1
|
Hanlon C, Ziezold CJ, Bédécarrats GY. The Diverse Roles of 17β-Estradiol in Non-Gonadal Tissues and Its Consequential Impact on Reproduction in Laying and Broiler Breeder Hens. Front Physiol 2022; 13:942790. [PMID: 35846017 PMCID: PMC9283702 DOI: 10.3389/fphys.2022.942790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Estradiol-17β (E2) has long been studied as the primary estrogen involved in sexual maturation of hens. Due to the oviparous nature of avian species, ovarian production of E2 has been indicated as the key steroid responsible for activating the formation of the eggshell and internal egg components in hens. This involves the integration and coordination between ovarian follicular development, liver metabolism and bone physiology to produce the follicle, yolk and albumen, and shell, respectively. However, the ability of E2 to be synthesized by non-gonadal tissues such as the skin, heart, muscle, liver, brain, adipose tissue, pancreas, and adrenal glands demonstrates the capability of this hormone to influence a variety of physiological processes. Thus, in this review, we intend to re-establish the role of E2 within these tissues and identify direct and indirect integration between the control of reproduction, metabolism, and bone physiology. Specifically, the sources of E2 and its activity in these tissues via the estrogen receptors (ERα, ERβ, GPR30) is described. This is followed by an update on the role of E2 during sexual differentiation of the embryo and maturation of the hen. We then also consider the implications of the recent discovery of additional E2 elevations during an extended laying cycle. Next, the specific roles of E2 in yolk formation and skeletal development are outlined. Finally, the consequences of altered E2 production in mature hens and the associated disorders are discussed. While these areas of study have been previously independently considered, this comprehensive review intends to highlight the critical roles played by E2 to alter and coordinate physiological processes in preparation for the laying cycle.
Collapse
|
2
|
Reducing shell egg cholesterol content. I. Overview, genetic approaches, and nutritional strategies. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933906001206] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Eresheim C, Plieschnig J, Ivessa NE, Schneider WJ, Hermann M. Expression of microsomal triglyceride transfer protein in lipoprotein-synthesizing tissues of the developing chicken embryo. Biochimie 2014; 101:67-74. [PMID: 24394625 PMCID: PMC4008936 DOI: 10.1016/j.biochi.2013.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 12/21/2013] [Indexed: 12/01/2022]
Abstract
In contrast to mammals, in the chicken major sites of lipoprotein synthesis and secretion are not only the liver and intestine, but also the kidney and the embryonic yolk sac. Two key components in the assembly of triglyceride-rich lipoproteins are the microsomal triglyceride transfer protein (MTP) and apolipoprotein B (apoB). We have analyzed the expression of MTP in the embryonic liver, small intestine, and kidney, and have studied the expression of MTP in, and the secretion of apoB from, the developing yolk sac (YS). Transcript and protein levels of MTP increase during embryogenesis in YS, liver, kidney, and small intestine, and decrease in YS, embryonic liver, and kidney after hatching. In small intestine, the MTP mRNA level rises sharply during the last trimester of embryo development (after day 15), while MTP protein is detectable only after hatching (day 21). In the YS of 15- and 20-day old embryos, apoB secretion was detected by pulse-chase metabolic radiolabeling experiments and subsequent immunoprecipitation. Taken together, our data reveal the importance of coordinated production of MTP and apoB in chicken tissues capable of secreting triglyceride-rich lipoproteins even before hatching. MTP is expressed in liver, small intestine, and kidney of chicken embryos. MTP is expressed in the chicken yolk sac. ApoB is secreted from the chicken yolk sac. Embryonic tissues contribute to the lipoprotein pool of the developing chick.
Collapse
Affiliation(s)
- Christine Eresheim
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria
| | - Julia Plieschnig
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria
| | - N Erwin Ivessa
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria
| | - Wolfgang J Schneider
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria
| | - Marcela Hermann
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria.
| |
Collapse
|
4
|
Merscher S, Pedigo CE, Mendez AJ. Metabolism, energetics, and lipid biology in the podocyte - cellular cholesterol-mediated glomerular injury. Front Endocrinol (Lausanne) 2014; 5:169. [PMID: 25352833 PMCID: PMC4196552 DOI: 10.3389/fendo.2014.00169] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/28/2014] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with a high risk of death. Dyslipidemia is commonly observed in patients with CKD and is accompanied by a decrease in plasma high-density lipoprotein, and an increase in plasma triglyceride-rich lipoproteins and oxidized lipids. The observation that statins may decrease albuminuria but do not stop the progression of CKD indicates that pathways other than the cholesterol synthesis contribute to cholesterol accumulation in the kidneys of patients with CKD. Recently, it has become clear that increased lipid influx and impaired reverse cholesterol transport can promote glomerulosclerosis, and tubulointerstitial damage. Lipid-rafts are cholesterol-rich membrane domains with important functions in regulating membrane fluidity, membrane protein trafficking, and in the assembly of signaling molecules. In podocytes, which are specialized cells of the glomerulus, they contribute to the spatial organization of the slit diaphragm (SD) under physiological and pathological conditions. The discovery that podocyte-specific proteins such as podocin can bind and recruit cholesterol contributing to the formation of the SD underlines the importance of cholesterol homeostasis in podocytes and suggests cholesterol as an important regulator in the development of proteinuric kidney disease. Cellular cholesterol accumulation due to increased synthesis, influx, or decreased efflux is an emerging concept in podocyte biology. This review will focus on the role of cellular cholesterol accumulation in the pathogenesis of kidney diseases with a focus on glomerular diseases.
Collapse
Affiliation(s)
- Sandra Merscher
- Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miami, FL, USA
- *Correspondence: Sandra Merscher, Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, University of Miami,1580 NW 10th Ave, Batchelor Bldg, Room 628, Miami, FL 33136, USA e-mail:
| | - Christopher E. Pedigo
- Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miami, FL, USA
| | - Armando J. Mendez
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Diabetes Research Institute, University of Miami, Miami, FL, USA
| |
Collapse
|
5
|
Molecular cloning, expression, and hormonal regulation of the chicken microsomal triglyceride transfer protein. Gene 2013; 523:1-9. [DOI: 10.1016/j.gene.2013.03.102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/03/2013] [Accepted: 03/25/2013] [Indexed: 11/18/2022]
|
6
|
Plieschnig JA, Gensberger ET, Bajari TM, Schneider WJ, Hermann M. Renal LRP2 expression in man and chicken is estrogen-responsive. Gene 2012; 508:49-59. [PMID: 22868208 PMCID: PMC3443750 DOI: 10.1016/j.gene.2012.07.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 06/25/2012] [Accepted: 07/15/2012] [Indexed: 01/03/2023]
Abstract
In mammals, low-density lipoprotein receptor-related protein-2 (LRP2) is an endocytic receptor that binds multiple ligands and is essential for a wide range of physiological processes. To gain new insights into the biology of this complex protein, we have initiated the molecular characterization of the LRP2 homolog from an oviparous species, the chicken (Gallus gallus). The galline LRP2 cDNA encodes a membrane protein of 4658 residues. Overall, the galline and human proteins are 73% identical, indicating that the avian gene has been well conserved over 300 million years. Unexpectedly, LRP2 transcript and protein levels in the kidney of females and estrogen-treated roosters were significantly higher than those in untreated males. The estrogen-responsiveness of avian LRP2 may be related to the dramatic differences in lipoprotein metabolism between mature roosters and laying hens. Newly identified potential estrogen-responsive elements (ERE) in the human and galline LRP2 gene, and additional Sp1 sites present in the promoter of the chicken gene, are compatible with both direct estrogen induction via the classical ligand-induced ERE pathway and the indirect transcription factor crosstalk pathway engaging the Sp1 sites. In agreement with this assumption, estrogen induction of LRP2 was observed not only in primary cultured chicken kidney cells, but also human kidney cell lines. These findings point to novel regulatory features of the LRP2 gene resulting in sex-specific receptor expression.
Collapse
Affiliation(s)
- Julia A Plieschnig
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
7
|
Riegler B, Besenboeck C, Bauer R, Nimpf J, Schneider WJ. Enzymes involved in hepatic acylglycerol metabolism in the chicken. Biochem Biophys Res Commun 2011; 406:257-61. [PMID: 21316342 DOI: 10.1016/j.bbrc.2011.02.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 02/06/2011] [Indexed: 11/17/2022]
Abstract
In laying hens, massive hepatic mobilization of fatty acids is required for the synthesis of oocyte-targeted very-low density lipoproteins (VLDL). The current study aims at identification of enzymes that hydrolyze hepatic acylglycerol stores regulated in a fashion compatible with supporting enhanced VLDL synthesis. We show that unlike mammals, chickens express adipose triglyceride lipase (ATGL) also in liver, where it is upregulated by fasting, while the enzyme patatin-like phospholipase domain-containing lipase 3 (PNPLA3) is suppressed. For the first time in any system, we show that hepatic arylacetamide deacetylase (AADA) is upregulated by fasting, and that its affinity for an insoluble carboxylester substrate is compatible with an in-vivo function similar to that of ATGL. Unknown heretofore, hepatic expression of chicken AADA is estrogen-responsive, and is induced to the same degree as the stimulation of VLDL-production by estrogen. These observations support roles of chicken ATGL, PNPLA3, and AADA in acylglycerol metabolism related to the high rates of VLDL synthesis that are essential for reproduction.
Collapse
Affiliation(s)
- Barbara Riegler
- Department of Medical Biochemistry, Medical University Vienna, Max F. Perutz Laboratories, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
8
|
Krzystanek M, Pedersen TX, Bartels ED, Kjaehr J, Straarup EM, Nielsen LB. Expression of apolipoprotein B in the kidney attenuates renal lipid accumulation. J Biol Chem 2010; 285:10583-90. [PMID: 20103594 DOI: 10.1074/jbc.m109.078006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The ability to produce apolipoprotein (apo) B-containing lipoproteins enables hepatocytes, enterocytes, and cardiomyocytes to export triglycerides. In this study, we examined secretion of apoB-containing lipoproteins from mouse kidney and its putative impact on triglyceride accumulation in the tubular epithelium. Mouse kidney expressed both the apoB and microsomal triglyceride transfer protein genes, which permit lipoprotein formation. To examine de novo lipoprotein secretion, kidneys from human apoB-transgenic mice were minced and placed in medium with (35)S-amino acids. Upon sucrose gradient ultracentrifugation of the labeled medium, fractions were analyzed by apoB immunoprecipitation. (35)S-Labeled apoB100 was recovered in approximately 1.03-1.04 g/ml lipoproteins (i.e. similar to the density of plasma low density lipoproteins). Immunohistochemistry of kidney sections suggested that apoB mainly is produced by tubular epithelial cells. ApoB expression in the kidney cortex was reduced approximately 90% in vivo by treating wild type mice with apoB-antisense locked nucleic acid oligonucleotide. Inhibition of apoB expression increased fasting-induced triglyceride accumulation in the kidney cortex by 20-25% (p = 0.008). Cholesterol stores were unaffected. Treatment with control oligonucleotides with 1 or 4 mismatching base pairs affected neither the triglyceride nor the cholesterol content of the kidney cortex. The results suggest that mammalian kidney secretes apoB100-containing lipoproteins. One biological effect may be to dampen excess storage of triglycerides in proximal tubule cells.
Collapse
Affiliation(s)
- Marcin Krzystanek
- Department of Clinical Biochemistry, Rigshospitalet, DK-2100 Copenhagen
| | | | | | | | | | | |
Collapse
|
9
|
Dichlberger A, Cogburn LA, Nimpf J, Schneider WJ. Avian apolipoprotein A-V binds to LDL receptor gene family members. J Lipid Res 2007; 48:1451-6. [PMID: 17401111 DOI: 10.1194/jlr.c600026-jlr200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein A-V (apoA-V) affects plasma triglyceride (TG) levels; however, the properties of apoA-V that mediate its action(s) are still incompletely understood. It is unclear how apoA-V, whose plasma concentration is extremely low, can affect the pronounced TG differences observed in individuals with various apoA-V dysfunctions. To gain novel insights into apoA-V biology, we expanded our previous studies in the chicken to this apolipoprotein. First, we characterized the first avian apoA-V, revealing its expression not only in liver and small intestine but also in brain, kidney, and ovarian follicles and showing its presence in the circulation. Second, we demonstrate directly that galline apoA-V binds to the major LDL receptor family member (LR) of the laying hen and that this interaction does not depend on the association of the apolipoprotein with lipid or lipoproteins. We propose that a direct interaction with LRs may represent a novel, additional mechanism for the modulation of TG levels by apoA-V.
Collapse
Affiliation(s)
- Andrea Dichlberger
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, A-1030 Vienna, Austria
| | | | | | | |
Collapse
|
10
|
Salvante KG, Lin G, Walzem RL, Williams TD. Characterization of very-low density lipoprotein particle diameter dynamics in relation to egg production in a passerine bird. J Exp Biol 2007; 210:1064-74. [PMID: 17337718 DOI: 10.1242/jeb.02724] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYDuring avian egg production, oestrogen mediates marked increases in hepatic lipid production and changes in the diameter of assembled very-low density lipoprotein (VLDL). A nearly complete shift from generic VLDL (∼70 nm in diameter), which transports lipids to peripheral tissues, to yolk-targeted VLDL (VLDLy) (∼30 nm), which supplies the yolk with energy-rich lipid, has been observed in the plasma of laying domestic fowl. We validated an established dynamic laser scattering technique for a passerine songbird Taeniopygia guttata, the zebra finch, to characterize the dynamics of VLDL particle diameter distribution in relation to egg production. We predicted that non-gallinaceous avian species that have not been selected for maximum egg production would exhibit less dramatic shifts in lipid metabolism during egg production. As predicted, there was considerable overlap between the VLDL particle diameter distributions of laying and non-laying zebra finches. But unexpectedly, non-laying zebra finches had VLDL diameter distributions that peaked at small particles and had relatively few large VLDL particles. As a result, laying zebra finches, in comparison, had diameter distributions that were shifted towards larger VLDL particles. Nevertheless,laying zebra finches, like laying chickens, had larger proportions of particles within proposed VLDLy particle diameter ranges than non-laying zebra finches (e.g. sVLDLy: 50% vs 37%). Furthermore, zebra finches and chickens had similar modal (29.7 nm in both species) and median (32.7 nm vs 29.6 nm) VLDL particle diameters during egg production. Therefore,although zebra finches and chickens exhibited opposing directional shifts in VLDL particle diameter distribution during egg production, the modifications to VLDL particle structure in both species resulted in the realization of a common goal, i.e. to produce and maintain a large proportion of small VLDL particles of specific diameters that are capable of being incorporated into newly forming egg yolks.)
Collapse
Affiliation(s)
- Katrina G Salvante
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
| | | | | | | |
Collapse
|
11
|
Mancone C, Amicone L, Fimia GM, Bravo E, Piacentini M, Tripodi M, Alonzi T. Proteomic analysis of human very low-density lipoprotein by two-dimensional gel electrophoresis and MALDI-TOF/TOF. Proteomics 2007; 7:143-54. [PMID: 17154273 DOI: 10.1002/pmic.200600339] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biochemical studies of lipoproteins have shed light on their composition, highly contributing to the comprehension of their function. Due to the complexity of their structure, however, an in-depth structural analysis, in terms of components and PTMs, may still unravel important players in physiological and pathological processes of lipid metabolism. In this study, we performed a protein map of very low-density lipoprotein (VLDL) using a 2-DE MALDI-TOF/TOF proteomic approach. Several VLDL-associated apolipoproteins were identified, including five isoforms of apoE, three isoforms of apoC-IV, and one isoform each of apoC-III, apoM, apoA-I, and apoA-IV. Notably, we also identified seven isoforms of apoL-I and two isoforms of prenylcysteine lyase as new VLDL-associated proteins. Furthermore, we were able to identify PTM of apoE, which was found to be differently O-glycosylated at Thr212 residue, and PTM of apoL-I which we described, for the first time, to be phosphorylated at Ser296. While the physiological relevance of our finding remains to be assessed, we believe that our results will be useful as reference for future studies of VLDL structure in specific physiopathological conditions.
Collapse
Affiliation(s)
- Carmine Mancone
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
ELKIN R. Reducing shell egg cholesterol content. I. Overview, genetic approaches, and nutritional strategies. WORLD POULTRY SCI J 2007. [DOI: 10.1079/wps2006120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Bertrand E, Fritsch C, Diether S, Lambrou G, Müller D, Schaeffel F, Schindler P, Schmid KL, van Oostrum J, Voshol H. Identification of Apolipoprotein A-I as a “STOP” Signal for Myopia. Mol Cell Proteomics 2006; 5:2158-66. [PMID: 16921168 DOI: 10.1074/mcp.m600073-mcp200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Good visual acuity requires that the axial length of the ocular globe is matched to the refractive power of the cornea and lens to focus the images of distant objects onto the retina. During the growth of the juvenile eye, this is achieved through the emmetropization process that adjusts the ocular axial length to compensate for the refractive changes that occur in the anterior segment. A failure of the emmetropization process can result in either excessive or insufficient axial growth, leading to myopia or hyperopia, respectively. Emmetropization is mainly regulated by the retina, which generates two opposite signals: "GO/GROW" signals to increase axial growth and "STOP" signals to block it. The presence of GO/GROW and STOP signals was investigated by a proteomics analysis of the retinas from chicken with experimental myopia and hyperopia. Of 18 differentially expressed proteins that were identified, five displayed an expression profile corresponding to GO/GROW signals, and two corresponded to STOP signals. Western blotting confirmed that apolipoprotein A-I (apoA-I) has the characteristics of a STOP signal both in the retina as well as in the fibrous sclera. In accordance with this, intraocular application of the peroxisome proliferator-activated receptor alpha agonist GW7647 resulted in up-regulation of apoA-I levels and in a significant reduction of experimental myopia. In conclusion, using a comprehensive functional proteomics analysis of chicken ocular growth models we identified targets for ocular growth control. The correlation of elevated apoA-I levels with reduced ocular axial growth points toward a functional relationship with the observed morphological changes of the eye.
Collapse
Affiliation(s)
- Eric Bertrand
- Genome and Proteome Sciences, Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Elkin RG, Zhong Y, Donkin SS, Hengstschläger-Ottnad E, Schneider WJ. Effects of atorvastatin on lipid metabolism in normolipidemic and hereditary hyperlipidemic, non-laying hens. Comp Biochem Physiol B Biochem Mol Biol 2006; 143:319-29. [PMID: 16413806 DOI: 10.1016/j.cbpb.2005.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 11/22/2005] [Accepted: 12/02/2005] [Indexed: 10/25/2022]
Abstract
As a result of a hereditable point mutation in the oocyte very low density lipoprotein (VLDL) receptor, sexually mature restricted ovulator (RO) female chickens (Gallus gallus), first described as a non-laying strain, exhibit endogenous hyperlipidemia and develop atherosclerotic lesions. In a 20-day study, RO hens and their normolipidemic (NL) siblings were fed either a control diet, or the control diet supplemented with 0.06% atorvastatin (AT), a potent 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) inhibitor. Compared to NL hens, RO birds exhibited greatly elevated baseline plasma total cholesterol (CHOL) and triglyceride (TG) concentrations (1.56 vs. 4.55 g/l and 30.7 vs. 138.4 g/l, respectively). AT attenuated plasma CHOL and TG concentrations by 60.3% and 70.1%, respectively, in NL hens and by 45.1% and 34.3%, respectively, in RO hens. Messenger RNA levels of several key genes involved in hepatic VLDL assembly were suppressed in RO vs. NL hens, but were unaffected by AT. In contrast, AT elevated liver HMGR mRNA levels in NL and RO birds, but only NL hens exhibited an AT-associated increase in hepatic HMGR immunoreactive protein levels. Down-regulation of HMGR gene expression due to higher baseline levels of circulating CHOL may explain why RO birds responded less robustly than NL hens to AT administration.
Collapse
Affiliation(s)
- Robert G Elkin
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-1151, USA.
| | | | | | | | | |
Collapse
|
15
|
Swift LL, Kakkad B, Boone C, Jovanovska A, Jerome WG, Mohler PJ, Ong DE. Microsomal triglyceride transfer protein expression in adipocytes: a new component in fat metabolism. FEBS Lett 2005; 579:3183-9. [PMID: 15922333 DOI: 10.1016/j.febslet.2005.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 04/29/2005] [Accepted: 05/09/2005] [Indexed: 11/26/2022]
Abstract
Microsomal triglyceride transfer protein (MTP) is a carrier of triglyceride essential for the assembly of apolipoprotein (apo)B-containing lipoproteins by the liver and the small intestine. Its role in triglyceride transfer in tissues that do not secrete lipoproteins has not been explored. In particular, MTP would seem to be a candidate for a role in triglyceride metabolism within the adipocyte. To test this hypothesis, we probed adipocytes for the presence of MTP. Immunohistochemical and biochemical studies demonstrate MTP in adipocytes from brown and white fat depots of mice and human, as well as in 3T3-L1 cells. Confocal microscopy revealed MTP throughout 3T3 cells; however, MTP fluorescence was prominent in juxtanuclear areas. In differentiated 3T3 cells MTP fluorescence was very striking around lipid droplets. In vitro lipid transfer assays demonstrated the presence of triglyceride transfer activity within microsomal fractions isolated from rat adipose tissue. In addition, quantitative rtPCR studies showed that MTP expression in mouse white fat depots was approximately 1% of MTP expression in mouse liver. MTP mRNA in differentiated 3T3 cells was approximately 13% of liver expression. Our results provide unequivocal evidence for the presence of MTP in adipocytes and present new possibilities for defining the mechanisms by which triglyceride is stored and/or hydrolyzed and mobilized.
Collapse
Affiliation(s)
- Larry L Swift
- Department of Pathology, C-3321 Medical Center North, Vanderbilt University School of Medicine, Nashville, TN 37232-2561, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Zheng H, Kiss RS, Franklin V, Wang MD, Haidar B, Marcel YL. ApoA-I Lipidation in Primary Mouse Hepatocytes. J Biol Chem 2005; 280:21612-21. [PMID: 15797865 DOI: 10.1074/jbc.m502200200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The liver is the major site of both apolipoprotein A-I (apoA-I) synthesis and ATP-binding cassette transporter A1 (ABCA1) expression. Here, we compare the lipidation with cholesterol and phospholipid of newly synthesized human apoA-I (hapoA-I) using adenoviral vector-mediated endogenous expression or exogenously added hapoA-I in wild type and ABCA1-null hepatocytes. Hepatocytes were labeled with [3H]cholesterol (delivered with LDL or methyl-beta-cyclodextrin), [3H]mevalonate, or [3H]choline. ABCA1 deficiency decreased apoA-I phospholipidation by 80%, but acquisition of de novo synthesized and exogenous cholesterol only decreased by 40-60%. The transfer of de novo synthesized cholesterol to apoA-I was decreased at all time points, but that of exogenously delivered cholesterol was independent of ABCA1 activity at the early time points. Progesterone does not affect apoA-I synthesis or its lipidation but inhibited the early phase of apoA-I cholesterol lipidation in both wild type and ABCA1-null hepatocytes. Fast protein liquid chromatography analysis of medium lipoproteins confirmed that with ABCA1 deficiency, the proportion of secreted high density lipoprotein-associated apoA-I and cholesterol decreased by about 50%. The very low density lipoprotein (VLDL)/LDL size fraction also contained a significant level of cholesterol in ABCA1 deficiency, consistent with the result of immunoprecipitations showing the presence of lipoproteins with both apoA-I and murine apoB. ApoA-I lipidation with newly synthesized cholesterol in ABCA1-null hepatocytes was significantly decreased by brefeldin A and monensin. In conclusion, we demonstrate that: (i) whereas most hepatic phospholipidation of apoA-I is mediated by ABCA1, acquisition of cholesterol depends on active transfer from intracellular compartments by ABCA1-dependent and -independent pathways, both sensitive to progesterone and (ii) there is separate regulation of phospholipid and cholesterol lipidation of apoA-I in hepatocytes.
Collapse
Affiliation(s)
- Hui Zheng
- Lipoprotein and Atherosclerosis Research Group, University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario K1Y 4W7, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Hermann M, Foisner R, Schneider WJ, Ivessa NE. Regulation by estrogen of synthesis and secretion of apolipoprotein A-I in the chicken hepatoma cell line, LMH-2A. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1641:25-33. [PMID: 12788226 DOI: 10.1016/s0167-4889(03)00046-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The synthesis and secretion of apolipoprotein A-I (apoA-I) in response to the treatment with estrogen were investigated in the chicken hepatoma cell line, LMH-2A. Exposure of these cells to exogenous estrogen for up to 48 h results in a decrease of apoA-I production, as evident from Western blotting, immunoprecipitation, and immunofluorescence experiments. Likewise, the secretion of apoA-I is also decreased in estrogen-treated cells when compared to controls. However, under both conditions, the disappearance of the apoprotein from the cells occurs very rapidly and with similar kinetics. The bulk of apoA-I secreted from LMH-2A cells is recovered on lipoprotein particles with a buoyant density of > or =1.10 g/ml, corresponding to HDL and heavy LDL. Interestingly, apoA-I is detectable on apoB-containing lipoproteins by sequential immunoprecipitation, suggesting that the two apoproteins co-reside at least on a subfraction of the secreted particles, or that apoB- and apoA-I-containing particles interact. These interactions are more pronounced in estrogen-treated cells, most likely due to the dramatic estrogen-mediated induction of apoB synthesis and secretion.
Collapse
Affiliation(s)
- Marcela Hermann
- Department of Molecular Genetics, Institute of Medical Biochemistry, University and Biocenter Vienna, Dr. Bohr-Gasse 9/2, Vienna A-1030, Austria.
| | | | | | | |
Collapse
|
18
|
Preparation of Monoclonal Antibody Against Chicken Apolipoprotein B and Development of Enzyme Liked Immunosolvent Assay (ELISA) Method with the Antibody Aiming at the Optimization of Lipid Metabolism in Chickens. J Poult Sci 2003. [DOI: 10.2141/jpsa.40.212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
19
|
Dolinsky VW, Sipione S, Lehner R, Vance DE. The cloning and expression of a murine triacylglycerol hydrolase cDNA and the structure of its corresponding gene. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1532:162-72. [PMID: 11470237 DOI: 10.1016/s1388-1981(01)00133-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A novel murine cDNA for triacylglycerol hydrolase (TGH), an enzyme that is involved in mobilization of triacylglycerol from storage pools in hepatocytes, has been cloned and expressed. The cDNA consists of 1962 bp with an open reading frame of 1695 bp that encodes a protein of 565 amino acids. Murine TGH is a member of the CES1A class of carboxylesterases and shows a significant degree of identity to other carboxylesterases from rat, monkey and human. Expression of the cDNA in McArdle RH7777 hepatoma cells showed a 3-fold increase in the hydrolysis of p-nitrophenyl laurate compared to vector-transfected cells. The highest expression of TGH was observed in the livers of mice, with lower expression in kidney, heart, adipose and intestinal (duodenum/jejunum) tissues. The murine gene that encodes TGH was cloned and exon-intron boundaries were determined. The gene spans approx. 35 kb and contains 14 exons. The results will permit future studies on the function of this gene via gene-targeting experiments and analysis of transcriptional regulation of the TGH gene.
Collapse
Affiliation(s)
- V W Dolinsky
- Department of Biochemistry, University of Alberta, 328 Heritage Medical Research Centre, Edmonton, AB, Canada T6G 2S2
| | | | | | | |
Collapse
|
20
|
Deletion of the propeptide of apolipoprotein A-I reduces protein expression but stimulates effective conversion of preβ-high density lipoprotein to α-high density lipoprotein. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)31981-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
21
|
Chen SE, Long DW, Nestor KE, Walzem RL, Meuniot VL, Zhu H, Hansen RJ, Bacon WL. Effect of divergent selection for total plasma phosphorus on plasma and yolk very low density lipoproteins and plasma concentrations of selected hormones in laying Japanese quail. Poult Sci 1999; 78:1241-51. [PMID: 10515352 DOI: 10.1093/ps/78.9.1241] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Japanese quail lines were divergently selected over 32 generations for laying hen plasma yolk precursor, as measured by total plasma phosphorus (TPP). The high (HP) and low (LP) lines were developed from a randombred control population (R1) that was maintained without conscious selection. The purpose of the present study was to characterize the composition of very low density lipoproteins (VLDL) in laying Japanese quail hens (VLDLy) and the concentration of selected hormones in laying hens from the HP, LP, and R1 lines. The changes in TPP because of genetic selection in the Japanese quail lines were associated with large alterations in plasma VLDLy concentration (HP > R1 > LP), but only minor changes in lipid composition and size (HP > LP = R1; P< or =0.01) of plasma VLDLy particles. Basal plasma levels of hormones associated with reproduction and lipid metabolism were also different among lines, with luteinizing hormone (LH) ranking HP >R1 = LP and triiodothyronine (T3), thyroxine (T4), and 17beta-estradiol ranking HP > R1 > LP (P< or =0.05). The results suggest possible increased rates of hepatic lipogenesis, hepatic VLDLy assembly and secretion, and plasma VLDLy concentration in association with increases in concentrations of plasma LH, T3, T4, and 17beta-estradiol. Concentrations of total lipids in yolk VLDL were not different among lines, and only minor line differences in the concentration of different classes of yolk VLDL neutral lipids were detected. The data indicate a preferential uptake of a specific plasma VLDLy subpopulation into rapidly growing ovarian follicles, resulting in a constant composition of yolk VLDL of laid eggs among lines of Japanese quail with large differences in plasma VLDLy concentration.
Collapse
Affiliation(s)
- S E Chen
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kaysen GA, de Sain-van der Velden MG. New insights into lipid metabolism in the nephrotic syndrome. KIDNEY INTERNATIONAL. SUPPLEMENT 1999; 71:S18-21. [PMID: 10412729 DOI: 10.1046/j.1523-1755.1999.07105.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hyperlipidemia in the nephrotic syndrome results from increased synthesis and decreased catabolism of lipoproteins. The contribution of each to establishing blood lipid levels is unknown. Increased triglyceride rich lipoprotein concentration, very low density lipoprotein (VLDL) and intermediate density lipoprotein (IDL) primarily results from decreased clearance. This defect is due in part to reduced lipoprotein lipase (LPL) on the vascular endothelium resulting either from decreased synthesis or inadequate binding of this enzyme to endothelial surfaces. In contrast, both low density lipoprotein (LDL) and lipoprotein(a) [Lp(a)] concentrations are increased. Unlike the case of albumin or transferrin, or apoA-I in the rat, LDL apoB 100 synthesis is not related to that of albumin, suggesting a different mechanism of regulation or a response to a stimulus that is not the same as that augmenting the synthesis of nonlipoproteins. Evidence is presented for synthesis of LDL through a mechanism that bypasses the normal delipidation pathway that requires a VLDL precursor for LDL formation. HDL concentration is normal but maturation is impaired leading to a shift from the larger HDL2 to the smaller HDL3, a variant that is less effective as a transporter of the LPL cofactor apolipoprotein C II.
Collapse
|
23
|
Walzem RL, Hansen RJ, Williams DL, Hamilton RL. Estrogen induction of VLDLy assembly in egg-laying hens. J Nutr 1999; 129:467S-472S. [PMID: 10064311 DOI: 10.1093/jn/129.2.467s] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The yolk of a 60-g chicken egg contains 6 g of triacylglycerols transported to the oocyte from the liver of the laying hen in apolipoprotein (apo) B-containing particles. With the onset of egg production, estrogen shifts hepatocytic lipoprotein production from generic VLDL to VLDLy (yolk targeted). These VLDLy are triacylglycerol-rich particles; they are reduced in size by one half, are resistant to lipoprotein lipase and are taken up intact by oocyte receptors. The VLDLy pathway for apoB provides sufficient energy for the caloric requirements of chick development. VLDLy size reduction occurs in spite of surplus liver triacylglycerols and is necessary for VLDL particles to pass through the granulosa basal lamina and reach the receptors located on the oocyte surface. New ultrastructural data show that some proximal tubule cells of bird kidney secrete generic VLDL, perhaps providing energy and other VLDL-associated nutrients to tissues bypassed by VLDLy. Birds are an apoB100-only species, providing a natural in vivo model with which to investigate mechanisms of apoB100 VLDL assembly. Preliminary studies of liver lipoprotein assembly intermediates isolated from the biosynthetic membranes (endoplasmic reticulum) of the laying hen are consistent with the presence of both putative first- and second-step precursor particles of VLDLy. These findings suggest that the two-step mechanism of apoB core lipidation is an ancient development in apoB biology, handed down to mammals from oviparous ancestors.
Collapse
Affiliation(s)
- R L Walzem
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis 95616-8741, USA
| | | | | | | |
Collapse
|