1
|
Walsh MT, Celestin OM, Thierer JH, Rajan S, Farber SA, Hussain MM. Model systems for studying the assembly, trafficking, and secretion of apoB lipoproteins using fluorescent fusion proteins. J Lipid Res 2020; 61:316-327. [PMID: 31888978 DOI: 10.1194/jlr.ra119000259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/24/2019] [Indexed: 11/20/2022] Open
Abstract
apoB exists as apoB100 and apoB48, which are mainly found in hepatic VLDLs and intestinal chylomicrons, respectively. Elevated plasma levels of apoB-containing lipoproteins (Blps) contribute to coronary artery disease, diabetes, and other cardiometabolic conditions. Studying the mechanisms that drive the assembly, intracellular trafficking, secretion, and function of Blps remains challenging. Our understanding of the intracellular and intraorganism trafficking of Blps can be greatly enhanced, however, with the availability of fusion proteins that can help visualize Blp transport within cells and between tissues. We designed three plasmids expressing human apoB fluorescent fusion proteins: apoB48-GFP, apoB100-GFP, and apoB48-mCherry. In Cos-7 cells, transiently expressed fluorescent apoB proteins colocalized with calnexin and were only secreted if cells were cotransfected with microsomal triglyceride transfer protein. The secreted apoB-fusion proteins retained the fluorescent protein and were secreted as lipoproteins with flotation densities similar to plasma HDL and LDL. In a rat hepatoma McA-RH7777 cell line, the human apoB100 fusion protein was secreted as VLDL- and LDL-sized particles, and the apoB48 fusion proteins were secreted as LDL- and HDL-sized particles. To monitor lipoprotein trafficking in vivo, the apoB48-mCherry construct was transiently expressed in zebrafish larvae and was detected throughout the liver. These experiments show that the addition of fluorescent proteins to the C terminus of apoB does not disrupt their assembly, localization, secretion, or endocytosis. The availability of fluorescently labeled apoB proteins will facilitate the exploration of the assembly, degradation, and transport of Blps and help to identify novel compounds that interfere with these processes via high-throughput screening.
Collapse
Affiliation(s)
- Meghan T Walsh
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Oni M Celestin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD
| | - James H Thierer
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD
| | - Sujith Rajan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY.,Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, NY
| | - Steven A Farber
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD
| | - M Mahmood Hussain
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York .,Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY.,Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, NY.,Department of Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY
| |
Collapse
|
2
|
Doonan LM, Guerriero CJ, Preston GM, Buck TM, Khazanov N, Fisher EA, Senderowitz H, Brodsky JL. Hsp104 facilitates the endoplasmic-reticulum-associated degradation of disease-associated and aggregation-prone substrates. Protein Sci 2019; 28:1290-1306. [PMID: 31050848 DOI: 10.1002/pro.3636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022]
Abstract
Misfolded proteins in the endoplasmic reticulum (ER) are selected for ER-associated degradation (ERAD). More than 60 disease-associated proteins are substrates for the ERAD pathway due to the presence of missense or nonsense mutations. In yeast, the Hsp104 molecular chaperone disaggregates detergent-insoluble ERAD substrates, but the spectrum of disease-associated ERAD substrates that may be aggregation prone is unknown. To determine if Hsp104 recognizes aggregation-prone ERAD substrates associated with human diseases, we developed yeast expression systems for a hydrophobic lipid-binding protein, apolipoprotein B (ApoB), along with a chimeric protein harboring a nucleotide-binding domain from the cystic fibrosis transmembrane conductance regulator (CFTR) into which disease-causing mutations were introduced. We discovered that Hsp104 facilitates the degradation of ER-associated ApoB as well as a truncated CFTR chimera in which a premature stop codon corresponds to a disease-causing mutation. Chimeras containing a wild-type version of the CFTR domain or a different mutation were stable and thus Hsp104 independent. We also discovered that the detergent solubility of the unstable chimera was lower than the stable chimeras, and Hsp104 helped retrotranslocate the unstable chimera from the ER, consistent with disaggregase activity. To determine why the truncated chimera was unstable, we next performed molecular dynamics simulations and noted significant unraveling of the CFTR nucleotide-binding domain. Because human cells lack Hsp104, these data indicate that an alternate disaggregase or mechanism facilitates the removal of aggregation-prone, disease-causing ERAD substrates in their native environments.
Collapse
Affiliation(s)
- Lynley M Doonan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
| | - Christopher J Guerriero
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
| | - G Michael Preston
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
| | - Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
| | - Netaly Khazanov
- Department of Chemistry, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine and Cell Biology, New York University, New York, New York, 10016
| | - Hanoch Senderowitz
- Department of Chemistry, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
| |
Collapse
|
3
|
Conchillo A, Ansorena D, Astiasarán I. Use of microwave in chicken breast and application of different storage conditions: consequences on oxidation. Eur Food Res Technol 2005. [DOI: 10.1007/s00217-005-0077-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Zhang J, Herscovitz H. Nascent lipidated apolipoprotein B is transported to the Golgi as an incompletely folded intermediate as probed by its association with network of endoplasmic reticulum molecular chaperones, GRP94, ERp72, BiP, calreticulin, and cyclophilin B. J Biol Chem 2003; 278:7459-68. [PMID: 12397072 DOI: 10.1074/jbc.m207976200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated that endoplasmic reticulum (ER)-resident molecular chaperones interact with apolipoprotein B-100 (apoB) during its maturation. The initial stages of apoB folding occur while it is bound to the ER membrane, where it becomes partially lipidated to form a primordial intermediate. We determined whether this intermediate is dependent on the assistance of molecular chaperones for its subsequent folding steps. To that end, microsomes were prepared from HepG2 cells and luminal contents were subjected to KBr density gradient centrifugation. Immunoprecipitation of apoB followed by Western blotting showed that the luminal pool floated at a density of 1.12 g/ml and, like the membrane-bound pool, was associated with GRP94, ERp72, BiP, calreticulin, and cyclophilin B. Except for calreticulin, chaperone/apoB ratio in the lumen was severalfold higher than that in the membrane, suggesting a role for these chaperones both in facilitating the release of the primordial intermediate into the ER lumen and in providing stability. Subcellular fractionation on sucrose gradients showed that apoB in the Golgi was associated with the same array of chaperones as the pool of apoB recovered from heavy microsomes containing the ER, except that chaperone/apoB ratio was lower. KBr density gradient fractionation showed that the major pool of luminal apoB in the Golgi was recovered from 1.02 < d < 1.08 g/ml, whereas apoB in ER was recovered primarily from 1.08 < d < 1.2 g/ml. Both fractions were associated with the same spectrum of chaperones. Together with the finding that GRP94 was found associated with sialylated apoB, we conclude that correct folding of apoB is dependent on the assistance of molecular chaperone, which play multiple roles in its maturation throughout the secretory pathway including distal compartments such as the trans-Golgi network.
Collapse
Affiliation(s)
- Jianying Zhang
- Department of Physiology and Biophysics, Center for Advanced Biomedical Research, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
5
|
Sellers JA, Shelness GS. Lipoprotein assembly capacity of the mammary tumor-derived cell line C127 is due to the expression of functional microsomal triglyceride transfer protein. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31516-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
6
|
Benhizia F, Ginsberg HN, Humphries SE, Talmud PJ. Variation in the human ApoB signal peptide modulates ApoB17 translocation. Biochem Biophys Res Commun 2001; 283:149-57. [PMID: 11322782 DOI: 10.1006/bbrc.2001.4740] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The functional effects of the common 27- or 24-amino-acid (aa) variants in the human apoB signal peptide (SP) on intracellular and secreted apoB17 were investigated in vitro. Only in the presence of oleate was a significant difference in intracellular and secreted SP27-B17 compared to SP24-B17 observed (P = 0.01 and P < 0.0007, respectively), although in the presence or absence of oleate mRNA levels from the two constructs were similar. After fractionation, oleate treatment enhanced microsomal SP27-B17 by 150% (P < 0.0005) with a modest but significant effect on SP24-B17 (32% P = 0.007). Oleate stimulated SP24-B17 accumulation in the nonmicrosomal fraction. The data suggest that the presence of oleate leads to inefficient translocation of the 24-amino-acid signal peptide, possibly resulting in increased retrograde translocation into the cytoplasm and reduced intracellular and secreted levels compared to the "wildtype" 27 aa SP. This implies a direct role of the SP variants in the regulation of apoB intracellular metabolism.
Collapse
Affiliation(s)
- F Benhizia
- Division of Cardiovascular Genetics, Department of Medicine, Royal Free and University College Medical School, London, WC1E 6JJ, United Kingdom
| | | | | | | |
Collapse
|
7
|
Huang XF, Shelness GS. Identification of cysteine pairs within the amino-terminal 5% of apolipoprotein B essential for hepatic lipoprotein assembly and secretion. J Biol Chem 1997; 272:31872-6. [PMID: 9395534 DOI: 10.1074/jbc.272.50.31872] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
There is growing evidence that the amino-terminal globular domain of apolipoprotein B (apoB) is essential for lipoprotein particle formation in the hepatic endoplasmic reticulum. To identify the structural requirements for its function in lipoprotein assembly, cysteine (Cys) pairs required to form the seven disulfide bonds within the amino-terminal 21% of apoB were replaced in groups or individually by serine. Substitution of Cys pairs required for formation of disulfide bonds 1-3 or 4-7 (numbered from amino to carboxyl terminus) completely blocked the secretion of apoB28 in transfected HepG2 cells. To identify the specific disulfide bonds required for secretion, Cys pairs were mutated individually. Substitution of Cys pairs required for disulfide bonds 1, 3, 5, 6, or 7 had little or no impact on apoB28 secretion or buoyant density. In contrast, individual substitution of Cys pair 2 (amino acid residues 51 and 70) or 4 (218 and 234) severely inhibited apoB28 secretion and its capacity to undergo intracellular assembly with lipid. The same assembly and secretion defects were observed when these mutations were expressed as part of apoB50. These studies provide direct evidence that the ability of the internal lipophilic regions of apoB to engage in the recruitment and sequestration of lipid during translation is critically dependent upon a structural configuration contained within or affected by the amino-terminal 5% of the protein.
Collapse
Affiliation(s)
- X F Huang
- Department of Comparative Medicine, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27157-1040, USA
| | | |
Collapse
|
8
|
Nemeth-Slany A, Talmud P, Grundy SM, Patel SB. Activation of a cryptic splice-site in intron 24 leads to the formation of apolipoprotein B-27.6. Atherosclerosis 1997; 133:163-70. [PMID: 9298676 DOI: 10.1016/s0021-9150(97)00105-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Apo B expression is confined to the intestine and liver, and its secretion from these tissues is dependent on the expression of a lipid transfer protein, microsomal triglyceride transfer protein (MTP). Previously, we reported a model system for the study of apolipoprotein (apo B) biogenesis using heterologous expression in COS cells (Patel SB, Grundy SM. J. Lipid Res. 1995;36:2090-2103). We now report the characterization of the effects of a T-->C transition in the splice-site at +2 of intron 24 previously reported by Talmud et al. (J. Lipid Res. 1994;35:468-77). Using our heterologous expression system, we show that the mutation led to aberrant processing of intron 24, but normal processing of intron 25. The resultant translation of this mutant mRNA produced a truncated apo B protein of the size of apo B-27.6. Reverse transcription, polymerase chain reaction and sequencing of the amplified products were used to show that a cryptic donor splice-site within intron 24 was utilized, resulting in the generation of a novel hydrophilic 29 amino acid carboxyl-terminal tail. Co-expression of apo B-27.6 with microsomal triglyceride transfer protein (MTP) showed that this protein could bind MTP and resulted in the secretion of a lipoprotein particle with a buoyant density in the range 1.16-1.25 g/ml. These results indicate that this splice-site mutation leads to an activation of a downstream cryptic splice-site within intron 24, causing an insertion of 40 bases of intron 24 sequences into the mature RNA. This leads to a frame-shift of translation resulting in addition of 29 new amino acids at the carboxyl-terminus, before an in-frame stop translation codon is encountered, truncating the apo B at B-27.6.
Collapse
Affiliation(s)
- A Nemeth-Slany
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75235-9052, USA
| | | | | | | |
Collapse
|
9
|
Benoist F, Nicodeme E, Grand-Perret T. Microsomal triacylglycerol transfer protein prevents presecretory degradation of apolipoprotein B-100. A dithiothreitol-sensitive protease is involved. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:713-20. [PMID: 8856075 DOI: 10.1111/j.1432-1033.1996.0713h.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The role of microsomal triacylglycerol transfer protein (MTP) in the secretion of apolipoprotein B-100 (apoB-100) has been studied using an inhibitor of MTP: 4'-bromo-3'-methylmetaqualone. In vitro, this compound inhibits trioleoylglycerol transfer between lipid vesicles mediated by MTP with an IC50 of 0.9 microM whereas it does not inhibit the lipid transfer mediated by the cholesteryl ester transfer protein. In HepG2 cells, 4'-bromo-3'-methylmetaqualone inhibits the secretion of apoB-100 with an IC50 of 0.3 microM, without affecting the secretion of several other proteins like apoA-I or albumin. Moreover, there is no accumulation of apoB-100 in treated cells. Oleic acid, which increases apoB-100 secretion, only slightly modifies the IC50 of 4'-bromo-3'-methylmetaqualone (0.5 microM). The latter has no effect on the synthesis of major lipids within the cell, but decreases the secretion of triacylglycerol into apoB-100-containing lipoproteins. Pulse/chase experiments reveal that 4'-bromo-3'-methylmetaqualone acts on apoB-100 production either at the co-translational or post-translational level. The cysteine protease inhibitor N-acetyl-leucyl-leucyl-norleucinal does not protect apoB-100 from the 4'-bromo-3'-methylmetaqualone effect but seems to be involved in a later step of apoB-100 intracellular degradation. By contrast, dithiothreitol can totally reverse the effect of the MTP inhibitor on apoB-100 production. The mechanism of MTP-mediated lipid assembly with apoB-100 is discussed.
Collapse
Affiliation(s)
- F Benoist
- Laboratorie Glaxo Wellcome, Centre de Recherche, France
| | | | | |
Collapse
|
10
|
Patel SB, Grundy SM. Interactions between microsomal triglyceride transfer protein and apolipoprotein B within the endoplasmic reticulum in a heterologous expression system. J Biol Chem 1996; 271:18686-94. [PMID: 8702523 DOI: 10.1074/jbc.271.31.18686] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
When apolipoprotein B (apoB) is expressed in heterologous cells, it is not secreted but retained and degraded within the endoplasmic reticulum (ER). We have previously characterized carboxyl-terminal truncated forms of apoB expressed in COS cells and have shown that these proteins were readily synthesized but retained within the ER and degraded, if the size of the truncated protein was larger than apoB 29. Below this size, the smaller the size of the apoB truncates, the greater the extent of secretion, although >50% of these smaller proteins were also degraded within the ER. In the present study, we demonstrate that this secretory defect can be overcome by coexpression with microsomal triglyceride transfer protein (MTP); moreover, this complementation is inversely related to the size of apoB. Secretion of apoBs larger than B29 required the coexpression of MTP and, in the presence of MTP, was oleate-responsive. MTP, in the presence or absence of oleate supplementation, had little or no effect on the secretion of the shorter truncates. We discovered, however, that MTP was physically associated with all forms of apoB intracellularly (B13-B41). The association of MTP with apoB 41 was stable to high salt washing, as well as to low pH, suggesting that these interactions may be hydrophobic in nature. In addition to the interaction with MTP, apoB was also found to be associated with calnexin, confirming previous studies, and with proteins bearing the KDEL retention signal. However, studies on overexpression of human calnexin and tunicamycin inhibition of glycosylation showed that interaction with calnexin was not necessary for the formation or secretion of apoB 41-containing lipoproteins; moreover, in the presence of MTP, the association of calnexin with apoB 41 was transient or absent. These data suggest that for apoB to attain a folded state sufficient to escape the quality control of the ER, it needs to obtain neutral lipid (supplied by MTP), as well as its ability to keep it packaged as a rudimentary lipoprotein, dependent on its size being larger than B29.
Collapse
Affiliation(s)
- S B Patel
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9052, USA
| | | |
Collapse
|