1
|
Rezaei F, Farhat D, Gursu G, Samnani S, Lee JY. Snapshots of ABCG1 and ABCG5/G8: A Sterol's Journey to Cross the Cellular Membranes. Int J Mol Sci 2022; 24:ijms24010484. [PMID: 36613930 PMCID: PMC9820320 DOI: 10.3390/ijms24010484] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
The subfamily-G ATP-binding cassette (ABCG) transporters play important roles in regulating cholesterol homeostasis. Recent progress in the structural data of ABCG1 and ABCG5/G8 disclose putative sterol binding sites that suggest the possible cholesterol translocation pathway. ABCG1 and ABCG5/G8 share high similarity in the overall molecular architecture, and both transporters appear to use several unique structural motifs to facilitate cholesterol transport along this pathway, including the phenylalanine highway and the hydrophobic valve. Interestingly, ABCG5/G8 is known to transport cholesterol and phytosterols, whereas ABCG1 seems to exclusively transport cholesterol. Ligand docking analysis indeed suggests a difference in recruiting sterol molecules to the known sterol-binding sites. Here, we further discuss how the different and shared structural features are relevant to their physiological functions, and finally provide our perspective on future studies in ABCG cholesterol transporters.
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Danny Farhat
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Gonca Gursu
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Biochemistry Program, Faculty of Science, University of Ottawa, Ottawa, ON K1H 6N5, Canada
| | - Sabrina Samnani
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Biochemistry Program, Faculty of Science, University of Ottawa, Ottawa, ON K1H 6N5, Canada
| | - Jyh-Yeuan Lee
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence:
| |
Collapse
|
2
|
Tai P, Golding M, Singh H, Everett D. The bovine milk fat globule membrane – Liquid ordered domain formation and anticholesteremic effects during digestion. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2015773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Patrick Tai
- Riddet Institute, Palmerston North, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Matt Golding
- Riddet Institute, Palmerston North, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | | | - David Everett
- Riddet Institute, Palmerston North, New Zealand
- Grasslands Research Centre, AgResearch, Palmerston North, New Zealand
| |
Collapse
|
3
|
Cholesterol-phospholipid interactions resist the detergent effect of bovine bile. Colloids Surf B Biointerfaces 2021; 205:111842. [PMID: 34022699 DOI: 10.1016/j.colsurfb.2021.111842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/02/2021] [Accepted: 05/08/2021] [Indexed: 12/29/2022]
Abstract
Sphingomyelin (SM) and cholesterol complexation gives rise to detergent-resistant liquid-ordered domains. The persistence of these domains and subsequent mixed micelle formation was examined in the presence of bile under physiological digestive in vitro conditions for vesicles comprising either SM/cholesterol, porcine brain phosphatidylcholine (BPC)/cholesterol, or soy phosphatidylcholine (SPC)/cholesterol bilayers, the latter two systems having no liquid-ordered domains. Micellization of these digested phospholipid multilamellar vesicle systems was confirmed by transmission electron microscopy. Bovine bile was found to consist of large multilamellar sheets which subsumed phospholipid vesicles to form aggregated superstructures. Budding off from these superstructures were vesicle-to-micelle transition intermediates: unilamellar vesicles and cylindrical micelles. The presence of cholesterol (60/40 phospholipid/cholesterol mol/mol) delayed the initial rapid onset of digestion, but not for BPC and SPC vesicle systems. Acyl chain order/disorder before and after vesicle-to-micelle transition of all three phospholipid/cholesterol systems was examined using Raman spectroscopy. The addition of bovine bile to both PC/cholesterol vesicle systems reduced the overall ratio of acyl chain disorder to order. In SM/cholesterol vesicles with ≤ 20% mol cholesterol, only the lateral inter-acyl chain packing was reduced, whereas for SM/cholesterol vesicles with ≥ 30% mol cholesterol, a higher proportion of gauche-to-trans isomerization was apparent, demonstrating that SM/cholesterol complexes modify the acyl chain structure of micelles.
Collapse
|
4
|
Kamal M, Moshiri H, Magomedova L, Han D, Nguyen KCQ, Yeo M, Knox J, Bagg R, Won AM, Szlapa K, Yip CM, Cummins CL, Hall DH, Roy PJ. The marginal cells of the Caenorhabditis elegans pharynx scavenge cholesterol and other hydrophobic small molecules. Nat Commun 2019; 10:3938. [PMID: 31477732 PMCID: PMC6718421 DOI: 10.1038/s41467-019-11908-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 08/09/2019] [Indexed: 12/24/2022] Open
Abstract
The nematode Caenorhabditis elegans is a bacterivore filter feeder. Through the contraction of the worm’s pharynx, a bacterial suspension is sucked into the pharynx’s lumen. Excess liquid is then shunted out of the buccal cavity through ancillary channels made by surrounding marginal cells. We find that many worm-bioactive small molecules (a.k.a. wactives) accumulate inside of the marginal cells as crystals or globular spheres. Through screens for mutants that resist the lethality associated with one crystallizing wactive we identify a presumptive sphingomyelin-synthesis pathway that is necessary for crystal and sphere accumulation. We find that expression of sphingomyelin synthase 5 (SMS-5) in the marginal cells is not only sufficient for wactive accumulation but is also important for absorbing exogenous cholesterol, without which C. elegans cannot develop. We conclude that sphingomyelin-rich marginal cells act as a sink to scavenge important nutrients from filtered liquid that might otherwise be shunted back into the environment. The C. elegans nematode worm is a filter-feeder and requires dietary sources of cholesterol. Here, the authors show that the C. elegans pharynx works as a filter to scavenge hydrophobic small molecules from its surrounding liquid environment.
Collapse
Affiliation(s)
- Muntasir Kamal
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Houtan Moshiri
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Lilia Magomedova
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Duhyun Han
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Ken C Q Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - May Yeo
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Jessica Knox
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Rachel Bagg
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Amy M Won
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E1, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E1, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Karolina Szlapa
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Christopher M Yip
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E1, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E1, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Peter J Roy
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada. .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
5
|
Morita SY, Ikeda Y, Tsuji T, Terada T. Molecular Mechanisms for Protection of Hepatocytes against Bile Salt Cytotoxicity. Chem Pharm Bull (Tokyo) 2019; 67:333-340. [DOI: 10.1248/cpb.c18-01029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shin-ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital
| | - Yoshito Ikeda
- Department of Pharmacy, Shiga University of Medical Science Hospital
| | - Tokuji Tsuji
- Department of Pharmacy, Shiga University of Medical Science Hospital
| | - Tomohiro Terada
- Department of Pharmacy, Shiga University of Medical Science Hospital
| |
Collapse
|
6
|
Narai-Kanayama A, Saruwatari K, Mori N, Nakayama T. Theaflavin-3-gallate specifically interacts with phosphatidylcholine, forming a precipitate resistant against the detergent action of bile salt. Biosci Biotechnol Biochem 2018; 82:466-475. [DOI: 10.1080/09168451.2017.1422967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
Black tea is a highly popular beverage, and its pigments, polymerized catechins such as theaflavins (TFs), are attracting attention due to their beneficial health effects. In this study, to test the inhibitory activities of TFs on the intestinal absorption of cholesterol, we investigated their effects on phosphatidylcholine (PC) vesicles in the absence or presence of a bile salt. (−)-Epicatechin gallate, (−)-epigallocatechin gallate, and TFs formed insoluble complexes with PC vesicles. Galloylated TFs such as TF2A, TF2B, and TF3 precipitated far more than other polyphenols. The subsequent addition of taurocholate redispersed the polyphenol-PC complexes, except that a large amount of TF2A remained insoluble. After incubation with taurocholate-PC micelles, TF2A elevated the turbidity of the micelle solution, providing red sediments. The TF2A-specific effect was dependent on the PC concentration. These results suggest that TF2A interacts with PC and aggregates in a specific manner different from catechins and other TFs.
Collapse
Affiliation(s)
- Asako Narai-Kanayama
- Graduate School of Veterinary Medicine and Life Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kosuke Saruwatari
- Graduate School of Veterinary Medicine and Life Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Natsumi Mori
- Graduate School of Veterinary Medicine and Life Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Tsutomu Nakayama
- Graduate School of Veterinary Medicine and Life Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| |
Collapse
|
7
|
|
8
|
Morita SY, Tsuda T, Horikami M, Teraoka R, Kitagawa S, Terada T. Bile salt-stimulated phospholipid efflux mediated by ABCB4 localized in nonraft membranes. J Lipid Res 2013; 54:1221-30. [PMID: 23468132 DOI: 10.1194/jlr.m032425] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ABCB4 is necessary for the secretion of phospholipids from hepatocytes into bile and for the protection of cell membranes against bile salts. Lipid rafts are plasma membrane microdomains containing high contents of cholesterol and sphingolipids, which are separated by Triton X-100 extraction or OptiPrep gradient centrifugation. In this study, we investigated the relationship between the function of ABCB4 and lipid rafts using mouse canalicular membranes and HEK293 cells stably expressing ABCB4. ABCB4 and ABCB1 were mainly distributed in nonraft membranes. The expression of ABCB4, but not ABCB1, led to significant increases in the phosphatidylcholine (PC), phosphatidylethanolamine (PE), and sphingomyelin (SM) contents in nonraft membranes and further enrichment of SM and cholesterol in raft membranes. The ABCB4-mediated efflux of PC, PE, and SM was significantly stimulated by taurocholate, while the efflux of PE and SM was much less than that of PC. This ABCB4-mediated efflux was completely abolished by BODIPY-verapamil, which hardly partitioned into raft membranes. In addition, ABCB1 and ABCB4 mediated the efflux of rhodamine 123 and rhodamine 6G from nonraft membranes, which was not affected by taurocholate. We conclude that ABCB4 located in nonrafts, but not in rafts, is predominantly involved in the efflux of phospholipids and other substrates.
Collapse
Affiliation(s)
- Shin-ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga 520-2192, Japan
| | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Kao PH, Chiou YL, Chen YJ, Lin SR, Chang LS. Guanidination of notexin promotes its phospholipase A(2) activity-independent fusogenicity on vesicles with lipid-supplied negative curvature. Toxicon 2011; 59:47-58. [PMID: 22030836 DOI: 10.1016/j.toxicon.2011.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 09/27/2011] [Accepted: 10/11/2011] [Indexed: 11/30/2022]
Abstract
To address the requirement of phospholipase A(2) (PLA(2)) activity in membrane fusion events and membrane perturbation activity of notexin and guanidinated notexin (Gu-notexin), the present study was conducted. Notexin and Gu-notexin did not show PLA(2) activity after the removal of Ca(2+) with EDTA. Metal-free notexin and Gu-notexin were found to induce membrane leakage and fusion of phospholipid vesicles. Fusogenic activity of native and modified notexin correlated positively with their membrane-damaging activity underlying the deprivation of PLA(2) activity. Compared with Ca(2+)-bound Gu-notexin, fusogenicity of metal-free Gu-notexin was notably increased by incorporation of cholesterol, cholesterol sulfate, phosphatidylethanolamine, α-tocopherol and phosphatidic acid that supplied negative curvature into phospholipid bilayer. The ability of Gu-notexin to induce membrane fusion of vesicles with lipid-supplied negative curvature was higher than that of notexin regardless of the absence or presence of Ca(2+). Consistently, metal-free Gu-notexin markedly induced membrane fusion of red blood cells (RBCs) compared with metal-free notexin, and fusion activity of metal-free Gu-notexin on cholesterol-depleted RBCs notably reduced. Compared with notexin, Gu-notexin highly induced uptake of calcein-loaded phosphatidylcholine (PC)/cholesterol and PC/cholesterol sulfate vesicles by K562 cells in the presence of EDTA. Taken together, our data suggest that notexin and Gu-notexin could induce vesicle leakage and fusion via a PLA(2) activity-independent mechanism, and guanidination promotes PLA(2) activity-independent fusogenicity of notexin on vesicles with lipid-supplied negative curvature.
Collapse
Affiliation(s)
- Pei-Hsiu Kao
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | | | | | | | | |
Collapse
|
11
|
Kuver R. Bioactive sphingolipids in the biliary tract: relevance for cholesterol gallstone disease. J Gastroenterol Hepatol 2010; 25:1020-3. [PMID: 20594212 DOI: 10.1111/j.1440-1746.2010.06321.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
12
|
Vermeer MA, Mulder TPJ, Molhuizen HOF. Theaflavins from black tea, especially theaflavin-3-gallate, reduce the incorporation of cholesterol into mixed micelles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:12031-12036. [PMID: 19049290 DOI: 10.1021/jf8022035] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Tea is one of the most widely consumed beverages in the world and may be associated with reduced heart disease rates. Theaflavins, which are formed in the production of black tea, have been suggested being responsible for the blood-cholesterol-lowering (BCL) effects of tea. We hypothesized that the effect of theaflavins on BCL could be through interference in the formation of dietary mixed micelles, which could result in reduced intestinal cholesterol absorption. Micelles were produced by mixing oleic acid, bile acids, lyso-phosphatidylcholine, and cholesterol. Theaflavin-treated micelles/particles were analyzed using electron microscopy (cryo-TEM), high-performance liquid chromatography (HPLC) analysis, and light-scattering particle size measurements. A dose-dependent inhibitory effect of theaflavins on the incorporation of (14)C-labeled cholesterol into micelles and a theaflavin-dependent increase in particle size was found. These particles consisted of insoluble large multilamellar vesicles with onion-like structures. Ultracentrifugation and HPLC analysis revealed that the pellets contained mainly theaflavin-3-gallate, while the remaining theaflavins were found to be present in the supernatant. Using purified theaflavin subtypes confirmed that mainly theaflavin-3-gallate is responsible for multilamellar vesicle formation. These results show that theaflavins can play a role in decreased intestinal cholesterol absorption via inhibition of micelle formation.
Collapse
Affiliation(s)
- Mario A Vermeer
- Unilever Food and Health Research Institute, Olivier van Noortlaan 120, P. O. Box 114, 3130 AC, 3133 AT Vlaardingen, The Netherlands.
| | | | | |
Collapse
|
13
|
Solubilization of sphingomyelin vesicles by addition of a bile salt. Chem Phys Lipids 2008; 151:10-7. [DOI: 10.1016/j.chemphyslip.2007.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 09/11/2007] [Accepted: 09/19/2007] [Indexed: 10/22/2022]
|
14
|
Abstract
AIM: To explore the role of bile liquid crystal in the process of gallbladder stone formation and to provide bases for preventing and treating cholelithiasis.
METHODS: 46 guinea pigs, half males and half females, were randomly divided into control group and stone-causing group. Normal feed and stoneleading feed were used respectively to raise guinea pigs in the control group and stone-causing group. The guinea pigs were killed in three batches during the raising period. Under polarizing microscope, the pattern changes of bile liquid crystal in the gallbladder biles of the guinea pigs in the control group and stone-causing group were dynamicly observed respectively in single-blind trial.
RESULTS: It was found that there were few crystals in the guinea pigs’ biles of the control group, and their Malta cross was small and scattered, and existed in single form. With the increase of the feeding days, bile liquid crystals grew and Malta cross became bigger with their distribution densified, denser somewhere, but always existed in single form. While those of the stone-causing group had more bile liquid crystals, Malta cross was big and merged in strings. With the increase of the feeding days, bile liquid crystals grew in amount and strings of Malta cross increased and became bigger. The crosses in strings were arranged more and more regularly and they gradually changed into stone crystals.
CONCLUSION: Formation of gallbladder stone is a process of nucleation from different substances, and the causing-stone gallbladder bile is a constantly supersaturated solution, and bile liquid crystal is a nucleation factor in the formation of gallbladder stones. The process of nucleation includes gathering, merging and phase-changing of bile liquid crystals. The process of gathering, merging of bile liquid crystal is the key to nucleation.
Collapse
Affiliation(s)
- Hai-Ming Yang
- Department of Physics and Mathematics, Kunming Medical College, 191 West Renming Road, Kunming 650031, Yunnan Province, China.
| | | | | | | | | |
Collapse
|
15
|
Nibbering CP, Frederik PM, van Berge-Henegouwen GP, van Veen HA, van Marle J, van Erpecum KJ. Different interactions of egg-yolk phosphatidylcholine and sphingomyelin with detergent bile salts. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1583:213-20. [PMID: 12117565 DOI: 10.1016/s1388-1981(02)00215-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To examine physical-chemical aspects of bile salt-phospholipid interactions that could contribute to preferential phosphatidylcholine (PC) secretion into bile, we have compared transitions between vesicles and micelles in model systems containing taurocholate (TC) and either egg-yolk PC (EYPC), egg-yolk sphingomyelin (EYSM), buttermilk SM (BMSM) or dipalmitoyl PC (DPPC). Phase transitions from micelles to vesicles were observed at 4-fold dilution of serially diluted EYPC/TC systems, but not earlier than at 16-fold dilution of SM/TC or DPPC/TC systems, indicating lower concentrations of the detergent required for micellization in the case of SM or DPPC. Cryo-transmission electron microscopy of phase transitions initiated by addition of TC to phospholipid vesicles revealed extremely long SM-containing intermediate structures, but shorter EYPC-containing intermediate structures. Again, larger amounts of bile salt were required to induce phase transitions in the case of EYPC compared to SM. Sizes of TC-phospholipid micelles increased progressively upon increasing phospholipid contents in the rank order: DPPC-TC<EYSM-TC<BMSM-TC<EYPC-TC, consistent with higher micellization concentrations in the case of EYPC. Micelles were also separated from vesicular phases in two-phase model systems composed with TC, both EYPC and EYSM and 0, 10, 20 or 30 mol% cholesterol, by ultracentrifugation and ultrafiltration of the supernatant. At increasing cholesterol contents, EYPC preferentially distributed into the micellar phase. In contrast, no preferential micellar EYPC distribution occurred in the absence of the sterol. These results indicate different structural arrangements of EYPC-TC micelles compared to SM-TC micelles and lower detergent concentrations required for micellization in the case of SM-containing vesicles.
Collapse
Affiliation(s)
- Catharina P Nibbering
- Department of Gastroenterology and Surgery, Gastrointestinal Research Unit, University Medical Center, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
Venneman NG, Huisman SJ, Moschetta A, vanBerge-Henegouwen GP, van Erpecum KJ. Effects of hydrophobic and hydrophilic bile salt mixtures on cholesterol crystallization in model biles. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1583:221-8. [PMID: 12117566 DOI: 10.1016/s1388-1981(02)00216-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UNLABELLED The hydrophilic bile salt ursodeoxycholate is frequently used to dissolve cholesterol gallstones. We have now quantitated crystallization as a function of bile salt hydrophobicity, phospholipid content, cholesterol saturation and total lipid concentration (TLCo). METHODS Crystallization in supersaturated model biles with low phospholipid contents (left two-phase-micelles and crystal-containing-zone) was assessed during 21 days by microscopy and chemical measurement of crystal mass. For model biles with higher phospholipid contents (central three-phase-micelles, vesicles and crystal-containing-zone), lipid distribution into various phases was determined by combined ultracentrifugation-filtration-dialysis methodology (Biochim. Biophys. Acta 1532 (2001) 15-27). RESULTS In the left two-phase zone, crystal numbers and masses were highest in case of more hydrophilic bile salt composition (TUDC 100%>TC/TUDC 70%/30%>TC 100%>TC/TDC 70%/30%>TDC 100%) and decreased with increasing phospholipid contents, lower TLCo and lower cholesterol saturation index (CSI). In contrast, in the presence of vesicles (three-phase zone), crystallization decreased at increasing bile salt hydrophilicity, with concomitant increased vesicular cholesterol solubilization. CONCLUSIONS Presence of vesicular phases is a prerequisite for inhibition of cholesterol crystallization by tauroursodeoxycholate.
Collapse
Affiliation(s)
- Niels G Venneman
- Gastrointestinal Research Unit, Department of Gastroenterology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Moschetta A, Frederik PM, Portincasa P, vanBerge-Henegouwen GP, van Erpecum KJ. Incorporation of cholesterol in sphingomyelin- phosphatidylcholine vesicles has profound effects on detergent-induced phase transitions. J Lipid Res 2002; 43:1046-53. [PMID: 12091488 DOI: 10.1194/jlr.m100355-jlr200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vesicle <--> micelle transitions are important phenomena during bile formation and intestinal lipid processing. The hepatocyte canalicular membrane outer leaflet contains appreciable amounts of phosphatidylcholine (PC) and sphingomyelin (SM), and both phospholipids are found in the human diet. Dietary SM enrichment inhibits intestinal cholesterol absorption. We therefore studied detergent-induced vesicle --> micelle transitions in SM-PC vesicles. Phase transitions were evaluated by spectrophotometry and cryotransmission electron microscopy (cryo-TEM) after addition of taurocholate (3-7 mM) to SM-PC vesicles (4 mM phospholipid, SM/PC 40%/60%, without or with 1.6 mM cholesterol). After addition of excess (5-7 mM) taurocholate, SM-PC vesicles were more sensitive to micellization than PC vesicles. As shown by sequential cryo-TEM, addition of equimolar (4 mM) taurocholate to SM-PC vesicles induced formation of open vesicles, then (at the absorbance peak) fusion of bilayer fragments into large open structures (around 200 nm diameter) coexisting with some multilamellar or fused vesicles and thread-like micelles and, finally, transformation into an uniform picture with long thread-like micelles. Incorporation of cholesterol in the SM/PC bilayer changed initial vesicular shape from spherical into ellipsoid and profoundly increased detergent resistance. Disk-like micelles and multilamellar vesicles, and then extremely large vesicular structures, were observed by sequential cryo-TEM under these circumstances, with persistently increased absorbance values by spectrophotometry. These findings may be relevant for bile formation and intestinal lipid processing. Inhibition of intestinal cholesterol absorption by dietary SM enrichment may relate to high resistance against bile salt-induced micellization of intestinal lipids in presence of the sphingolipid.
Collapse
Affiliation(s)
- Antonio Moschetta
- Gastrointestinal Research Unit, Department of Gastroenterology, University Medical Center, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
18
|
Eckhardt ERM, Wang DQH, Donovan JM, Carey MC. Dietary sphingomyelin suppresses intestinal cholesterol absorption by decreasing thermodynamic activity of cholesterol monomers. Gastroenterology 2002; 122:948-56. [PMID: 11910347 DOI: 10.1053/gast.2002.32539] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS In humans, cholesterol absorbed from the intestine contributes appreciably to serum cholesterol levels. We hypothesized that cholesterol thermodynamic activity (A(t)) would predict bioavailability of cholesterol monomers in intestinal content, and that natural dietary phospholipids exhibiting high affinity for cholesterol would reduce its absorption. METHODS Cholesterol A(t) was determined by measuring partitioning of monomeric cholesterol from aqueous solutions of taurocholate, cholesterol, and either milk sphingomyelin (MSM), dipalmitoyl phosphatidylcholine (DPPC), or egg yolk phosphatidylcholine (EYPC) into wafers of polymerized silicone. Cholesterol absorption from the same mixtures was tested with monolayers of Caco-2 cells. For in vivo absorption studies (employing male C57L/J mice), we used the fecal dual isotope method during dietary enrichment with MSM, DPPC, or EYPC at varying dose levels. RESULTS Cholesterol A(t) values were reduced significantly in MSM- and DPPC-containing systems compared with EYPC and correlated positively with reduced uptake and esterification of cholesterol by Caco-2 cells. Mice fed chow absorbed 31.4% +/- 6.9% (mean +/- SEM) cholesterol, whereas enrichment with MSM or DPPC led to dose-dependent decreases in cholesterol absorption; even at 0.1% MSM, cholesterol absorption was reduced by 20.4% +/- 15.4% (P < 0.05, n = 6). CONCLUSIONS Different phospholipids have distinct effects on micellar cholesterol A(t), which predicts cholesterol uptake by enterocytes in vitro as well as in vivo. Natural phospholipids with high affinity for cholesterol, as evidenced particularly by sphingomyelin, decrease A(t) and curtail intestinal cholesterol absorption.
Collapse
Affiliation(s)
- Erik R M Eckhardt
- Gastroenterology Division of Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Bile formation, the exocrine function of the liver, represents a process that is unique to the hepatocyte as a polarized epithelial cell. The generation of bile flow is an osmotic process and largely depends on solute secretion by primary active transporters in the apical membrane of the hepatocyte. In recent years an impressive progress has been made in the discovery of these proteins, most of which belong to the family of ABC transporters. The number of identified ABC transporter genes has been exponentially increasing and the mammalian subfamily now counts at least 52. This development has been of crucial importance for the elucidation of the mechanism of bile formation, and it is therefore not surprising that the development in this field has run in parallel with the discovery of the ABC genes. With the identification of these transporter genes, the background of a number of inherited diseases, which are caused by mutations in these solute pumps, has now been elucidated. We now know that at least six primary active transporters are involved in canalicular secretion of biliary components (MDR1, MDR3, BSEP, MRP2, BCRP and FIC1). Four of these transporter genes are associated with inherited diseases. In this minireview we will shortly describe our present understanding of bile formation and the associated inherited defects.
Collapse
Affiliation(s)
- Ronald Oude Elferink
- Laboratory for Experimental Hepatology, Academic Medical Center Amsterdam F0-116, Meibergdreef 9, 1105 AZ, Netherlands.
| | | |
Collapse
|
20
|
Moschetta A, vanBerge-Henegouwen GP, Portincasa P, Palasciano G, van Erpecum KJ. Cholesterol crystallization in model biles: effects of bile salt and phospholipid species composition. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31578-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
21
|
Nibbering CP, Groen AK, Ottenhoff R, Brouwers JF, vanBerge-Henegouwen GP, van Erpecum KJ. Regulation of biliary cholesterol secretion is independent of hepatocyte canalicular membrane lipid composition: a study in the diosgenin-fed rat model. J Hepatol 2001; 35:164-9. [PMID: 11580137 DOI: 10.1016/s0168-8278(01)00125-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIMS Phosphatidylcholine (PC) and sphingomyelin (SM) are the major phospholipids on the outer leaflet of the hepatocyte canalicular membrane. Since cholesterol preferentially associates with SM in detergent-resistant microdomains, we hypothesized that canalicular membrane lipid composition could modulate secretion of the sterol into bile. METHODS Male Wistar rats were fed for 10 days with a control diet with or without the plant sterol diosgenin (1% w/w) to induce biliary cholesterol hypersecretion. Thereafter, lipid compositions and phospholipid molecular species were determined in fistula bile and highly enriched canalicular membrane fractions. RESULTS Despite four-fold higher biliary cholesterol output in diosgenin-fed rats, no differences were observed between canalicular membranes of diosgenin and control groups with respect to cholesterol/phospholipid ratios (0.58 vs 0.62), phospholipid classes and acyl chain compositions of SMs (16:0 > 24:1 > 24:0 > 22:0 > 18:0 > 23:0 > 20:0 > 24:2), or PCs (mainly diacyl 16:0-18:2, 16:0-20:4, 18:0-20:4, and 18:0-18:2). In contrast to canalicular PCs, bile contained more hydrophilic species (mainly diacyl 16:0-18:2 and 16:0-20:4), without differences between both groups. In vitro resistance of purified canalicular membrane fractions against detergents such as Triton X-100 and taurocholate was also similar in both groups. CONCLUSIONS Diosgenin-induced biliary cholesterol hypersecretion occurs in the absence of changes of canalicular membrane lipids. Our data therefore do not support a major role of canalicular membrane lipid composition in regulation of biliary cholesterol secretion.
Collapse
Affiliation(s)
- C P Nibbering
- Department of Gastroenterology, Gastrointestinal Research Unit, University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Moschetta A, Eckhardt ER, De Smet MB, Renooij W, Van Berge-Henegouwen GP, Van Erpecum KJ. Accurate separation of vesicles, micelles and cholesterol crystals in supersaturated model biles by ultracentrifugation, ultrafiltration and dialysis. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1532:15-27. [PMID: 11420170 DOI: 10.1016/s1388-1981(01)00110-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gel filtration with bile salts at intermixed micellar/vesicular concentrations (IMC) in the eluant has been proposed to isolate vesicles and micelles from supersaturated model biles, but the presence of vesicular aggregates makes this method unreliable. We have now validated a new method for isolation of various phases. First, aggregated vesicles and - if present - cholesterol crystals are pelleted by short ultracentrifugation. Cholesterol contained in crystals and vesicular aggregates can be quantitated from the difference of cholesterol contents in the pellets before and after bile salt-induced solubilization of the vesicular aggregates. Micelles are then isolated by ultrafiltration of the supernatant through a highly selective 300 kDa filter and unilamellar vesicles by dialysis against buffer containing bile salts at IMC values. Lipids contained in unilamellar vesicles are also estimated by subtraction of lipid contents in filtered micelles from lipid contents in (unilamellar vesicle+micelle containing) supernatant ('subtraction method'). 'Ultrafiltration-dialysis' and 'subtraction' methods yielded identical lipid solubilization in unilamellar vesicles and identical vesicular cholesterol/phospholipid ratios. In contrast, gel filtration yielded much more lipids in micelles and less in unilamellar vesicles, with much higher vesicular cholesterol/phospholipid ratios. When vesicles obtained by dialysis were analyzed by gel filtration, vesicular cholesterol/phospholipid ratios increased strongly, despite correct IMC values for bile salts in the eluant. Subsequent extraction of column material showed significant amounts of lipids. In conclusion, gel filtration may underestimate vesicular lipids and overestimate vesicular cholesterol/phospholipid ratios, supposedly because of lipids remaining attached to the column. Combined ultracentrifugation-ultrafiltration-dialysis should be considered state-of-the-art methodology for quantification of cholesterol carriers in model biles.
Collapse
Affiliation(s)
- A Moschetta
- Gastrointestinal Research Unit, Department of Gastroenterology, University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
23
|
Moschetta A, vanBerge-Henegouwen GP, Portincasa P, Renooij WL, Groen AK, van Erpecum KJ. Hydrophilic bile salts enhance differential distribution of sphingomyelin and phosphatidylcholine between micellar and vesicular phases: potential implications for their effects in vivo. J Hepatol 2001; 34:492-9. [PMID: 11394647 DOI: 10.1016/s0168-8278(00)00046-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND/AIMS The hepatocyte canalicular membrane outer leaflet contains both phosphatidylcholine (PC) and sphingomyelin (SM). Normally, PC is the exclusive phospholipid in bile. We examined effects of bile salt hydrophobicity on cytotoxicity and on differential SM and PC distribution between detergent-resistant aggregated vesicles (model for detergent-resistant canalicular membrane) and mixed micelles or small unilamellar vesicles (representing lipid phases in bile). METHODS Aggregated vesicles were obtained by ultracentrifugation of cholesterol-supersaturated model systems containing SM, PC and various bile salts, micelles by ultrafiltration and unilamellar vesicles by dialysis of the supernatant. Erythrocyte hemolysis and lactate dehydrogenase release from CaCo-2 cells upon incubation with various micelles were quantified. RESULTS Preferential SM distribution and lipid solubilization in aggregated vesicles increased in rank order taurodeoxycholate < taurocholate < tauroursodeoxycholate < taurohyodeoxycholate, with reciprocal PC enrichment in micelles and small unilamellar vesicles. Including small amounts of PC within taurohyodeoxycholate micelles increased cytotoxicity with more erythrocyte hemolysis and LDH release from CaCo-2 cells upon incubation, but decreased cytotoxicity in case of tauroursodeoxycholate micelles. CONCLUSIONS Hydrophilic but not hydrophobic bile salts preserve integrity of pathophysiologically relevant phosphatidylcholine plus sphingomyelin-containing bilayers. Enhanced biliary phospholipid secretion during taurohyodeoxycholate but not during tauroursodeoxycholate therapy (Hepatology 25 (1997) 1306) may relate to different interactions of these bile salts with phospholipids.
Collapse
Affiliation(s)
- A Moschetta
- Department of Gastroenterology, University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
24
|
London E, Brown DA. Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1508:182-95. [PMID: 11090825 DOI: 10.1016/s0304-4157(00)00007-1] [Citation(s) in RCA: 507] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The insolubility of lipids in detergents is a useful method for probing the structure of biological membranes. Insolubility in detergents like Triton X-100 is observed in lipid bilayers that exist in physical states in which lipid packing is tight. The Triton X-100-insoluble lipid fraction obtained after detergent extraction of eukaryotic cells is composed of detergent-insoluble membranes rich in sphingolipids and cholesterol. These insoluble membranes appear to arise from sphingolipid- and cholesterol-rich membrane domains (rafts) in the tightly packed liquid ordered state. Because the degree of lipid insolubility depends on the stability of lipid-lipid interactions relative to lipid-detergent interactions, the quantitative relationship between rafts and detergent-insoluble membranes is complex, and can depend on lipid composition, detergent and temperature. Nevertheless, when used conservatively detergent insolubility is an invaluable tool for studying cellular rafts and characterizing their composition.
Collapse
Affiliation(s)
- E London
- Department of Biochemistry, State University of New York at Stony Brook, New York 11794-5215, USA.
| | | |
Collapse
|