1
|
Uekita H, Ishibashi T, Shiomi M, Koyama H, Ohtsuka S, Yamamoto H, Yamagishi S, Inoue H, Itabe H, Sugimoto K, Kamioka M, Ohkawara H, Wada I, Yasuchika T. Integral role of receptor for advanced glycation end products (RAGE) in nondiabetic atherosclerosis. Fukushima J Med Sci 2020; 65:109-121. [PMID: 31915324 DOI: 10.5387/fms.2019-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An advanced glycation end products (AGE)/a receptor for AGE (RAGE) axis plays a central role in the pathogenesis of diabetic vascular remodeling. This study was conducted to clarify the role of RAGE in nondiabetic atherosclerosis. We used the aortic and coronary atherosclerotic lesions of Watanabe heritable hyperlipidemic (WHHL) rabbits prone to myocardial infarction (WHHLMI) at 1 to 14 months. Immunohistochemistry demonstrated the significant expression of RAGE as early as at 1 month with the stronger expression at 3 and 7 months, which was remarkably diminished at 14 months. RAGE expression was concordant with AGE accumulation. The major original sources of RAGE expression were macrophages and smooth muscle cells in addition to endothelial cells, and RAGE expression was distributed in the areas of phospholipid products, a component of oxidized LDL and nitrotyrosine. The concentrations of serum AGE did not alter significantly with aging. These findings suggested the expression of RAGE was induced by hyperlipidemia and oxidative stress independent of diabetes in WHHLMI rabbits. Additionally, our in vitro study showed that silencing of RAGE tended to attenuate oxidized-LDL-triggered PAI-1 expression in human cultured macrophages, as well as oxidized-LDL-induced tissue factor expression in peritoneal macrophages, suggesting a possible role of RAGE in prothrombogenic molecular regulation. In conclusion, the present study provides in vivo evidence that RAGE plays an integral role in the initiation and progression of nondiabetic atherosclerosis, suggesting that RAGE may be a novel target for treating not only diabetic but also nondiabetic vascular complications.
Collapse
Affiliation(s)
- Hironori Uekita
- Department of Cardiology and Hematology, Fukushima Medical University
| | - Toshiyuki Ishibashi
- Department of Cardiology and Hematology, Fukushima Medical University.,Department of Internal Medicine, Ohara General Hospital, Ohara Memorial Foundation
| | - Masashi Shiomi
- Institute for Experimental Animals, Kobe University Graduate School of Medicine
| | - Hidenori Koyama
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine.,Department of In-ternal Medicine, Division of Diabetes, Endocrinology and Metabolism, Hyogo College of Medicine
| | - Shukuko Ohtsuka
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine
| | - Hiroshi Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences
| | - Shoichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine
| | - Hiroyoshi Inoue
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine
| | - Hiroyuki Itabe
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy
| | - Koichi Sugimoto
- Department of Cardiology and Hematology, Fukushima Medical University
| | - Masashi Kamioka
- Department of Cardiology and Hematology, Fukushima Medical University
| | - Hiroshi Ohkawara
- Department of Cardiology and Hematology, Fukushima Medical University
| | - Ikuo Wada
- Institute of Biomedical Sciences, Fukushima Medical University
| | | |
Collapse
|
2
|
Lima WG, Souza NA, Fernandes SOA, Cardoso VN, Godói IP. Serum lipid profile as a predictor of dengue severity: A systematic review and meta‐analysis. Rev Med Virol 2019; 29:e2056. [DOI: 10.1002/rmv.2056] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 12/12/2022]
Affiliation(s)
- William Gustavo Lima
- Laboratório de Radioisótopos, Departamento de Análises Clínicas e Toxicológicas, Faculdade de farmácia, Campus PampulhaUniversidade Federal de Minas Gerais Belo Horizonte MG Brazil
| | - Nayara Alves Souza
- Escola de Enfermagem, Campus Centro‐oeste Dona LinduUniversidade Federal de São João Del‐rei Divinópolis MG Brazil
| | - Simone Odília Antunes Fernandes
- Laboratório de Radioisótopos, Departamento de Análises Clínicas e Toxicológicas, Faculdade de farmácia, Campus PampulhaUniversidade Federal de Minas Gerais Belo Horizonte MG Brazil
| | - Valbert Nascimento Cardoso
- Laboratório de Radioisótopos, Departamento de Análises Clínicas e Toxicológicas, Faculdade de farmácia, Campus PampulhaUniversidade Federal de Minas Gerais Belo Horizonte MG Brazil
| | - Isabella Piassi Godói
- Instituto de Saúde e Estudos BiológicosUniversidade Federal do Sul e Sudeste do Pará Marabá Pará Brazil
| |
Collapse
|
3
|
Assadsangabi A, Evans CA, Corfe BM, Lobo A. Application of Proteomics to Inflammatory Bowel Disease Research: Current Status and Future Perspectives. Gastroenterol Res Pract 2019; 2019:1426954. [PMID: 30774653 PMCID: PMC6350533 DOI: 10.1155/2019/1426954] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing/remitting inflammatory illness of the gastrointestinal tract of unknown aetiology. Despite recent advances in decoding the pathophysiology of IBD, many questions regarding disease pathogenesis remain. Genome-wide association studies (GWAS) and knockout mouse models have significantly advanced our understanding of genetic susceptibility loci and inflammatory pathways involved in IBD pathogenesis. Despite their important contribution to a better delineation of the disease process in IBD, these genetic findings have had little clinical impact to date. This is because the presence of a given gene mutation does not automatically correspond to changes in its expression or final metabolic or structural effect(s). Furthermore, the existence of these gene susceptibility loci in the normal population suggests other driving prerequisites for the disease manifestation. Proteins can be considered the main functional units as almost all intracellular physiological functions as well as intercellular interactions are dependent on them. Proteomics provides methods for the large-scale study of the proteins encoded by the genome of an organism or a cell, to directly investigate the proteins and pathways involved. Understanding the proteome composition and alterations yields insights into IBD pathogenesis as well as identifying potential biomarkers of disease activity, mucosal healing, and cancer progression. This review describes the state of the art in the field with respect to the study of IBD and the potential for translation from biomarker discovery to clinical application.
Collapse
Affiliation(s)
- Arash Assadsangabi
- Gastroenterology Unit, Salford Royal Hospital, Salford, UK
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology and Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Caroline A. Evans
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Bernard M. Corfe
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology and Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Alan Lobo
- Gastroenterology Unit, Salford Royal Hospital, Salford, UK
| |
Collapse
|
4
|
Miyauchi E, Furuta T, Ohtsuki S, Tachikawa M, Uchida Y, Sabit H, Obuchi W, Baba T, Watanabe M, Terasaki T, Nakada M. Identification of blood biomarkers in glioblastoma by SWATH mass spectrometry and quantitative targeted absolute proteomics. PLoS One 2018. [PMID: 29513714 PMCID: PMC5841790 DOI: 10.1371/journal.pone.0193799] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Molecular biomarkers in blood are needed to aid the early diagnosis and clinical assessment of glioblastoma (GBM). Here, in order to identify biomarker candidates in plasma of GBM patients, we performed quantitative comparisons of the plasma proteomes of GBM patients (n = 14) and healthy controls (n = 15) using SWATH mass spectrometry analysis. The results were validated by means of quantitative targeted absolute proteomics analysis. As a result, we identified eight biomarker candidates for GBM (leucine-rich alpha-2-glycoprotein (LRG1), complement component C9 (C9), C-reactive protein (CRP), alpha-1-antichymotrypsin (SERPINA3), apolipoprotein B-100 (APOB), gelsolin (GSN), Ig alpha-1 chain C region (IGHA1), and apolipoprotein A-IV (APOA4)). Among them, LRG1, C9, CRP, GSN, IGHA1, and APOA4 gave values of the area under the receiver operating characteristics curve of greater than 0.80. To investigate the relationships between the biomarker candidates and GBM biology, we examined correlations between plasma concentrations of biomarker candidates and clinical presentation (tumor size, progression-free survival time, or overall survival time) in GBM patients. The plasma concentrations of LRG1, CRP, and C9 showed significant positive correlations with tumor size (R2 = 0.534, 0.495, and 0.452, respectively).
Collapse
Affiliation(s)
- Eisuke Miyauchi
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Takuya Furuta
- Department of Pathology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Hemragul Sabit
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Wataru Obuchi
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Tomoko Baba
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Michitoshi Watanabe
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
- * E-mail:
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
5
|
Aspichueta P, Pérez-Agote B, Pérez S, Ochoa B, Fresnedo O. Impaired response of VLDL lipid and apoB secretion to endotoxin in the fasted rat liver. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519060120030501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bacterial infection elicits hypertriglyceridemia attributed to increased hepatic production of very low-density lipoprotein (VLDL) particles and decreased peripheral metabolism. The mechanisms underlying VLDL overproduction in sepsis are as yet unclear, but seem to be fed/fasted state-dependent. To learn more about this, we investigated hepatocytes isolated from fasted rats, made endotoxic by 1 mg/kg lipopolysaccharide (LPS) injection, for their ability to secrete the VLDL protein and lipid components. The results were then related to lipogenesis markers and expression of genes critical to VLDL biogenesis. Endotoxic rats showed increased levels of serum VLDL-apoB (10-fold), -triglyceride (2-fold), and -cholesterol (2-fold), whereby circulating VLDL were lipid-poor particles. Similarly, VLDL-apoB secretion by isolated endotoxic hepatocytes was ~85% above control, whereas marginal changes in the output of VLDL-lipid classes occurred. This was accompanied by a substantial rise in apoB and a moderate rise in MTP mRNA levels, but with basal de novo formation and efficiency of secretion of triglycerides, cholesterol and cholesteryl esters. These results indicate that during periods of food restriction, endotoxin does not enhance lipid provision to accomplish normal lipidation of overproduced apoB molecules, though this does occur to a sufficient extent to pass the proteasome checkpoint and secretion of lipid-poor, type 2 VLDL takes place.
Collapse
Affiliation(s)
- Patricia Aspichueta
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| | - Begoña Pérez-Agote
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| | - Silvia Pérez
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| | - Begoña Ochoa
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain,
| | - Olatz Fresnedo
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| |
Collapse
|
6
|
Lee J, Jung W, Yeo WS. Preparation of Co-cultured Cell Sheets Using Electroactive Surfaces. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jaesung Lee
- Department of Bioscience and Biotechnology; Bio/Molecular Informatics Center, Konkuk University; Seoul 143-701 Korea
| | - Woong Jung
- Department of Emergency Medicine; Kyung Hee University Hospital at Gangdong; Seoul 134-727 Korea
| | - Woon-Seok Yeo
- Department of Bioscience and Biotechnology; Bio/Molecular Informatics Center, Konkuk University; Seoul 143-701 Korea
| |
Collapse
|
7
|
Vaiopoulou A, Gazouli M, Papadopoulou A, Anagnostopoulos AK, Karamanolis G, Theodoropoulos GE, M’Koma A, Tsangaris GT. Serum protein profiling of adults and children with Crohn disease. J Pediatr Gastroenterol Nutr 2015; 60:42-7. [PMID: 25250685 PMCID: PMC4276513 DOI: 10.1097/mpg.0000000000000579] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Crohn disease (CD) and ulcerative colitis (UC), known collectively as inflammatory bowel diseases (IBDs), are chronic immunoinflammatory pathologies of unknown aetiology. Despite the frequent use of biomarkers in medical practice, there is a relative lack of information regarding validated paediatric biomarkers for IBD. Furthermore, biomarkers proved to be efficacious in adults are frequently extrapolated to the paediatric clinical setting without considering that the pathogenesis of many diseases is distinctly different in children. In the present study, proteomics technology was used to monitor differences in protein expression among adult and young patients with CD, identify a panel of candidate protein biomarkers that may be used to improve prognostic-diagnostic accuracy, and advance paediatric medical care. METHODS Male and female serum samples from 12 adults and 12 children with active CD were subjected to 2-dimensional gel electrophoresis. Following the relative quantitation of protein spots exhibiting a differential expression between the 2 groups by densitometry, the spots were further characterized by matrix-assisted laser desorption tandem time-of-flight mass spectrometer. The results were confirmed by Western blot analysis. RESULTS Clusterin was found to be significantly overexpressed in adults with CD, whereas ceruloplasmin and apolipoprotein B-100 were found to be significantly overexpressed in children, indicating that the expression of these proteins may be implicated in the onset or progression of CD in these 2 subgroups of patients. CONCLUSIONS Interestingly, we found a differential expression of several proteins in adults versus paediatric patients with CD. Undoubtedly, future experiments using a larger cohort of patients with CD are needed to evaluate the relevance of our preliminary findings.
Collapse
Affiliation(s)
- Anna Vaiopoulou
- Department of Basic Medical Sciences, Laboratory of Biology, School of Medicine, University of Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, School of Medicine, University of Athens, Greece
| | - Aggeliki Papadopoulou
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens (IIBEAA), Greece
| | | | - George Karamanolis
- Gastroenterology Unit, 2 Department of Surgery, “Aretaieio” University Hospital, Athens
| | - George E. Theodoropoulos
- First Propaedeutic Surgical Department, Hippocration University Hospital, University of Athens, Athens, Greece
| | - Amosy M’Koma
- Department of Biochemistry and Cancer Biology, Meharry Medical School of Medicine and Department of General Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
| | - George T. Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens (IIBEAA), Greece
| |
Collapse
|
8
|
Gifford CA, Holland BP, Mills RL, Maxwell CL, Farney JK, Terrill SJ, Step DL, Richards CJ, Burciaga Robles LO, Krehbiel CR. Growth and Development Symposium: Impacts of inflammation on cattle growth and carcass merit. J Anim Sci 2012; 90:1438-51. [PMID: 22573836 DOI: 10.2527/jas.2011-4846] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Inflammation caused by bovine respiratory disease (BRD) continues to be one of the greatest challenges facing beef cattle producers and feedlot managers. Inflammation decreases DMI, ADG, and G:F in feedlot calves, decreasing growth rate and increasing days on feed, which results in economic losses during the feeding period. During the past decade, marketing of feedlot animals has changed from selling cattle on a live basis to a grid-based marketing system. When cattle are marketed on a live basis, the economic effects of BRD stop at increased health cost and decreased feedlot performance, carcass weight, and death loss. However, when cattle are marketed in a grid-based system, inflammation has the potential to also affect carcass cutability and quality. The effects of inflammation on feedlot cattle in regards to performance are well understood; however, specific effects on cattle growth and ultimately carcass merit are not as well described. Recent studies in feedlot cattle have indicated that the incidence of BRD decreases both HCW and marbling; however, mechanisms are not understood. Research in other species has demonstrated that during the acute phase response, pro-inflammatory cytokines promote skeletal muscle catabolism to supply AA and energy substrates for immune tissues. Further, during this early immune response, the liver changes its metabolic priorities to the production of acute phase proteins for use in host defense. Together these dramatic shifts in systemic metabolism may explain the detrimental effects on performance and carcass traits commonly associated with BRD in feedlot calves. Moreover, recent studies relative to human health have revealed complex multilevel interactions between the metabolic and immune systems, and highlighted inflammation as being a significant contributor to major metabolic diseases. The objective of this paper is to review data to help explain the economical and physiological effects of inflammation on cattle growth and carcass merit.
Collapse
Affiliation(s)
- C A Gifford
- Department of Animal Sciences, Division of Agricultural Sciences and Natural Resources, Oklahoma State University, Stillwater 74078, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bartolomé N, Aspichueta P, Martínez MJ, Vázquez-Chantada M, Martínez-Chantar ML, Ochoa B, Chico Y. Biphasic adaptative responses in VLDL metabolism and lipoprotein homeostasis during Gram-negative endotoxemia. Innate Immun 2010; 18:89-99. [PMID: 21113081 DOI: 10.1177/1753425910390722] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Dyslipidemia and hepatic overproduction of very low density lipoprotein (VLDL) are hallmarks of the septic response, yet the underlying mechanisms are not fully defined. We evaluated the lipoprotein subclasses profile and hepatic VLDL assembly machinery over 24 h in fasted LPS-treated rats. The response of serum non-esterified fatty acids (NEFA) and glucose to endotoxin was biphasic, with increased levels of NEFA and hypoglycemia in the first 12 h-phase, and low NEFA and high glucose in the second 12 h-phase. Hypertriglyceridemia was more marked in the first 12 h (6.8-fold), when triglyceride abundance increased in all lipoprotein subclasses, and preferentially in large VLDL. The abundance of medium-sized VLDL and the increase in the number of VLDL particles was higher in the second phase (10-fold vs 5-fold in the first phase); however, apoB gene transcript abundance increased only in the second phase. Analysis of putative pre-translational mechanisms revealed that neither increased Apob transcription rate nor increased transcript binding to mRNA stabilizing HuR (Hu antigen R) protein paralleled the increase in apoB transcripts. In conclusion, endotoxin challenge induces increases in plasma NEFA and large, triglyceride-rich VLDL. After approximately 12 h, the triglyceride-rich VLDLs are replaced by medium-sized, triglyceride-poor VLDL particles. Hepatic apoB mRNA abundance also increases during the second period, suggesting a role for apoB protein expression in the acute reaction against sepsis.
Collapse
Affiliation(s)
- Nerea Bartolomé
- Department of Physiology, Faculty of Medicine and Dentistry, University of Basque Country, Leioa, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Sparks JD, Cianci J, Jokinen J, Chen LS, Sparks CE. Interleukin-6 mediates hepatic hypersecretion of apolipoprotein B. Am J Physiol Gastrointest Liver Physiol 2010; 299:G980-9. [PMID: 20651008 PMCID: PMC2957334 DOI: 10.1152/ajpgi.00080.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity and type 2 diabetes are associated with insulin resistance (IR), increased circulating proinflammatory cytokines, and hypertriglyceridemia, the latter being caused by overproduction of hepatic very low density lipoprotein (VLDL). One cytokine strongly linked with development of hepatic IR is interleukin-6 (IL-6). Our objective was to evaluate IL-6 effects on hepatic apolipoprotein B (apoB) and VLDL secretion and to examine possible linkages between cytokine signaling and insulin-suppressive effects on lipoprotein secretion. Of the cytokines examined, only IL-6 stimulated secretion of apoB-containing lipoproteins in a dose-dependent manner. Both B100 and B48 secretion were significantly increased in VLDL and in lipoproteins with a density >1.019 g/ml. The ability of insulin to suppress hepatic apoB secretion was maintained in hepatocytes treated with IL-6. Pulse-chase studies indicated that enhanced apoB synthesis was the primary mechanism for increased lipoprotein secretion, which corresponded with higher abundance of apoB mRNA. Because IL-6 did not alter the decay rate of apoB mRNA transcripts, results support that increased apoB mRNA levels are the result of enhanced apob gene transcription. Increased apoB-lipoprotein secretion was also detected with oncostatin M (OSM), supporting involvement of the signal-transducing protein, gp130. Increased suppressor of cytokine signaling (SOCS) 3 expression negated IL-6 and OSM effects and significantly reduced cellular apoB mRNA abundance. We conclude that IL-6 favors secretion of apoB-containing lipoproteins by increasing availability of apoB through changes in apob gene transcription. These changes may contribute to hypersecretion of VLDL associated with obesity, particularly under conditions where SOCS3 is not overexpressed to an extent capable of overcoming IL-6-stimulated apob gene transcription.
Collapse
Affiliation(s)
- Janet D. Sparks
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Joanne Cianci
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Jenny Jokinen
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Li Sheng Chen
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Charles E. Sparks
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|
11
|
Ohkawara H, Ishibashi T, Shiomi M, Sugimoto K, Uekita H, Kamioka M, Takuwa Y, Teramoto T, Maruyama Y, Takeishi Y. RhoA and Rac1 changes in the atherosclerotic lesions of WHHLMI rabbits. J Atheroscler Thromb 2009; 16:846-56. [PMID: 20032577 DOI: 10.5551/jat.2394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM The activation of RhoA and Rac1 is crucial for the pathogenesis of atherosclerosis. This study investigated the changes of unprocessed and mature forms of RhoA and Rac1 in the progression of atherosclerosis. METHODS Unprocessed and geranylgeranylated forms of RhoA and Rac1 in aortic atherosclerotic lesions were separated by the Triton X-114 partition method using Watanabe heritable hyperlipidemic (WHHLMI) rabbits prone to myocardial infarction. The activation of RhoA and Rac1 was determined by membrane translocation and pull-down assays. RESULTS The levels of unprocessed RhoA and Rac1 of the aortas were higher at 7 months than 3 months, accompanied by increased levels of total RhoA and Rac1. Membrane-bound RhoA and Rac1 levels of the aortas at 7 months were significantly increased compared with those at 3 months, consistent with the results of GTP-loading. Unprocessed and activated forms of RhoA and Rac1 had gradually decreas at 15 and 24 months compared to 7 months. CONCLUSIONS We show evidence of marked increases in unprocessed RhoA and Rac1 with enhanced activities in the progression of atherosclerosis in WHHLMI rabbits. This is important for better understanding of the pathogenesis of hyperlipidemia-dependent atherosclerosis.
Collapse
Affiliation(s)
- Hiroshi Ohkawara
- Department of Cardiology and Hematology, Fukushima Medical University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sakamoto N, Ishibashi T, Sugimoto K, Sawamura T, Sakamoto T, Inoue N, Saitoh SI, Kamioka M, Uekita H, Ohkawara H, Suzuki K, Teramoto T, Maruyama Y, Takeishi Y. Role of LOX-1 in monocyte adhesion-triggered redox, Akt/eNOS and Ca2+signaling pathways in endothelial cells. J Cell Physiol 2009; 220:706-15. [DOI: 10.1002/jcp.21818] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Sugimoto K, Ishibashi T, Sawamura T, Inoue N, Kamioka M, Uekita H, Ohkawara H, Sakamoto T, Sakamoto N, Okamoto Y, Takuwa Y, Kakino A, Fujita Y, Tanaka T, Teramoto T, Maruyama Y, Takeishi Y. LOX-1-MT1-MMP axis is crucial for RhoA and Rac1 activation induced by oxidized low-density lipoprotein in endothelial cells. Cardiovasc Res 2009; 84:127-36. [PMID: 19487339 DOI: 10.1093/cvr/cvp177] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS RhoA and Rac1 activation plays a key role in endothelial dysfunction. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a major receptor for oxidized low-density lipoprotein (ox-LDL) in endothelial cells (ECs). Membrane type 1 matrix metalloproteinase (MT1-MMP) has been shown to be involved in atherogenesis. This study was conducted to investigate the role of the LOX-1-MT1-MMP axis in RhoA and Rac1 activation in response to ox-LDL in ECs. METHODS AND RESULTS Ox-LDL induced rapid RhoA and Rac1 activation as well as MT1-MMP activity in cultured human aortic ECs. Inhibition of LOX-1 prevented ox-LDL-dependent RhoA and Rac1 activation. Knockdown of MT1-MMP by small interfering RNA prevented ox-LDL-induced RhoA and Rac1 activation, indicating that MT1-MMP is upstream of RhoA and Rac1. Fluorescent immunostaining revealed the colocalization of LOX-1 and MT1-MMP, and the formation of a complex of LOX-1 with MT1-MMP was detected by immunoprecipitation. Blockade of LOX-1 or MT1-MMP prevented RhoA-dependent endothelial NO synthase protein downregulation and cell invasion, Rac1-mediated NADPH oxidase activity, and reactive oxygen species generation. CONCLUSION The present study provides evidence that the LOX-1-MT1-MMP axis plays a crucial role in RhoA and Rac1 activation signalling pathways in ox-LDL stimulation, suggesting that this axis may be a promising target for treating endothelial dysfunction.
Collapse
Affiliation(s)
- Koichi Sugimoto
- First Department of Internal Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bartolomé N, Arteta B, Martínez MJ, Chico Y, Ochoa B. Kupffer cell products and interleukin 1beta directly promote VLDL secretion and apoB mRNA up-regulation in rodent hepatocytes. Innate Immun 2009; 14:255-66. [PMID: 18669611 DOI: 10.1177/1753425908094718] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Plasma VLDL accumulation in Gram-negative sepsis is partly ascribed to an increased hepatic VLDL production driven by pro-inflammatory cytokines. We previously showed that hepatocytes of the Kupffer cell (KC)-rich periportal area are major contributors to enhanced VLDL production in lipopolysaccharide (LPS)-injected rats. However, it remains to be established whether KC generated products directly affect the number (apoB) and composition of secreted VLDL. Using rat primary cells, we show here that hepatocytes respond to stimulation by soluble mediators released by LPS-stimulated Kupffer cells with enhanced secretion of apoB and triglycerides in phospholipid-rich VLDL particles. Unstimulated KC products also augmented the secretion of normal VLDL, doubling apoB mRNA abundance. IL-1beta treatment resulted in concentration-dependent increases of hepatocyte apoB mRNA and protein secretion, increases that were greater, but not additive, when combined with IL-6 and TNF-alpha. Lipid secretion and MTP mRNA levels were unaffected by cytokines. In summary: (i) enhanced secretion of phospholipid-rich VLDL particles is a net hepatocyte response to LPS-stimulated KC products, which gives a clue about the local role of Kupffer cells in septic dyslipidemia induction; and (ii) pro-inflammatory cytokines act redundantly to enhance apoB secretion involving translational apoB up-regulation, but other humoral components or KC mediators are necessary to accomplish increased lipid association.
Collapse
Affiliation(s)
- Nerea Bartolomé
- Department of Physiology, Faculty of Medicine, University of the Basque Country, Leioa, Spain
| | | | | | | | | |
Collapse
|
15
|
Loor JJ, Everts RE, Bionaz M, Dann HM, Morin DE, Oliveira R, Rodriguez-Zas SL, Drackley JK, Lewin HA. Nutrition-induced ketosis alters metabolic and signaling gene networks in liver of periparturient dairy cows. Physiol Genomics 2007; 32:105-16. [PMID: 17925483 DOI: 10.1152/physiolgenomics.00188.2007] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dairy cows are highly susceptible after parturition to developing liver lipidosis and ketosis, which are costly diseases to farmers. A bovine microarray platform consisting of 13,257-annotated oligonucleotides was used to study hepatic gene networks underlying nutrition-induced ketosis. On day 5 postpartum, 14 Holstein cows were randomly assigned to ketosis-induction (n = 7) or control (n = 7) groups. Cows in the ketosis-induction group were fed at 50% of day 4 intake until they developed signs of clinical ketosis, and cows in the control group were fed ad libitum throughout the treatment period. Liver was biopsied at 10-14 (ketosis) or 14 days postpartum (controls). Feed restriction increased blood concentrations of nonesterified fatty acids and beta-hydroxybutyrate, but decreased glucose. Liver triacylglycerol concentration also increased. A total of 2,415 genes were altered by ketosis (false discovery rate = 0.05). Ingenuity Pathway Analysis revealed downregulation of genes associated with oxidative phosphorylation, protein ubiquitination, and ubiquinone biosynthesis with ketosis. Other molecular adaptations included upregulation of genes and nuclear receptors associated with cytokine signaling, fatty acid uptake/transport, and fatty acid oxidation. Genes downregulated during ketosis included several associated with cholesterol metabolism, growth hormone signaling, proton transport, and fatty acid desaturation. Feed restriction and ketosis resulted in previously unrecognized alterations in gene network expression underlying key cellular functions and discrete metabolic events. These responses might help explain well-documented physiological adaptations to reduced feed intake in early postpartum cows and, thus, provide molecular targets that might be useful in prevention and treatment of liver lipidosis and ketosis.
Collapse
Affiliation(s)
- Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bartolomé N, Rodríguez L, Martínez MJ, Ochoa B, Chico Y. Upregulation of apolipoprotein B secretion, but not lipid, by tumor necrosis factor-alpha in rat hepatocyte cultures in the absence of extracellular fatty acids. Ann N Y Acad Sci 2007; 1096:55-69. [PMID: 17405916 DOI: 10.1196/annals.1397.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) plays a pivotal role in the host response to infection. Rapidly liberated to the bloodstream, TNF-alpha triggers the production of other cytokines and the acute-phase response. Hypertriglyceridemia is a sepsis hallmark associated with high plasma levels of very low-density lipoprotein (VLDL) particles, partly ascribed to increased hepatic production. The kinetics of the hepatocyte response, the cytokine/s responsible, and the underlying mechanisms are not fully elucidated. VLDL biogenesis is a complex, time-consuming process that depends on lipid availability and microsomal triglyceride transfer protein (MTP) activity for correct apolipoprotein B (apoB) lipidation. Studies were performed to define the direct effect of TNF-alpha on VLDL secretion rate and composition in rat hepatocytes cultured in conditions resembling the fed situation. Increases of 17-24% in the number of VLDL particles secreted and of 44-88% in the cellular levels of apoB mRNA were caused by 5, 20, or 100 ng/mL TNF-alpha in 8 h. Lipoprotein secretion returned to baseline levels in 16 h, whereas TNF-alpha-treated cells continued to exhibit higher apoB transcript levels. The mass of each lipid class in secreted VLDL and of MTP mRNA in cells was not affected by any of the tested TNF-alpha doses or treatment periods. These findings indicate that over a wide range of concentrations, TNF-alpha was capable of inducing sustained upregulation of apoB mRNA expression and transient increase in secretion of its protein, but, apparently, VLDL triglyceride secretion was not a TNF-alpha target under conditions in which fatty acids were not extracellularly provided.
Collapse
Affiliation(s)
- Nerea Bartolomé
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Sarriena s/n, 48940-Leioa, Spain
| | | | | | | | | |
Collapse
|
17
|
Aspichueta P, Pérez S, Ochoa B, Fresnedo O. Endotoxin promotes preferential periportal upregulation of VLDL secretion in the rat liver. J Lipid Res 2005; 46:1017-26. [PMID: 15716580 DOI: 10.1194/jlr.m500003-jlr200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Zonation affects liver parenchymal cell function and metabolism as well as nonparenchymal cell activation, but whether VLDL production is zonated has yet to be elucidated. Infection induces enhanced VLDL secretion by the liver. Ex vivo studies were undertaken to examine the liver heterogeneity for VLDL formation and secretion and their in vivo response to endotoxin. Highly pure periportal (PP) and perivenous (PV) hepatocytes were isolated from fasted lipopolysaccharide-treated, fasted, and fed rats. They were used to assess their capacity to release VLDL-apolipoprotein B (apoB) and lipid classes in relation to de novo lipid synthesis and the expression of genes crucial to VLDL production. Despite the common superior ability of PP hepatocytes for lipid release and zonal differences in lipid synthesis, zonated secretion of VLDL particles was observed in septic but not in normal fed or fasted livers. The endotoxin-induced apoB secretion was more accentuated in PP hepatocytes; this was accompanied by a preferential PP increase in apoB and microsomal triglyceride transfer protein mRNA levels, whereas lipogenesis indicators were, if anything, similarly modified in hepatocytes of either acinar origin. We conclude that PP and PV hepatocytes exhibited similar capabilities for VLDL formation/secretion in normal conditions; however, the endotoxic pressure did zonate periportally.
Collapse
Affiliation(s)
- Patricia Aspichueta
- Department of Physiology, University of the Basque Country Medical School, 48080 Bilbao, Spain
| | | | | | | |
Collapse
|
18
|
Jura J, Wegrzyn P, Zarebski A, Władyka B, Koj A. Identification of changes in the transcriptome profile of human hepatoma HepG2 cells stimulated with interleukin-1 beta. Biochim Biophys Acta Mol Basis Dis 2004; 1689:120-33. [PMID: 15196593 DOI: 10.1016/j.bbadis.2004.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 02/27/2004] [Accepted: 03/02/2004] [Indexed: 10/26/2022]
Abstract
Interleukin-1 (IL-1) is the principal pro-inflammatory cytokine participating in the initiation of acute phase response. Human hepatoma HepG2 cells were exposed to 15 ng/ml of IL-1beta for times ranging from 1 to 24 h and the total RNA was isolated. Then cDNA was obtained and used for differential display with 10 arbitrary primers and 9 oligo(dT) primers designed by Clontech. Validation of observed changes of differentially expressed known genes was carried out by RT-PCR or Northern blot analysis. Out of 90 cDNA strands modulated by IL-1, 46 have been successfully reamplified and their sequencing indicates that they represent 36 different cDNA templates. By GenBank search, 26 cDNA clones were identified as already known genes while 10 showed no homology to any known gene. The identified transcripts modulated by IL-1 in HepG2 cells code for intracellular proteins of various function: trafficking/motor proteins (3 genes), proteins participating in the translation machinery or posttranscriptional/posttranslational modifications (7 genes), proteases (1 gene), proteins involved in metabolism (6 genes), activity modulators (3 genes), proteins of the cell cycle machinery (2 genes) and those functionally unclassified (4 genes). Majority of genes responded to IL-1 within 1 to 6 h (early genes), while two were late response genes (12-24 h) and four showed prolonged response over the whole 24-h period. Most of the observed changes of expression were in the range of two- to threefold increase in comparison to control untreated cells. Among identified genes, no typical secretory acute phase protein was found. The obtained results suggest that IL-1 affects the expression of several genes in HepG2 cells, especially those engaged in the synthesis and modifications of proteins.
Collapse
Affiliation(s)
- Jolanta Jura
- Department of Cell Biochemistry, Faculty of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | | | | | | | | |
Collapse
|
19
|
van Greevenbroek MMJ, Vermeulen VMMJ, de Bruin TWA. Familial combined hyperlipidemia plasma stimulates protein secretion by HepG2 cells: identification of fibronectin in the differential secretion proteome. J Lipid Res 2002; 43:1846-54. [PMID: 12401883 DOI: 10.1194/jlr.m100441-jlr200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to evaluate whether soluble factors in plasma of familial combined hyperlipidemia (FCHL) patients affect hepatic protein secretion. Cultured human hepatocytes, i.e., HepG2 cells, were incubated with fasting plasma (20%, v/v, in DMEM) from untreated FCHL patients or normolipidemic controls. Overall protein secretion was 10-15% higher after incubation with FCHL plasma. This was specifically caused by an increase in four secreted proteins, with estimated sizes of 240, 180, 120, and <40 kD (P < 0.001, P < 0.006, P < 0.002, P < 0.02, respectively). The 240 kD protein in the secretion proteome was identified as fibronectin by mass spectrometry. Plasma fibronectin concentrations were elevated in FCHL patients, confirming biological relevance of these data. Overall protein secretion by HepG2 cells correlated with concentrations of triglycerides (r = 0.61, P < 0.001) in the applied plasma samples. VLDL+IDL isolated from FCHL patients, induced a higher protein secretion than lipoproteins isolated from controls (P < 0.001). Remarkably, secretion of apoB, the structural protein of VLDL, was stimulated to a similar extent by FCHL and control plasma. FCHL plasma did not induce excess secretion of apoB by HepG2 cells compared with control plasma. FCHL plasma did stimulate secretion of several distinct hepatic proteins, among which fibronectin was identified.
Collapse
|
20
|
Nagata K, Ishibashi T, Sakamoto T, Ohkawara H, Shindo J, Yokoyama K, Sugimoto K, Sakurada S, Takuwa Y, Nakamura S, Teramoto T, Maruyama Y. Rho/Rho-kinase is involved in the synthesis of tissue factor in human monocytes. Atherosclerosis 2002; 163:39-47. [PMID: 12048120 DOI: 10.1016/s0021-9150(01)00750-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Monocytes and macrophages synthesize tissue factor (TF) which plays a role in thrombogenicity in coronary artery disease. This study was conducted to investigate the effect of Rho/Rho-kinase inhibition on the synthesis of TF in cultured human monocytes. 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins), C3 exoenzyme and Rho-kinase inhibitors were added to isolated peripheral blood monocytes and the synthesis of TF was assessed by reverse transcriptase polymerase chain reaction (RT-PCR), Western blotting and immunohistochemistry. Rho activity was determined by measuring the GTP-bound form of Rho A. Cerivastatin and pravastatin reduced the levels of TF antigen and mRNA. The suppressive effect of statins on TF synthesis was reversed by geranylgeranylpyrophosphate (GGPP) and the restoring effect of GGPP was eliminated by C3 exoenzyme and Y-27632. Pravastatin decreased the activity of Rho A, suggesting that the suppression of TF synthesis by statins is mediated via inhibition of the geranylgeranylation of Rho. Moreover, inhibition of Rho and Rho-kinase downregulated the synthesis of TF. Our results suggest that Rho/Rho-kinase signaling is involved in the synthesis of TF in human monocytes and that inhibition of Rho/Rho-kinase may be useful for treating thrombogenicity in coronary artery disease.
Collapse
Affiliation(s)
- Kenji Nagata
- First Department of Internal Medicine, Fukushima Medical University, Fukushima, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ishibashi T, Nagata K, Ohkawara H, Sakamoto T, Yokoyama K, Shindo J, Sugimoto K, Sakurada S, Takuwa Y, Teramoto T, Maruyama Y. Inhibition of Rho/Rho-kinase signaling downregulates plasminogen activator inhibitor-1 synthesis in cultured human monocytes. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1590:123-30. [PMID: 12063175 DOI: 10.1016/s0167-4889(02)00201-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Increased production of plasminogen activator inhibitor-1 (PAI-1) in plaques plays a role in the pathogenesis of atherosclerosis. This study was conducted to investigate the effect of blockade of Rho/Rho-kinase signaling on the synthesis of PAI-1 in cultured human peripheral blood monocytes. HMG-CoA reductase inhibitors (statins) and inhibitors of Rho and Rho-kinase were added to monocyte cultures. The levels of PAI antigen and mRNA were determined by Western blotting and RT-PCR, respectively, and PAI-1 expression was assessed by immunohistochemistry. We performed pull-down assays to determine the activity of Rho by measuring the GTP-bound form of Rho A. In unstimulated and lipopolysaccharide (LPS)-stimulated cultured monocytes, statins reduced the levels of PAI-1 antigen and mRNA. The suppressive effects of statins on PAI-1 synthesis were reversed by geranylgeranylpyrophosphate (GGPP) and were mimicked by C3 exoenzyme. Immunohistochemistry confirmed the role of lipid modification by GGPP in suppressive effect of statins in PAI-1 synthesis. Pull-down assays demonstrated that statins decreased the levels of the GTP-bound form of Rho A. Our findings suggest that statins decrease the activity of Rho by inhibiting geranylgeranylation. Moreover, Rho-kinase inhibitors, Y-27632 and fasudil, suppressed the synthesis of PAI-1 in this culture system. We show that inhibition of Rho/Rho-kinase signaling downregulates the synthesis of PAI-1 in human monocytes.
Collapse
Affiliation(s)
- Toshiyuki Ishibashi
- First Department of Internal Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nakazato K, Ishibashi T, Nagata K, Seino Y, Wada Y, Sakamoto T, Matsuoka R, Teramoto T, Sekimata M, Homma Y, Maruyama Y. Expression of very low density lipoprotein receptor mRNA in circulating human monocytes: its up-regulation by hypoxia. Atherosclerosis 2001; 155:439-44. [PMID: 11254915 DOI: 10.1016/s0021-9150(00)00580-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although very low density lipoprotein (VLDL) receptor expression by macrophages has been shown in the vascular wall, it is not clear whether or not circulating monocytes express the VLDL receptor. We investigated the expression of VLDL receptor mRNA in human peripheral blood monocytes and monocyte-derived macrophages by reverse transcriptase polymerase chain reaction (RT-PCR) and nucleotide sequencing after subcloning of PCR product. VLDL receptor mRNA was detected both in peripheral blood monocytes and monocyte-derived macrophages. Expression of VLDL receptor mRNA was upregulated by hypoxia in monocytes, whereas treatment with oxidized LDL, interleukin-1beta or monocyte chemoattractant protein-1 did not affect the levels of VLDL receptor mRNA in monocytes and macrophages. The present study shows a novel response of VLDL receptor mRNA to hypoxia, suggesting a role for VLDL receptor in the metabolism of lipoproteins in the vascular wall and the development of atherosclerosis.
Collapse
Affiliation(s)
- K Nakazato
- First Department of Internal Medicine, Fukushima Medical University, 1 Hikarigaoaka, 960-1295, Fukushima, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nagata K, Ishibashi T, Sakamoto T, Nakazato K, Seino Y, Yokoyama K, Ohkawara H, Teramoto T, Maruyama Y. Effects of blockade of the renin-angiotensin system on tissue factor and plasminogen activator inhibitor-1 synthesis in human cultured monocytes. J Hypertens 2001; 19:775-83. [PMID: 11330881 DOI: 10.1097/00004872-200104000-00015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To clarify the pathophysiological significance of the renin-angiotensin system (RAS) in monocytes, we examined the effect of its blockade on tissue factor and plasminogen activator inhibitor-1 (PAI-1) synthesis in human cultured monocytes. METHODS Monocytes were isolated from healthy volunteers and cultured. Tissue factor and PAI-1 antigens in culture medium and cells were measured by enzyme-linked immunosorbent assay and Western blotting, and mRNA levels were assessed by reverse-transcriptase polymerase chain reaction. RESULTS We show that the RAS is present in isolated human peripheral blood monocytes. Exogenous angiotensin II increased the levels of tissue factor antigen and mRNA in cultured monocytes, but not of PAI-1 synthesis. An angiotensin converting enzyme (ACE) inhibitor (captopril) and an angiotensin II type 1 (AT1) receptor antagonist (candesartan) decreased the levels of tissue factor protein and mRNA in cultured monocytes. These alterations were accompanied by a reduction in the levels of tumour necrosis factor-alpha protein and mRNA. The levels of PAI-1 protein were reduced by captopril, but not by candesartan. A bradykinin B2 receptor antagonist abolished the suppressive effect of captopril on PAI-1 antigen. CONCLUSIONS An ACE inhibitor and an AT1 receptor antagonist reduced tissue factor synthesis in these cells. We show different actions of these agents on PAI-1 synthesis. ACE inhibition decreased PAI-1 synthesis mediated by bradykinin production, but AT1 receptor inhibition had no effect.
Collapse
Affiliation(s)
- K Nagata
- First Department of Internal Medicine, Fukushima Medical University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Brahimi F, Bertrand P, Starck M, Galteau MM, Siest G. Control of apolipoprotein E secretion in the human hepatoma cell line KYN-2. Cell Biochem Funct 2001; 19:51-8. [PMID: 11223871 DOI: 10.1002/cbf.899] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Even though it is known that apolipoprotein E (apoE) is deeply involved in major age-related disorders such as atherosclerosis or Alzheimer's disease (AD), the control of cell-specific apoE expression is still poorly understood. We compared the apoE secretion as previously described in astrocytic cell17 to hepatic cell apoE secretion. We used the human hepatoma cell line KYN-2 to better delineate the characteristics of apoE secretion and to validate it with respect to the classical human hepatoma cell line HepG2. Interleukin-1beta (IL-1beta) and interferon-gamma (IFN-gamma) significantly inhibited, while IL-2, IL-6 and tumour necrosis factor-alpha (TNF-alpha) were inactive on apoE secretion by KYN-2 as well as HepG2 cells. Cholesterol and 25-OH cholesterol had no effect, while forskolin exerted a significant inhibitory effect, on apoE secretion in KYN-2 cells. Our results suggest that the KYN-2 cell line represents an appropriate cell model, and in any case an alternative model to the HepG2 cell line, to study the control of apoE secretion. The response of KYN-2 cells to both cytokines and cholesterol differs from that found in astrocytoma cells, suggesting that blood variations of apoE concentrations in AD may not reflect the dysregulations taking place in the brain.
Collapse
Affiliation(s)
- F Brahimi
- Centre du Médicament, EA 3117, Université Henri Poincaré Nancy 1, 30 rue Lionnois, 54000 Nancy, France
| | | | | | | | | |
Collapse
|
25
|
Mooser V, Berger MM, Tappy L, Cayeux C, Marcovina SM, Darioli R, Nicod P, Chioléro R. Major reduction in plasma Lp(a) levels during sepsis and burns. Arterioscler Thromb Vasc Biol 2000; 20:1137-42. [PMID: 10764684 DOI: 10.1161/01.atv.20.4.1137] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plasma levels of lipoprotein(a) [Lp(a)], an atherogenic particle, vary widely between individuals and are highly genetically determined. Whether Lp(a) is a positive acute-phase reactant is debated. The present study was designed to evaluate the impact of major inflammatory responses on plasma Lp(a) levels. Plasma levels of C-reactive protein (CRP), low density lipoprotein cholesterol, Lp(a), and apolipoprotein(a) [apo(a)] fragments, as well as urinary apo(a), were measured serially in 9 patients admitted to the intensive care unit for sepsis and 4 patients with extensive burns. Sepsis and burns elicited a major increase in plasma CRP levels. In both conditions, plasma concentrations of Lp(a) declined abruptly and transiently in parallel with plasma low density lipoprotein cholesterol levels and closely mirrored plasma CRP levels. In 5 survivors, the nadir of plasma Lp(a) levels was 5- to 15-fold lower than levels 16 to 18 months after the study period. No change in plasma levels of apo(a) fragments or urinary apo(a) was noticed during the study period. Turnover studies in mice indicated that clearance of Lp(a) was retarded in lipopolysaccharide-treated animals. Taken together, these data demonstrate that Lp(a) behaves as a negative acute-phase reactant during major inflammatory response. Nongenetic factors have a major, acute, and unexpected impact on Lp(a) metabolism in burns and sepsis. Identification of these factors may provide new tools to lower elevated plasma Lp(a) levels.
Collapse
Affiliation(s)
- V Mooser
- Department of Medicine, CHUV University Hospital, Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Deiana L, Garuti R, Pes GM, Carru C, Errigo A, Rolleri M, Pisciotta L, Masturzo P, Cantafora A, Calandra S, Bertolini S. Influence of beta(0)-thalassemia on the phenotypic expression of heterozygous familial hypercholesterolemia : a study of patients with familial hypercholesterolemia from Sardinia. Arterioscler Thromb Vasc Biol 2000; 20:236-43. [PMID: 10634824 DOI: 10.1161/01.atv.20.1.236] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One of the genetic features of the Sardinian population is the high prevalence of hemoglobin disorders. It has been estimated that 13% to 33% of Sardinians carry a mutant allele of the alpha-globin gene (alpha-thalassemia trait) and that 6% to 17% are beta-thalassemia carriers. In this population, a single mutation of beta-globin gene (Q39X, beta(0) 39) accounts for >95% of beta-thalassemia cases. Because previous studies have shown that Sardinian beta-thalassemia carriers have lower total and low density lipoprotein (LDL) cholesterol than noncarriers, we wondered whether this LDL-lowering effect of the beta-thalassemia trait was also present in subjects with familial hypercholesterolemia (FH). In a group of 63 Sardinian patients with the clinical diagnosis of FH, we identified 21 unrelated probands carrying 7 different mutations of the LDL receptor gene, 2 already known (313+1 g>a and C95R) and 5 not previously reported (D118N, C255W, A378T, T413R, and Fs572). The 313+1 g>a and Fs572 mutations were found in several families. In cluster Fs572, the plasma LDL cholesterol level was 5.76+/-1.08 mmol/L in subjects with beta(0)-thalassemia trait and 8.25+/-1.66 mmol/L in subjects without this trait (P<0.001). This LDL-lowering effect was confirmed in an FH heterozygote of the same cluster who had beta(0)-thalassemia major and whose LDL cholesterol level was below the 50th percentile of the distribution in the normal Sardinian population. The hypocholesterolemic effect of beta(0)-thalassemia trait emerged also when we pooled the data from all FH subjects with and without beta(0)-thalassemia trait, regardless of the type of mutation in the LDL receptor gene. The LDL-lowering effect of beta(0)-thalassemia may be related to (1) the mild erythroid hyperplasia, which would increase the LDL removal by the bone marrow, and (2) the chronic activation of the monocyte-macrophage system, causing an increased secretion of some cytokines (interleukin-1, interleukin-6, and tumor necrosis factor-alpha) known to affect the hepatic secretion and the receptor-mediated removal of apolipoprotein B-containing lipoproteins. The observation that our FH subjects with beta(0)-thalassemia trait (compared with noncarriers) have an increase of blood reticulocytes (40%) and plasma levels of interleukin-6 (+60%) supports these hypotheses. The lifelong LDL-lowering effect of beta(0)-thalassemia trait might slow the development and progression of coronary atherosclerosis in FH.
Collapse
Affiliation(s)
- L Deiana
- Institute of Clinical Biochemistry, University of Sassari, Sassari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fraunberger P, Schaefer S, Werdan K, Walli AK, Seidel D. Reduction of circulating cholesterol and apolipoprotein levels during sepsis. Clin Chem Lab Med 1999; 37:357-62. [PMID: 10353483 DOI: 10.1515/cclm.1999.059] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sepsis with multiple organ failure is frequently associated with a substantial decrease of cholesterol levels. This decrease of cholesterol is strongly associated with mortality suggesting a direct relation between inflammatory conditions and altered cholesterol homeostasis. The host response during sepsis is mediated by cytokines and growth factors, which are capable of influencing lipid metabolism. Conversely lipoproteins are also capable of modulating cytokine production during the inflammatory response. Therefore the decrease in circulating cholesterol levels seems to play a crucial role in the pathophysiology of sepsis. In this review the interaction between cytokines and lipid metabolism and its clinical consequences will be discussed.
Collapse
Affiliation(s)
- P Fraunberger
- Institute of Clinical Chemistry, Klinikum Grosshadern, University of Munich, Germany
| | | | | | | | | |
Collapse
|