1
|
Ke LY, Chan HC, Chen CC, Chang CF, Lu PL, Chu CS, Lai WT, Shin SJ, Liu FT, Chen CH. Increased APOE glycosylation plays a key role in the atherogenicity of L5 low-density lipoprotein. FASEB J 2020; 34:9802-9813. [PMID: 32501643 DOI: 10.1096/fj.202000659r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/22/2022]
Abstract
Low-density lipoprotein (LDL) is heterogeneous, composed of particles with variable atherogenicity. Electronegative L5 LDL exhibits atherogenic properties in vitro and in vivo, and its levels are elevated in patients with increased cardiovascular risk. Apolipoprotein E (APOE) content is increased in L5, but what role APOE plays in L5 function remains unclear. Here, we characterized the contributions of APOE posttranslational modification to L5's atherogenicity. Using two-dimensional electrophoresis and liquid chromatography-mass spectrometry, we studied APOE's posttranslational modification in L5 from human plasma. APOE structures with various glycan residues were predicted. Molecular docking and molecular dynamics simulation were performed to examine the functional changes of APOE resulting from glycosylation. We also examined the effects of L5 deglycosylation on endothelial cell apoptosis. The glycan sequence N-acetylgalactosamine, galactose, and sialic acid was consistently expressed on serine 94, threonine 194, and threonine 289 of APOE in L5 and was predicted to contribute to L5's negative surface charge and hydrophilicity. The electrostatic force between the negatively charged sialic acid-containing glycan residue of APOE and positively charged amino acids at the receptor-binding area suggested that glycosylation interferes with APOE's attraction to receptors, lipid-binding ability, and lipid transportation and metabolism functions. Importantly, L5 containing glycosylated APOE induced apoptosis in cultured endothelial cells through lectin-like oxidized LDL receptor-1 (LOX-1) signaling, and glycosylation removal from L5 attenuated L5-induced apoptosis. APOE glycosylation may contribute to the atherogenicity of L5 and be a useful biomarker for rapidly quantifying L5.
Collapse
Affiliation(s)
- Liang-Yin Ke
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX, USA.,Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hua-Chen Chan
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX, USA.,Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Chieh Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chuan-Fa Chang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Liang Lu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Sheng Chu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wen-Ter Lai
- Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shyi-Jang Shin
- Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Dermatology, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX, USA.,New York Heart Research Foundation, New York, NY, USA
| |
Collapse
|
2
|
Zhang C, Chen J, Liu Y, Xu D. Sialic acid metabolism as a potential therapeutic target of atherosclerosis. Lipids Health Dis 2019; 18:173. [PMID: 31521172 PMCID: PMC6745061 DOI: 10.1186/s12944-019-1113-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/30/2019] [Indexed: 01/08/2023] Open
Abstract
Sialic acid (Sia), the acylated derivative of the nine-carbon sugar neuraminic acid, is a terminal component of the oligosaccharide chains of many glycoproteins and glycolipids. In light of its important biological and pathological functions, the relationship between Sia and coronary artery disease (CAD) has been drawing great attentions recently. Large-scale epidemiological surveys have uncovered a positive correlation between plasma total Sia and CAD risk. Further research demonstrated that N-Acetyl-Neuraminic Acid, acting as a signaling molecule, triggered myocardial injury via activation of Rho/ROCK-JNK/ERK signaling pathway both in vitro and in vivo. Moreover, there were some evidences showing that the aberrant sialylation of low-density lipoprotein, low-density lipoprotein receptor and blood cells was involved in the pathological process of atherosclerosis. Significantly, the Sia regulates immune response by binding to sialic acid-binding immunoglobulin-like lectin (Siglecs). The Sia-Siglecs axis is involved in the immune inflammation of atherosclerosis. The generation of Sia and sialylation of glycoconjugate both depend on many enzymes, such as sialidase, sialyltransferase and trans-sialidase. Abnormal activation or level of these enzymes associated with atherosclerosis, and inhibitors of them might be new CAD treatments. In this review, we focus on summarizing current understanding of Sia metabolism and of its relevance to atherosclerosis.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China.,Department of Health Management Center, Hunan Provincial People's Hospital, 61 Jiefang West Road, Changsha, 410005, Hunan, China
| | - Jingyuan Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Yuhao Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
3
|
Orekhov AN, Ivanova EA. Cellular models of atherosclerosis and their implication for testing natural substances with anti-atherosclerotic potential. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1190-1197. [PMID: 26922038 DOI: 10.1016/j.phymed.2016.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Atherosclerosis remains a major problem in the modern society being a cause of life-threatening cardiovascular diseases. Subclinical atherosclerosis can be present for years before the symptoms become obvious, and first manifestations of the disease in a form of acute ischemia of organs are often fatal. The development of atherosclerosis is characterized by lipid accumulation in the aortic wall and formation of foam cells overloaded with large amounts of lipid inclusions in the cytoplasm. Current therapy of atherosclerosis is aimed mostly at the normalization of the blood lipid profile, and has no direct activity on the atherosclerotic plaque development. It is therefore necessary to continue the search for substances that possess a direct anti-atherosclerotic effect, preventing the cholesterol deposition in the arterial wall cells and reducing the existing plaques. PURPOSE Medicinal plants with potential anti-atherosclerotic activity are especially interesting in that regard, as plant-based medications are often characterized by good tolerability and are suitable for long-term therapy. The evaluation of novel active substances requires the establishment of reliable models of atherogenesis. In this review we discuss cellular models based on cultured human aortic cells. We also discuss several examples of successful application of these models for evaluation of anti-atherosclerotic activity of natural products of botanical origin based on measurable parameters, such as intracellular cholesterol accumulation. CHAPTERS We describe several examples of successful screening and clinical studies evaluating natural products that can be beneficial for prevention and treatment of atherosclerosis, including the subclinical (asymptomatic) forms. CONCLUSION Several substances of botanical origin have been demonstrated to be active for treatment and prevention of atherosclerosis. The obtained results encourage future studies of naturally occurring anti-atherosclerotic agents.
Collapse
Affiliation(s)
- Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia; Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Ekaterina A Ivanova
- Department of Development and Regeneration, Katholieke Universiteit, Leuven 3000 Belgium.
| |
Collapse
|
4
|
Alves ADA, Belian MF, Lavorante AF. Luminescent solid phase for sialic acid determination: a promising sensor for milk-adulterated samples. LUMINESCENCE 2014; 29:779-83. [PMID: 24425363 DOI: 10.1002/bio.2620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 11/12/2013] [Accepted: 11/14/2013] [Indexed: 11/06/2022]
Abstract
This article presents the synthesis, characterization and spectroscopic study of silica modified with thenoyltrifluoroacetonate (SilTTA) and coordinated to an europium (III) ion, for the determination of sialic acid (NANA). Elemental analysis and infrared spectroscopy suggest silica functionalization, as well as coordination of beta-diketone to the lanthanide ion. The emission spectra of compound-free and coordinated Eu-SilTTA to NANA showed significant changes with respect to the maximum emission and spectral profile, suggesting that the NANA ion is coordinated to the Eu(III). The values of the phenomenological intensity parameters show an increase in polarizability around the Eu(III) in the case of Eu-SilTTA coordinated to NANA, as expected, since water molecules are less polarizable than sialic acid. The results of the batch assay showed that luminescent silica can be used for sialic acid determination in milk-adulterated samples, with a correlation coefficient of 0.9992; and a detection limit of 0.4 mg/L; relative standard deviation (RSD%) = 0.0028.
Collapse
Affiliation(s)
- Aline de A Alves
- Departamento de Ciências Moleculares, Universidade Federal Rural de Pernambuco, 52171-900, Recife, Pernambuco, Brazil
| | | | | |
Collapse
|
5
|
Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease. Proc Natl Acad Sci U S A 2008; 106:18-23. [PMID: 19106304 DOI: 10.1073/pnas.0806787106] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Initial recruitment of leukocytes in inflammation associated with diseases such as multiple sclerosis (MS), ischemic stroke, and HIV-related dementia, takes place across intact, but activated brain endothelium. It is therefore undetectable to symptom-based diagnoses and cannot be observed by conventional imaging techniques, which rely on increased permeability of the blood-brain barrier (BBB) in later stages of disease. Specific visualization of the early-activated cerebral endothelium would provide a powerful tool for the presymptomatic diagnosis of brain disease and evaluation of new therapies. Here, we present the design, construction and in vivo application of carbohydrate-functionalized nanoparticles that allow direct detection of endothelial markers E-/P-selectin (CD62E/CD62P) in acute inflammation. These first examples of MRI-visible glyconanoparticles display multiple copies of the natural complex glycan ligand of selectins. Their resulting sensitivity and binding selectivity has allowed acute detection of disease in mammals with beneficial implications for treatment of an expanding patient population suffering from neurological disease.
Collapse
|
6
|
Aksenov DV, Medvedeva LA, Skalbe TA, Sobenin IA, Tertov VV, Gabbasov ZA, Popov EV, Orekhov AN. Deglycosylation of apo B-containing lipoproteins increase their ability to aggregate and to promote intracellular cholesterol accumulation in vitro. Arch Physiol Biochem 2008; 114:349-56. [PMID: 19085234 DOI: 10.1080/13813450802227915] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Sub-fractions of all apo B-100 containing lipoproteins (low density lipoproteins, very low density lipoproteins and intermediate density lipoproteins) with reduced contents of sialic acid were found in vivo in human blood. These lipoproteins were inclined to spontaneously form aggregates and were able to stimulate accumulation of cholesterol in cells cultured from human aortic intima. In vitro treatment of apo B-containing lipoproteins with 2,6- and 2,3-specific sialidases, alpha-mannosidase, endoglycosidases F1 or F2 or peptide-N-glycanase F also stimulated aggregation and increased the ability of these particles to potentiate cholesterol accumulation in cells of the intact human aortic intima. So, deglycosylation of various apo B-containing lipoproteins possibly occurs in the blood, decreases their resistance to aggregation and increases the ability of these particles to stimulate accumulation of cholesterol in human aortic intima cells, thereby increasing their atherogenic potential.
Collapse
Affiliation(s)
- D V Aksenov
- Institute of Experimental Cardiology, Russian Cardiology Research Center, Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Nichi M, Bols PEJ, Züge RM, Barnabe VH, Goovaerts IGF, Barnabe RC, Cortada CNM. Seasonal variation in semen quality in Bos indicus and Bos taurus bulls raised under tropical conditions. Theriogenology 2006; 66:822-8. [PMID: 16529802 DOI: 10.1016/j.theriogenology.2006.01.056] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 01/23/2006] [Indexed: 11/17/2022]
Abstract
In the present study, we tested the hypothesis that Bos taurus taurus bulls have greater reactive oxygen species (ROS) and lower activity of antioxidant enzymes in their semen than Bos taurus indicus bulls. Sixteen Simmental bulls (B. t. taurus) and 11 Nelore bulls (B. t. indicus) were managed extensively in a tropical environment. Semen was collected twice annually (summer and winter) for 2 consecutive years. Simmental bulls had significantly higher percentages of major sperm defects during the summer than the winter (20.3+/-3.1% versus 12.2+/-2.4%, respectively; mean+/-S.E.M.). There was an interaction of breed and season for minor sperm defects (P=0.037; highest in Nelore bulls in the summer) and an effect of season on total defects (P=0.066; higher in summer). To evaluate oxidative damage, malondialdehyde (lipid-peroxidation metabolite) concentrations were indirectly measured by semen concentrations of thiobarbituric acid reactive substances (TBARS); these were higher in summer than in winter (728.1+/-79.3ng/mL versus 423.8+/-72.6ng/mL, respectively; P=0.01). Glutathione peroxidase/redutase (GPx) activity in semen was higher in Simmental versus Nelore bulls (741.6+/-62.1 versus 510.2+/-62.8; P<0.01). However, superoxide dismutase (SOD), another antioxidant enzyme, was not significantly affected by breed or season. There were correlations between TBARS and sperm primary defects during the summer for both Simmental and Nelore bulls (r=0.59, P=0.021 and r=0.40, P=0.034, respectively), and between SOD and primary defects during summer for Simmental bulls only (r=-0.51, P=0.041). In conclusion, there was a higher level of lipid peroxidation (ROS) in semen of Simmental versus Nelore bulls; apparently the higher GPx activity in Simmental bulls was insufficient to avoid damage that occurred concurrent with increased ROS production during the summer.
Collapse
Affiliation(s)
- M Nichi
- University of Antwerp, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Veterinary Physiology, Universiteitsplein 1, Gebouw U, B-2610 Wilrijk, Belgium.
| | | | | | | | | | | | | |
Collapse
|
8
|
Mel'nichenko AA, Tertov VV, Ivanova OA, Aksenov DV, Sobenin IA, Popov EV, Kaplun VV, Suprun IV, Panasenko OM, Orekhov AN. Desialylation Decreases the Resistance of Apo B-Containing Lipoproteins to Aggregation and Increases Their Atherogenic Potential. Bull Exp Biol Med 2005; 140:51-4. [PMID: 16254619 DOI: 10.1007/s10517-005-0409-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Subfractions of apo B-containing lipoproteins (VLDL and intermediate-density lipoproteins) with reduced content of sialic acid were found in human blood. These lipoproteins are characterized by high capacity to spontaneous association (aggregation) and stimulated accumulation of cholesterol in smooth muscle cells of human aortic intima. In vitro treatment of apo B-containing lipoproteins with alpha-2,6-sialidase and alpha-2,3-sialidase stimulated aggregation and increased the ability of these particles to potentiate cholesterol accumulation in smooth muscle cells of the intact human aortic intima. Probably, desialylation of various apo B-containing lipoproteins can occur in the blood; this process decreases their resistance to aggregation, and increases the ability of these particles to stimulate accumulation of cholesterol in human aortic intima cells, i.e. increases their atherogenic potential.
Collapse
Affiliation(s)
- A A Mel'nichenko
- Laboratory of Physicochemical Methods for Study and Analysis, Institute of Physicochemical Medicine, Russian Ministry of Health, Moscow.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tertov VV, Kaplun VV, Sobenin IA, Boytsova EY, Bovin NV, Orekhov AN. Human plasma trans-sialidase causes atherogenic modification of low density lipoprotein. Atherosclerosis 2001; 159:103-15. [PMID: 11689212 DOI: 10.1016/s0021-9150(01)00498-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In earlier studies we have found that incubation of low density lipoprotein (LDL) with autologous blood plasma-derived serum leads to a loss of sialic acid from lipoprotein particles. In this study we demonstrated that sialic acid removed from LDL was transferred to glycoconjugates of lipoproteins, glycoproteins and sphingolipids of human serum. This showed that human serum contained the trans-sialidase activity. Gel-filtration chromatography of human blood serum demonstrated the presence of trans-sialidase activity in lipoprotein subfractions as well as in lipoprotein-deficient serum. Trans-sialidase (about 65 kDa) was isolated from lipoprotein-deficient serum using affinity chromatography carried out with Neu5Acalpha2-8Neu5Ac-sepharose FF-6. Optimal pH values for the trans-sialidase were 3.0, 5.0 and 7.0. Calcium and magnesium ions stimulated the enzyme activity at millimolar concentrations. Isolated enzyme can remove sialic acid from LDL, IDL, VLDL, and HDL particles (in decreasing rate order). Serum trans-sialidase transferred sialic acid from glycoconjugates of plasma proteins (fetuin, transferrin) and gangliosides (GM3, GD3, GM1, GD1a, GD1b). Sialylated glycoconjugates of human blood erythrocytes also served as substrate for serum trans-sialidase. We have found that sialic acid can also be removed from N- and O-linked glycans, sialylated Le(x) and Le(a), oligosialic acids, and sphingolipid carbohydrate chains. The rate of sialic acid release decreased in the following order: alpha2,6>alpha2,3>>alpha2,8. Transferred molecule of sialic acid can form alpha2,6, alpha2,3 and to a lesser degree alpha2,8 linkage with galactose, N-acetyl-galactosamine or sialic acid of acceptors. The glycoconjugates of erythrocytes, lipoprotein particles, plasma proteins, neutral sphingolipids and gangliosides may serve as acceptors of transferred sialic acid. Trans-sialidase-treated native LDL becomes desialylated and then can induce cholesteryl ester accumulation in human aortic intimal smooth muscle cells. Thus, trans-sialidase may be involved in the early stages of atherogenesis characterized by foam cell formation.
Collapse
Affiliation(s)
- V V Tertov
- Institute of Experimental Cardiology, Cardiology Research Center, Institute for Atherosclerosis Research Ltd, 121552, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
10
|
Garner B, Harvey DJ, Royle L, Frischmann M, Nigon F, Chapman MJ, Rudd PM. Characterization of human apolipoprotein B100 oligosaccharides in LDL subfractions derived from normal and hyperlipidemic plasma: deficiency of alpha-N-acetylneuraminyllactosyl-ceramide in light and small dense LDL particles. Glycobiology 2001; 11:791-802. [PMID: 11588155 DOI: 10.1093/glycob/11.10.791] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The carbohydrate composition of apolipoprotein (apo) B100, particularly its degree of sialylation, may contribute to the atherogenic properties of low-density lipoprotein (LDL). We analyzed LDL apoB100 glycans derived from normolipidemic, hypercholesterolemic, and hypertriglyceridemic diabetic subjects. Using exoglycosidase carbohydrate sequencing and matrix-assisted laser desorption/ionization mass spectrometry to analyze fluorescently labeled oligosaccharides, we report evidence for several carbohydrates not previously identified on apoB100, including truncated complex biantennary N-glycans and hybrid N-glycans. The distribution and diversity of the apoB100 glycans isolated from all individuals was highly conserved. The N-glycan composition of apoB100 derived from five LDL subpopulations (LDL1, d = 1.018-1.023; LDL2, d = 1.023-1.030; LDL3, d = 1.030-1.040; LDL4, d = 1.040-1.051; LDL5, d = 1.051-1.065 g/ml) did not vary in normolipidemic or hypercholesterolemic subjects. Furthermore, we found no evidence for "desialylated" apoB100 glycans in any of the samples analyzed. Analysis of the most abundant LDL ganglioside, alpha-N-acetylneuraminyllactosyl-ceramide, revealed a deficiency in small dense LDL and in the most buoyant subpopulation. These data provide a novel explanation for the apparent deficiency of sialic acid in small dense LDL and indicate that the global apoB100 N-glycan composition is invariable in the patient groups studied.
Collapse
Affiliation(s)
- B Garner
- Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | | | | | |
Collapse
|
11
|
Garner B, Merry AH, Royle L, Harvey DJ, Rudd PM, Thillet J. Structural elucidation of the N- and O-glycans of human apolipoprotein(a): role of o-glycans in conferring protease resistance. J Biol Chem 2001; 276:22200-8. [PMID: 11294842 DOI: 10.1074/jbc.m102150200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein(a) (apo(a)) is a multikringle domain glycoprotein that exists covalently linked to apolipoprotein B100 of low density lipoprotein, to form the lipoprotein(a) (Lp(a)) particle, or as proteolytic fragments. Elevated plasma concentrations of apo(a) and its fragments may promote atherosclerosis, but the underlying mechanisms are incompletely understood. The factors influencing apo(a) proteolysis are also uncertain. Here we have used exoglycosidase digestion and mass spectrometry to sequence the Asn (N)-linked and Ser/Thr (O)-linked oligosaccharides of human apo(a). We also assessed the potential role of apo(a) O-glycans in protecting thermolysin-sensitive regions of the polypeptide. Apo(a) contained two major N-glycans that accounted for 17% of the total oligosaccharide structures. The N-glycans were complex biantennary structures present in either a mono- or disialylated state. The O-glycans were mostly (80%) represented by the monosialylated core type 1 structure, NeuNAcalpha2-3Galbeta1-3GalNAc, with smaller amounts of disialylated and non-sialylated O-glycans also detected. Removal of apo(a) O-glycans by sialidase and O-glycosidase treatment dramatically increased the sensitivity of the polypeptide to thermolysin digestion. These studies provide the first direct sequencing data for apo(a) glycans and indicate a novel function for apo(a) O-glycans that is potentially related to the atherogenicity of Lp(a).
Collapse
Affiliation(s)
- B Garner
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| | | | | | | | | | | |
Collapse
|
12
|
Achyuthan KE, Achyuthan AM. Comparative enzymology, biochemistry and pathophysiology of human exo-alpha-sialidases (neuraminidases). Comp Biochem Physiol B Biochem Mol Biol 2001; 129:29-64. [PMID: 11337249 DOI: 10.1016/s1096-4959(01)00372-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review summarizes the current research on human exo-alpha-sialidase (sialidase, neuraminidase). Where appropriate, the properties of viral, bacterial, and human sialidases have been compared. Sialic acids are implicated in diverse physiological processes. Sialidases, as enzymes acting upon sialic acids, assume importance as well. Sialidases hydrolyze the terminal, non-reducing, sialic acid linkage in glycoproteins, glycolipids, gangliosides, polysaccharides, and synthetic molecules. Therefore, a variety of assays are available to measure sialidase activity. Human sialidase is present in several organs and cells. Its cellular distribution could be cytosolic, lysosomal, or in the membrane. Human sialidase occurs in a high molecular-mass complex with several other proteins, including cathepsin A and beta-galactosidase. Multi-protein complexation is important for the in vivo integrity and catalytic activity of the sialidase. However, multi-protein complexation, the occurrence of isoenzymes, diverse subcellular localization, thermal instability, and membrane association have all contributed to difficulties in purifying and characterizing human sialidases. Human sialidase isoenzymes have recently been cloned and sequenced. Even though crystal structures for the human sialidases are not available, the highly conserved regions of the sialidase from various organisms have facilitated molecular modeling of the human enzyme and raise interesting evolutionary questions. While the molecular mechanisms vary, genetic defects leading to human sialidase deficiency are closely associated with at least two well-known human diseases, namely sialidosis and galactosialidosis. No therapy is currently available for either disease. A thorough investigation of human sialidases is therefore crucial to human health.
Collapse
Affiliation(s)
- K E Achyuthan
- ZymeTx Inc., 800 Research Parkway # 100, Oklahoma City, OK 73104, USA.
| | | |
Collapse
|