1
|
Hanashima S, Yano Y, Murata M. Enantiomers of phospholipids and cholesterol: A key to decipher lipid‐lipid interplay in membrane. Chirality 2020; 32:282-298. [DOI: 10.1002/chir.23171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Shinya Hanashima
- Department of Chemistry, Graduate School of ScienceOsaka University Toyonaka Japan
| | - Yo Yano
- Department of Chemistry, Graduate School of ScienceOsaka University Toyonaka Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of ScienceOsaka University Toyonaka Japan
| |
Collapse
|
2
|
Antitumour activity and tolerability of an EphA2-targeted nanotherapeutic in multiple mouse models. Nat Biomed Eng 2019; 3:264-280. [DOI: 10.1038/s41551-019-0385-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 03/07/2019] [Indexed: 12/20/2022]
|
3
|
Kinnun JJ, Bittman R, Shaikh SR, Wassall SR. DHA Modifies the Size and Composition of Raftlike Domains: A Solid-State 2H NMR Study. Biophys J 2019; 114:380-391. [PMID: 29401435 DOI: 10.1016/j.bpj.2017.11.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 01/22/2023] Open
Abstract
Docosahexaenoic acid is an omega-3 polyunsaturated fatty acid that relieves the symptoms of a wide variety of chronic inflammatory disorders. The structural mechanism is not yet completely understood. Our focus here is on the plasma membrane as a site of action. We examined the molecular organization of [2H31]-N-palmitoylsphingomyelin (PSM-d31) mixed with 1-palmitoyl-2-docosahexaenoylphosphatylcholine (PDPC) or 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), as a monounsaturated control, and cholesterol (chol) (1:1:1 mol) in a model membrane by solid-state 2H NMR. The spectra were analyzed in terms of segregation into ordered SM-rich/chol-rich (raftlike) and disordered PC-rich/chol-poor (nonraft) domains that are nanoscale in size. An increase in the size of domains is revealed when POPC was replaced by PDPC. Spectra that are single-component, attributed to fast exchange between domains (<45 nm), for PSM-d31 mixed with POPC and chol become two-component, attributed to slow exchange between domains (r > 30 nm), for PSM-d31 mixed with PDPC and chol. The resolution of separate signals from PSM-d31, and correspondingly from [3α-2H1]cholesterol (chol-d1) and 1-[2H31]palmitoyl-2-docosahexaenoylphosphatidylcholine (PDPC-d31), in raftlike and nonraft domains enabled us to determine the composition of the domains in the PDPC-containing membrane. Most of the lipid (28% SM, 29% chol, and 23% PDPC with respect to total lipid at 30°C) was found in the raftlike domain. Despite substantial infiltration of PDPC into raftlike domains, there appears to be minimal effect on the order of SM, implying the existence of internal structure that limits contact between SM and PDPC. Our results suggest a significant refinement to the model by which DHA regulates the architecture of ordered, sphingolipid-chol-enriched domains (rafts) in membranes.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Department of Physics, Indiana University-Purdue University, Indianapolis, Indiana
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College of CUNY, Flushing, New York
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Stephen R Wassall
- Department of Physics, Indiana University-Purdue University, Indianapolis, Indiana.
| |
Collapse
|
4
|
Wassall SR, Leng X, Canner SW, Pennington ER, Kinnun JJ, Cavazos AT, Dadoo S, Johnson D, Heberle FA, Katsaras J, Shaikh SR. Docosahexaenoic acid regulates the formation of lipid rafts: A unified view from experiment and simulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1985-1993. [PMID: 29730243 DOI: 10.1016/j.bbamem.2018.04.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 01/02/2023]
Abstract
Docosahexaenoic acid (DHA, 22:6) is an n-3 polyunsaturated fatty acid (n-3 PUFA) that influences immunological, metabolic, and neurological responses through complex mechanisms. One structural mechanism by which DHA exerts its biological effects is through its ability to modify the physical organization of plasma membrane signaling assemblies known as sphingomyelin/cholesterol (SM/chol)-enriched lipid rafts. Here we studied how DHA acyl chains esterified in the sn-2 position of phosphatidylcholine (PC) regulate the formation of raft and non-raft domains in mixtures with SM and chol on differing size scales. Coarse grained molecular dynamics simulations showed that 1-palmitoyl-2-docosahexaenoylphosphatylcholine (PDPC) enhances segregation into domains more than the monounsaturated control, 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC). Solid state 2H NMR and neutron scattering experiments provided direct experimental evidence that substituting PDPC for POPC increases the size of raft-like domains on the nanoscale. Confocal imaging of giant unilamellar vesicles with a non-raft fluorescent probe revealed that POPC had no influence on phase separation in the presence of SM/chol whereas PDPC drove strong domain segregation. Finally, monolayer compression studies suggest that PDPC increases lipid-lipid immiscibility in the presence of SM/chol compared to POPC. Collectively, the data across model systems provide compelling support for the emerging model that DHA acyl chains of PC lipids tune the size of lipid rafts, which has potential implications for signaling networks that rely on the compartmentalization of proteins within and outside of rafts.
Collapse
Affiliation(s)
- Stephen R Wassall
- Department of Physics, Indiana University-Purdue University Indianapolis, United States.
| | - Xiaoling Leng
- Department of Physics, Indiana University-Purdue University Indianapolis, United States
| | - Samuel W Canner
- Department of Physics, Indiana University-Purdue University Indianapolis, United States; Department of Computer and Information Science, Indiana University-Purdue University Indianapolis, United States
| | - Edward Ross Pennington
- Department of Biochemistry & Molecular Biology, East Carolina University, United States; Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, United States
| | - Jacob J Kinnun
- Department of Physics, Indiana University-Purdue University Indianapolis, United States
| | - Andres T Cavazos
- Department of Physics, Indiana University-Purdue University Indianapolis, United States
| | - Sahil Dadoo
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, United States
| | - Dylan Johnson
- Department of Biochemistry & Molecular Biology, East Carolina University, United States
| | - Frederick A Heberle
- Joint Institute for Biological Sciences, University of Tennessee, Knoxville, TN, United States; Large Scale Structures Group, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - John Katsaras
- Large Scale Structures Group, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, United States; Shull Wollan Center-Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
5
|
Boldyrev IA, Brown RE, Molotkovsky JG. An Expedient Synthesis of Fluorescent Labeled Ceramide-1-phosphate Analogues. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2013; 39:539-542. [PMID: 27429541 PMCID: PMC4943763 DOI: 10.1134/s106816201305004x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A synthesis for fluorescent analogs of ceramide-1-phosphate bearing 9-anthrylvinyl or 4,4-difluoro-3a,4a-diaza-s-indacene-8-yl (Me4-BODIPY) fluorophore at co-position of fatty acid residue was carried out. The key stage of the synthesis is hydrolysis of corresponding sphingomyelins catalyzed by phospholipase D from Streptomyces chromofuscus; the enzymatic yield has been raised to 50-70% by appliance of organic solvent in the incubation medium.
Collapse
Affiliation(s)
- I. A. Boldyrev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian
| | - R. E. Brown
- Hormel Institute, University of Minnesota, Austin, MN 55912 USA
| | - J. G. Molotkovsky
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian
| |
Collapse
|
6
|
Verzele D, Lynen F, Vrieze MD, Wright AG, Hanna-Brown M, Sandra P. Development of the first sphingomyelin biomimetic stationary phase for immobilized artificial membrane (IAM) chromatography. Chem Commun (Camb) 2012; 48:1162-4. [DOI: 10.1039/c2cc16872c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Maula T, Kurita M, Yamaguchi S, Yamamoto T, Katsumura S, Slotte JP. Effects of sphingosine 2N- and 3O-methylation on palmitoyl ceramide properties in bilayer membranes. Biophys J 2011; 101:2948-56. [PMID: 22208193 DOI: 10.1016/j.bpj.2011.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 10/14/2022] Open
Abstract
To study the role of the interfacial properties of ceramides in their interlipid interactions, we synthesized palmitoylceramide (PCer) analogs in which a methyl group was introduced to the amide-nitrogen or the C3-oxygen of the sphingosine backbone. A differential scanning calorimetry analysis of equimolar mixtures of palmitoylsphingomyelin (PSM) and PCer showed that these sphingolipids formed a complex gel phase that melted between 67°C and 74°C. The PCer analogs also formed gel phases with PSM, but they melted at lower temperatures compared with the system with PCer. In complex bilayers composed of an unsaturated glycerophospholipid, PSM, and cholesterol, the 3O-methylated ceramide formed a cholesterol-poor ordered phase with PSM. However, the 2N-methylated and doubly methylated (2N and 3O) PCer analogs failed to displace sterol from interactions with PSM. Like PCer, the analogs reduced sterol affinity for the complex bilayers, but this effect was most pronounced for the 3O-methylated ceramide. Taken together, our results show that 2N-methylation weakened the ceramide-PSM interactions, whereas the 3O-methylated ceramide behaved more like PCer in interactions with PSM. Our findings are compatible with the view that interlipid interactions between the amide-nitrogen and neighboring lipids are important for the cohesive properties of sphingolipids in membranes, and this also appears to be a valid model for ceramide.
Collapse
Affiliation(s)
- Terhi Maula
- Department of Biosciences, Åbo Akademi University, Turku, Finland.
| | | | | | | | | | | |
Collapse
|
8
|
A New Mechanism for Photo- and Radiation-Induced Decomposition of Sphingolipids. Lipids 2010; 46:271-6. [DOI: 10.1007/s11745-010-3506-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 11/10/2010] [Indexed: 10/18/2022]
|
9
|
Lankalapalli RS, Ouro A, Arana L, Gómez-Muñoz A, Bittman R. Caged ceramide 1-phosphate analogues: synthesis and properties. J Org Chem 2010; 74:8844-7. [PMID: 19908915 DOI: 10.1021/jo902076w] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sphingolipid phosphate analogues bearing 7-(diethylamino)coumarin (DECM) and 4-bromo-5-hydroxy-2-nitrobenzhydryl (BHNB) groups in a photolabile ester bond were synthesized. The ability of the "caged" ceramide 1-phosphate analogues to release the bioactive parent molecule upon irradiation at 400-500 nm was demonstrated by stimulation of macrophage cell proliferation.
Collapse
Affiliation(s)
- Ravi S Lankalapalli
- Department of Chemistry and Biochemistry, Queens College of The City University of New York, Flushing, New York 11367-1597, USA
| | | | | | | | | |
Collapse
|
10
|
Lisovskaya AG, Sosnovskaya AA, Shadyro OI, Kisel’ MA, Nikolaevich VA. γ- and UV-radiation-induced degradation of sphingomyelin, lysosphingomyelin, and related compounds. HIGH ENERGY CHEMISTRY 2009. [DOI: 10.1134/s0018143909060046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Subbaiah PV, Sircar D, Lankalapalli RS, Bittman R. Effect of double bond geometry in sphingosine base on the antioxidant function of sphingomyelin. Arch Biochem Biophys 2008; 481:72-9. [PMID: 18952047 DOI: 10.1016/j.abb.2008.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 10/04/2008] [Indexed: 01/20/2023]
Abstract
We previously showed that sphingomyelin (SM) inhibits peroxidation of phosphatidylcholine (PC) and cholesterol. Since SM uniquely has a trans unsaturation in its sphingosine base, we investigated whether this feature is important for its antioxidant function. Substitution of the natural trans Delta(4)-double bond with a cis double bond (cis-SM), however, increased SM's ability to inhibit Cu(2+)-mediated 16:0-18:2 PC oxidation by up to eightfold. Dihydro-SM, which lacks the double bond, was equally effective as trans-SM. In contrast to its effect in the sphingosine base, the presence of a cis double bond in the N-acyl group of trans-SM was not protective. cis-SM also inhibited the oxidation of cholesterol by FeSO_(4)/ascorbate more efficiently than the trans isomer. The enhanced protective effect of cis-SM is selective for metal ion-promoted oxidation, and appears to arise from a decrease in the effective concentration of metal ions. These studies show that the trans double bond of SM is not essential for its antioxidant effects.
Collapse
Affiliation(s)
- Papasani V Subbaiah
- Department of Medicine, Section of Endocrinology and Metabolism, University of Illinois at Chicago, 1819 West Polk Street, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
12
|
Bartels T, Lankalapalli RS, Bittman R, Beyer K, Brown MF. Raftlike mixtures of sphingomyelin and cholesterol investigated by solid-state 2H NMR spectroscopy. J Am Chem Soc 2008; 130:14521-32. [PMID: 18839945 DOI: 10.1021/ja801789t] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sphingomyelin is a lipid that is abundant in the nervous systems of mammals, where it is associated with putative microdomains in cellular membranes and undergoes alterations due to aging or neurodegeneration. We investigated the effect of varying the concentration of cholesterol in binary and ternary mixtures with N-palmitoylsphingomyelin (PSM) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) using deuterium nuclear magnetic resonance ((2)H NMR) spectroscopy in both macroscopically aligned and unoriented multilamellar dispersions. In our experiments, we used PSM and POPC perdeuterated on the N-acyl and sn-1 acyl chains, respectively. By measuring solid-state (2)H NMR spectra of the two lipids separately in mixtures with the same compositions as a function of cholesterol mole fraction and temperature, we obtained clear evidence for the coexistence of two liquid-crystalline domains in distinct regions of the phase diagram. According to our analysis of the first moments M1 and the observed (2)H NMR spectra, one of the domains appears to be a liquid-ordered phase. We applied a mean-torque potential model as an additional tool to calculate the average hydrocarbon thickness, the area per lipid, and structural parameters such as chain extension and thermal expansion coefficient in order to further define the two coexisting phases. Our data imply that phase separation takes place in raftlike ternary PSM/POPC/cholesterol mixtures over a broad temperature range but vanishes at cholesterol concentrations equal to or greater than a mole fraction of 0.33. Cholesterol interacts preferentially with sphingomyelin only at smaller mole fractions, above which a homogeneous liquid-ordered phase is present. The reasons for these phase separation phenomena seem to be differences in the effects of cholesterol on the configurational order of the palmitoyl chains in PSM-d31 and POPC-d31 and a difference in the affinity of cholesterol for sphingomyelin observed at low temperatures. Hydrophobic matching explains the occurrence of raftlike domains in cellular membranes at intermediate cholesterol concentrations but not saturating amounts of cholesterol.
Collapse
Affiliation(s)
- Tim Bartels
- Laboratory of Neurodegenerative Disease Research, Ludwig-Maximilian-University, 80336 Munich, Germany
| | | | | | | | | |
Collapse
|
13
|
Abstract
Solid-state (2)H-NMR of [(2)H(31)]-N-palmitoylsphingomyelin ([(2)H(31)]16:0SM, PSM*), supplemented by differential scanning calorimetry, was used for the first time, to our knowledge, to investigate the molecular organization of the sphingolipid in 1:1:1 mol mixtures with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (16:0-18:1PE, POPE) or 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine (16:0-22:6PE, PDPE) and cholesterol. When compared with (2)H-NMR data for analogous mixtures of [(2)H(31)]16:0-18:1PE (POPE*) or [(2)H(31)]16:0-22:6PE (PDPE*) with egg SM and cholesterol, molecular interactions of oleic acid (OA) versus docosahexaenoic acid (DHA) are distinguished, and details of membrane architecture emerge. SM-rich, characterized by higher-order, and PE-rich, characterized by lower-order, domains <20 nm in size are formed in the absence and presence of cholesterol in both OA- and DHA-containing membranes. Although acyl chain order within both domains increases on the addition of sterol to the two systems, the resultant differential in order between SM- and PE-rich domains is almost a factor of 3 greater with DHA than with OA. Our interpretation is that the aversion that cholesterol has for DHA--but not for OA--excludes the sterol from DHA-containing, PE-rich (nonraft) domains and excludes DHA from SM-rich/cholesterol-rich (raft) domains. We attribute, in part, the diverse health benefits associated with dietary consumption of DHA to an alteration in membrane domains.
Collapse
|
14
|
Mehnert T, Jacob K, Bittman R, Beyer K. Structure and lipid interaction of N-palmitoylsphingomyelin in bilayer membranes as revealed by 2H-NMR spectroscopy. Biophys J 2005; 90:939-46. [PMID: 16284259 PMCID: PMC1367118 DOI: 10.1529/biophysj.105.063271] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Selectively deuterated N-palmitoyl sphingomyelins were studied by deuterium nuclear magnetic resonance spectroscopy ((2)H-NMR) to elucidate the backbone conformation as well as the interaction of the sphingolipids with glycerophospholipids. Macroscopic alignment of the lipid bilayers provided good spectral resolution and permitted the convenient control of bilayer hydration. Selective deuteration at the acyl chain carbons C(2) and C(3) revealed that the N-acyl chain performs a bend, similar to the sn-2 chain of the phosphatidylcholines. Profiles of C-D bond order parameters were derived from the segmental quadrupolar splittings for sphingomyelin alone and for sphingomyelin-phosphatidycholine mixtures. In the liquid-crystalline state, the N-acyl chain of sphingomyelin alone revealed significantly more configurational order than the chains of homologous disaturated or monounsaturated phosphatidylcholines. The average chain order parameters and the relative width of the order parameter distribution were correlated over a range of bilayer compositions. The temperature dependence of the (2)H-NMR spectra revealed phase separation in bilayers composed of sphingomyelin and monounsaturated phosphatidylcholine, in broad agreement with existing phase diagrams.
Collapse
Affiliation(s)
- Thomas Mehnert
- Lehrstuhl für Stoffwechselbiochemie der Universität München, 80336 Munich, Germany
| | | | | | | |
Collapse
|
15
|
Waarts BL, Bittman R, Wilschut J. Sphingolipid and cholesterol dependence of alphavirus membrane fusion. Lack of correlation with lipid raft formation in target liposomes. J Biol Chem 2002; 277:38141-7. [PMID: 12138173 DOI: 10.1074/jbc.m206998200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Semliki Forest virus (SFV) and Sindbis virus (SIN) are enveloped viruses that infect their host cells by receptor-mediated endocytosis and subsequent fusion from within acidic endosomes. Fusion of the viral envelope requires the presence of both cholesterol and sphingolipids in the target membrane. This is suggestive of a possible involvement of sphingolipid-cholesterol microdomains, or "lipid rafts," in the membrane fusion and cell entry process of the virus. In this study, large unilamellar vesicles (LUVs) were prepared from synthetic sphingolipids and sterols that vary with respect to their capacity to promote microdomain formation, as assessed by gradient flotation analysis in the presence of Triton X-100. SFV and SIN fused with LUVs irrespective of the presence or absence of Triton X-100-insoluble microdomains. These results suggest that SFV and SIN do not require the presence of lipid rafts for fusion with target membranes. Furthermore, it is not necessary for sphingolipids to reside in a detergent-insoluble complex with cholesterol to promote SFV or SIN fusion.
Collapse
Affiliation(s)
- Barry-Lee Waarts
- University of Groningen and Academic Hospital, Department of Medical Microbiology, Molecular Virology Section, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | |
Collapse
|