suggest that choline oxidase utilizes the hydrated species of the aldehyde as substrate in a mechanism for aldehyde oxidation in which hydride transfer is triggered by an active site base.
Collapse
Affiliation(s)
- Fan Fan
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-4098, USA
| | | | | |
Collapse
|
9
|
Gundersen RY, Vaagenes P, Breivik T, Fonnum F, Opstad PK. Glycine--an important neurotransmitter and cytoprotective agent. Acta Anaesthesiol Scand 2005; 49:1108-16. [PMID: 16095452 DOI: 10.1111/j.1399-6576.2005.00786.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Glycine, the simplest of the amino acids, is an essential component of important biological molecules, a key substance in many metabolic reactions, the major inhibitory neurotransmitter in the spinal cord and brain stem, and an anti-inflammatory, cytoprotective, and immune modulating substance. MATERIAL AND METHODS Based on available literature, we discuss some of the important biological properties of glycine. In addition, we describe some clinical disorders where glycine plays a central role, either as an essential structural element, or through its metabolism or receptors. RESULTS The past few years have witnessed a broadening of glycine research. The traditional prime interest in aspects related to its role as an inhibitory neurotransmitter in the central nervous system has been expanded to equally emphasize other organs and tissues. With the demonstration of glycine-gated chloride channels on neurons in the central nervous system, on most leukocytes, and subsequently on other cells as well, a unifying mechanism of action accounting for many of the widespread effects of glycine has been found. CONCLUSIONS Glycine is a simple, easily available, and inexpensive substance with few and innocuous side-effects. The diversity of biological activities is well documented in the literature. Despite this, glycine has only gained a modest place in clinical medicine.
Collapse
Affiliation(s)
- R Y Gundersen
- Norwegian Defence Research Establishment, Division of Protection, Kjeller, Norway.
| | | | | | | | | |
Collapse
|
10
|
Culham DE, Lu A, Jishage M, Krogfelt KA, Ishihama A, Wood JM. The osmotic stress response and virulence in pyelonephritis isolates of Escherichia coli: contributions of RpoS, ProP, ProU and other systems. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1657-1670. [PMID: 11390697 DOI: 10.1099/00221287-147-6-1657] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Trehalose synthesis (RpoS-dependent) and betaine uptake mediated by transporters ProP and ProU contribute to the osmotolerance of Escherichia coli K-12. Pyelonephritis isolates CFT073 and HU734 were similar and diminished in osmotolerance, respectively, compared to E. coli K-12. The roles of RpoS, ProP and ProU in osmoregulation and urovirulence were assessed for these isolates. Strain HU734 expressed an RpoS variant which had low activity and a C-terminal extension. This bacterium accumulated very little trehalose and had poor stationary-phase thermotolerance. For E. coli CFT073, introduction of an rpoS deletion impaired trehalose accumulation, osmotolerance and stationary-phase thermotolerance. The rpoS defects accounted for the difference in osmotolerance between these strains in minimal medium of very high osmolality (1.4 mol kg(-1)) but not in medium of lower osmolality (0.4 mol kg(-1)). The slow growth of both pyelonephritis isolates in high-osmolality medium was stimulated by glycine betaine (GB) and deletion of proP and/or proU impaired GB uptake. An HU734 derivative lacking both proP and proU retained osmoprotective GB uptake activity that could be attributed to system BetU, which is not present in strain K-12 or CFT073. BetU transported GB (K(m), 22 microM) and proline betaine. High-osmolality human urine (0.92 mol kg(-1)) included membrane-permeant osmolyte urea (0.44 M) plus other constituents which contributed an osmolality of only approximately 0.4 mol kg(-1). Strains HU734 and CFT073 showed correspondingly low GB uptake activities after cultivation in this urine. Deletion of proP and proU slowed the growth of E. coli HU734 in this high-osmolality human urine (which contains betaines) but had little impact on its colonization of the murine urinary tract after transurethral inoculation. By contrast, deletion of rpoS, proP and proU had no effect on the very rapid growth of CFT073 in high-osmolality urine or on its experimental colonization of the murine urinary tract. RpoS-dependent gene expression is not essential for growth in human urine or colonization of the murine urinary tract. Additional osmoregulatory systems, some not present in E. coli K-12 (e.g. BetU), may facilitate growth of pyelonephritis isolates in human urine and colonization of mammalian urinary tracts. The contributions of systems ProP and ProU to urinary tract colonization cannot be definitively assessed until all such systems are identified.
Collapse
Affiliation(s)
- Doreen E Culham
- Department of Microbiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada1
| | - Annie Lu
- Department of Gastrointestinal Infections, Statens Serum Institut, DK2300 Copenhagen, Denmark3
- Department of Microbiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada1
| | - Miki Jishage
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka-ken 411, Japan2
| | - Karen A Krogfelt
- Department of Gastrointestinal Infections, Statens Serum Institut, DK2300 Copenhagen, Denmark3
| | - Akira Ishihama
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka-ken 411, Japan2
| | - Janet M Wood
- Department of Microbiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada1
| |
Collapse
|
11
|
Peddie BA, Wong-She J, Randall K, Lever M, Chambers ST. Osmoprotective properties and accumulation of betaine analogues by Staphylococcus aureus. FEMS Microbiol Lett 1998; 160:25-30. [PMID: 9495008 DOI: 10.1111/j.1574-6968.1998.tb12885.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Betaines were evaluated as potential antistaphylococcal agents for urinary tract infections. Staphylococcus aureus accumulated all tested betaines except trigonelline. S. aureus transport systems were less sensitive to carbon chain length than those of Escherichia coli. Betaines were accumulated in the absence of osmotic stress, and 10-fold more in hyperosmotic medium. Most betaines increased the osmotolerance of S. aureus in defined minimal medium. Unlike E. coli, S. aureus did not significantly accumulate a second betaine in the presence of glycine betaine. Betaines are less likely to be useful in treating staphylococcal than E. coli urinary infections.
Collapse
Affiliation(s)
- B A Peddie
- Department of Nephrology, Christchurch Hospital, New Zealand.
| | | | | | | | | |
Collapse
|