1
|
Shabanzadeh DM, Holmboe SA, Sørensen LT, Linneberg A, Andersson AM, Jørgensen T. Are incident gallstones associated to sex-dependent changes with age? A cohort study. Andrology 2017; 5:931-938. [DOI: 10.1111/andr.12391] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/09/2017] [Accepted: 05/13/2017] [Indexed: 12/22/2022]
Affiliation(s)
- D. M. Shabanzadeh
- Digestive Disease Center; Bispebjerg University Hospital; Copenhagen Denmark
- Research Centre for Prevention and Health; Centre for Health, Capital Region of Denmark; Glostrup Denmark
| | - S. A. Holmboe
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health; Rigshospitalet; Copenhagen Denmark
| | - L. T. Sørensen
- Digestive Disease Center; Bispebjerg University Hospital; Copenhagen Denmark
- Department of Clinical Medicine; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - A. Linneberg
- Research Centre for Prevention and Health; Centre for Health, Capital Region of Denmark; Glostrup Denmark
- Department of Clinical Medicine; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
- Department of Clinical Experimental Research; Rigshospitalet; Glostrup Denmark
| | - A.-M. Andersson
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health; Rigshospitalet; Copenhagen Denmark
| | - T. Jørgensen
- Research Centre for Prevention and Health; Centre for Health, Capital Region of Denmark; Glostrup Denmark
- Department of Public Health; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
- The Faculty of Medicine; Aalborg University; Aalborg Denmark
| |
Collapse
|
2
|
Valentine H, Daugherity EK, Singh B, Maurer KJ. The Experimental Use of Syrian Hamsters. THE LABORATORY RABBIT, GUINEA PIG, HAMSTER, AND OTHER RODENTS 2012. [PMCID: PMC7149563 DOI: 10.1016/b978-0-12-380920-9.00034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The Syrian hamster (Mesocricetus auratus) is a widely used experimental animal model. This chapter focuses primarily on the most current research uses of the hamster. More classical uses are covered only as they pertain to these current uses. Hamsters possess unique anatomical and physiological features, which make them desirable research models. Unlike other commonly used laboratory rodents, hamsters possess a cheek pouch, which can be easily everted and examined at both the gross and microscopic level. The hamster's relative size also allows for better visualization of certain biological systems including the respiratory and reproductive systems when compared to the mouse. Further, laboratory hamsters develop a variety of inherited diseases, which display similarities to human conditions. Hamsters possessing some of these inherited traits are commercially available. They are susceptible to a variety of carcinogens and develop tumors that other research animals less commonly develop. Also they are susceptible to the induction of a variety of metabolic disorders through the use of dietary manipulations. The antagonistic nature of hamsters is used to study the effect of treatment on male aggressive and defensive behaviors. Syrian hamsters display several unique characteristics that make them desired models for carcinogenesis studies.
Collapse
|
3
|
New insights into the molecular mechanisms underlying effects of estrogen on cholesterol gallstone formation. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:1037-47. [PMID: 19589396 DOI: 10.1016/j.bbalip.2009.06.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 06/25/2009] [Accepted: 06/25/2009] [Indexed: 02/07/2023]
Abstract
Epidemiological and clinical studies have found that at all ages women are twice as likely as men to form cholesterol gallstones, and this gender difference begins since puberty and continues through the childbearing years, which highlight the importance of female sex hormones. Estrogen is a crucial hormone in human physiology and regulates a multitude of biological processes. The actions of estrogen have traditionally been ascribed to two closely related classical nuclear hormone receptors, estrogen receptor 1 (ESR1) and ESR2. Recent studies have revealed that the increased risk for cholesterol gallstones in women vs. men is related to differences in how the liver metabolizes cholesterol in response to estrogen. A large number of human and animal studies have proposed that estrogen increases the risk of developing cholesterol gallstones by increasing the hepatic secretion of biliary cholesterol, which, in turn, leads to an increase in cholesterol saturation of bile. Furthermore, it has been identified that hepatic ESR1, but not ESR2, plays a major role in cholesterol gallstone formation in mice in response to high doses of 17beta-estradiol. The mechanisms mediating estrogen's action have become more complicated with the recent identification of a novel estrogen receptor, G protein-coupled receptor 30 (GPR30), a member of the seven-transmembrane G protein-coupled receptor superfamily. In this review, we provide an overview of the evidence for the lithogenic actions of estrogen through ESR1 and discuss the cellular and physiological actions of GPR30 in estrogen-dependent processes and the relationship between GPR30 and classical ESR1 on gallstone formation.
Collapse
|
4
|
Moschetta A, Xu F, Hagey LR, van Berge-Henegouwen GP, van Erpecum KJ, Brouwers JF, Cohen JC, Bierman M, Hobbs HH, Steinbach JH, Hofmann AF. A phylogenetic survey of biliary lipids in vertebrates ,. J Lipid Res 2005; 46:2221-32. [PMID: 16061950 DOI: 10.1194/jlr.m500178-jlr200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Biliary lipids (bile salts, phospholipids, cholesterol, plant sterols) were determined in 89 vertebrate species (cartilaginous and bony fish, reptiles, birds, and mammals), and individual phospholipid classes were measured in 35 species. All samples contained conjugated bile salts (C(27) bile alcohol sulfates and/or N-acyl amidates of C(27) and/or C(24) bile acids). Phospholipids were generally absent in the bile of cartilaginous fish and reptiles and were present in low amounts relative to bile salts in bony fish and most birds. In mammals, the phospholipid-bile salt ratio varied widely. The bile from species with low biliary phospholipid-bile salt ratios often contained a high proportion of sphingomyelin, confirmed by HPLC-MS. In species with a high phospholipid-bile salt ratio, the predominant biliary phospholipid was phosphatidylcholine (PC). The phospholipid-bile salt ratio correlated weakly with the calculated weighted hydrophobic index value. Cholesterol was present in the bile of virtually all species, with plant sterols uniformly being present in only trace amounts. The cholesterol-bile salt ratio tended to be higher in mammals than in non-mammals, but bile of all species was unsaturated. Thus, most nonmammalian vertebrates have relatively low levels of biliary phospholipid and cholesterol, suggesting that cholesterol is eliminated predominantly as bile salts. Mammals have a higher phospholipid and cholesterol to bile salt ratio, with the dominant phospholipid being PC.
Collapse
Affiliation(s)
- Antonio Moschetta
- Department of Gastroenterology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Trautwein EA, Siddiqui A, Hayes KC. Characterization of the bile acid profile in developing male and female hamsters in response to dietary cholesterol challenge. Comp Biochem Physiol A Mol Integr Physiol 1999; 124:93-103. [PMID: 10605070 DOI: 10.1016/s1095-6433(99)00095-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Syrian golden hamster is a frequently used model to study cholesterol and bile acid metabolism as well as cholesterol-induced cholelithiasis. However, diet-induced gallstones seem limited to young male hamsters of certain strains that develop depressed cholate/chenodeoxycholate bile acid ratios. To further elucidate gender and age specific aspects of cholesterol and bile acid metabolism, i.e. a possible age-related bile acid/gallstone relationship, plasma and biliary lipids and bile acid composition were analyzed in male and female hamsters under various physiological conditions of age and diet, the latter formulated with and without dietary cholesterol. During normal development (no cholesterol challenge) the percentage of cholic acid decreased while chenodeoxycholate increased, the shift being more pronounced in males. Furthermore, female hamsters had higher total plasma cholesterol than in males, while hepatic and biliary lipids did not differ. When challenged with excessive dietary cholesterol, female hamsters again developed significantly higher total plasma and hepatic cholesterol concentrations. Biliary lipids and cholesterol gallstone incidence revealed a significant gender effect with male hamsters developing a higher lithogenic index and more gallstones (cholesterol and pigment stones) than females. Female hamsters revealed a lower percentage of chenodeoxycholate and a higher percentage of cholate resulting in a more protective, higher cholate/cheno ratio (1.5 +/- 1.0) than in males (1.0 +/- 0.2). In summary, the bile acid pattern in developing and cholesterol-fed hamsters renders females less susceptible to gallstones, in part because they maintain more favorable biliary lipid and bile acid profiles, characterized by lower molar percentages of biliary cholesterol and chenodeoxycholate.
Collapse
Affiliation(s)
- E A Trautwein
- Foster Biomedical Research Laboratory, Brandeis University, Waltham, MA 02254, USA
| | | | | |
Collapse
|
6
|
Souidi M, Parquet M, Férézou J, Lutton C. Modulation of cholesterol 7alpha-hydroxylase and sterol 27-hydroxylase activities by steroids and physiological conditions in hamster. Life Sci 1999; 64:1585-93. [PMID: 10353623 DOI: 10.1016/s0024-3205(99)00089-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Our purpose was to examine the in vitro modulation of liver mitochondrial sterol 27-hydroxylase (S27OHase) and microsomal cholesterol 7alpha-hydroxylase (CH7alphaOHase) activities by certain drugs, sterols, oxysterols and bile acids, and to compare the influence of sex, age, diet and cholestyramine on these activities, in the hamster. In vitro, 7beta-hydroxycholesterol and 5alpha-cholestan-3beta-ol (cholestanol) were strong inhibitors (at 2 microM) of both enzyme activities, while 5beta-cholestan-3alpha-ol (epicoprostanol, 2 microM) and cyclosporin A (20 microM) inhibited S27OHase, but not CH7alphaOHase. These data suggest that a hydroxyl group at the 7alpha position is not required to inhibit CH7alphaOHase and that the presence of an aliphatic CH2-CH-(CH3)2 chain appears to be structurally important for S27OHase activity. Both enzyme activities remained unchanged by hyodeoxycholic acid (40 or 80 microM) while epicoprostanol inhibited only S27OHase and chenodeoxycholic acid only CH7alphaOHase. Adult (9-week old) male or female hamsters displayed similar S27OHase activity but the CH7alphaOHase activity was lower in females than in males, suggesting that the neutral bile acid pathway has a less important role in females. In male hamsters, S27OHase activity did not change with age, while CH7alphaOHase activity significantly increased (one-year vs 9-week old). A semi-purified sucrose-rich (lithogenic) diet significantly lowered both enzyme activities compared to the commercial diet. Cholestyramine induced a stimulation of both enzymes, slightly more vigorously however for the key enzyme involved in the neutral pathway. Taken together, these data indicate that the two enzymes are separately regulated and that certain drugs or steroid compounds can be useful for specifically inhibiting or stimulating the neutral or acidic bile acid pathway.
Collapse
Affiliation(s)
- M Souidi
- Laboratoire de Physiologie de la Nutrition, Unité Associée Université Paris-Sud/INRA, Université Paris-Sud, Orsay, France
| | | | | | | |
Collapse
|
7
|
Ohshima A, Cohen BI, Ayyad N, Mosbach EH. Effect of castration and hormonal supplementation on cholesterol cholelithiasis in the male hamster. Lipids 1996; 31:945-8. [PMID: 8882973 DOI: 10.1007/bf02522687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study examined the effect of castration and dietary hormonal supplementation on cholesterol cholelithiasis in male hamsters. Animals fed a standard lithogenic diet developed cholesterol gallstones (17%) after 6 wk, while castrated hamsters did not form any stones. Addition of a synthetic androgen, methyltestosterone, to the lithogenic diet induced cholelithiasis in castrated animals (50%). The biles of normal and castrated-hormone supplemented hamsters had cholesterol saturation indices of 1.0 and 1.1, respectively, while the bile of the castrated animals remained unsaturated (0.6). The ratio of cholic acid/chenodeoxycholic acid in bile increased after castration, but returned to normal levels following hormonal supplementation. Biliary cholesterol carriers were separated by ultracentrifugation. Animals in the stone-forming groups (normal and castrated-hormone treated) had a significant proportion of their biliary cholesterol in vesicles (44 and 46%, respectively); castrated hamsters had less cholesterol in vesicle form (9%). The molar ratio of cholesterol/phospholipid in vesicles was reduced after castration (0.93 vs. 0.42) and increased by hormonal supplementation (1.89). In conclusion, when compared to normal male hamsters fed a standard lithogenic diet, castration reduced the cholesterol saturation of bile, lowered the vesicular/micellar ratio in bile, and inhibited cholesterol cholelithiasis. Dietary androgen supplementation increased the lithogenicity of bile, resulting in stone formation in castrated animals.
Collapse
Affiliation(s)
- A Ohshima
- Department of Surgery, Beth Israel Medical Center, New York, New York 10033, USA
| | | | | | | |
Collapse
|
8
|
Ohshima A, Cohen BI, Ayyad N, Mosbach EH. Effect of a synthetic androgen on biliary lipid secretion in the female hamster. Lipids 1996; 31:879-86. [PMID: 8869891 DOI: 10.1007/bf02522984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study was designed to elucidate the effect of the synthetic androgen, methyltestosterone, on bile flow and biliary lipid secretion in female hamsters. Animals were divided into four groups and fed the following diets: group 1, lithogenic diet for three weeks; group 2, lithogenic diet + 0.05% methyltestosterone for three weeks; group 3, lithogenic diet for six weeks; group 4, lithogenic diet + 0.05% methyltestosterone for six weeks. At the end of each experimental period, the hamsters were operated on to establish external biliary fistulas. During the depletion of the endogenous bile acid pool (for two hours), the basal bile flow of group 4 was significantly smaller than that of group 3. Basal bile acid output was significantly lower in the methyltestosterone-fed groups 2 and 4 than in control groups 1 and 3. In contrast, groups 2 and 4 secreted more cholesterol than groups 1 and 3. Group 4 had a higher ratio of cholesterol output to phospholipid output than group 3. Increasing doses of taurocholate were infused after the bile acid depletion period, and it was found that methyltestosterone did not change the bile acid independent bile flow. The increments in cholesterol or phospholipid output induced per increment of bile acid output (linkage coefficients) were analyzed by linear regression. The methyltestosterone-fed groups (groups 2 and 4) had a higher linkage coefficient of cholesterol output to bile acid output than the control groups (groups 1 and 3). The linkage coefficients of phospholipid output to bile acid output of groups 2 and 4 were also higher compared to groups 1 and 3. The linkage coefficient of cholesterol output to phospholipid output of group 2 was higher than that of group 1. These results suggest that methyltestosterone stimulated the cosecretion mechanism of cholesterol and phospholipid in bile associated with an increasing ratio of cholesterol to phospholipid. In conclusion, the synthetic androgen, methyltestosterone, caused a decrease in basal bile flow and bile acid secretion, and an increase in basal cholesterol secretion and the biliary cholesterol-to-phospholipid ratio. These findings explain, in part, how methyltestosterone intensifies the formation of cholesterol gallstones in female hamsters.
Collapse
Affiliation(s)
- A Ohshima
- Department of Surgery, Beth Israel Medical Center, New York 10003, USA
| | | | | | | |
Collapse
|
9
|
Ayyad N, Cohen BI, Ohshima A, Mosbach EH. Prevention of cholesterol cholelithiasis by dietary unsaturated fats in hormone-treated female hamsters. Lipids 1996; 31:721-7. [PMID: 8827695 DOI: 10.1007/bf02522888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We examined the effect of diet on gallstone incidence and the composition of biliary phosphatidylcholines in methyltestosterone-treated female hamsters. These hamsters were fed a nutritionally adequate purified lithogenic diet containing 2% corn oil, 4% butterfat, 0.3% cholesterol, and 0.05% methyltestosterone, resulting in a cholesterol gallstone incidence of 86%. This incidence was lowered when mono- and polyunsaturated fats or fatty acids were added to the diet: 2.5% oleic acid resulted in total prevention of cholesterol cholelithiasis, 2.5% linoleic acid, and 4% safflower oil (78% linoleic acid content) reduced gallstone incidence to 26 and 8%, respectively. An additional 4% butterfat (29% oleic acid content) produced gallstones in 50% of the animals. At the end of the 6-wk feeding period, the bile of all hamsters was supersaturated with cholesterol. The major biliary phosphatidylcholine species in all groups were (sn-1-sn-2): 16:0-18:2, 16:0-18:1, 18:0-18:2, 16:0-20:4, and 18:2-18:2. The safflower oil- and linoleic acid-fed hamsters exhibited an enrichment of 16:0-18:2 (16-18%); added butterfat or oleic acid increased the proportion of 16:0-18:1 (9 and 25%, respectively). We conclude that the phosphatidylcholine molecular species in female hamster bile can be altered by dietary fats/fatty acids and that mono- and polyunsaturated fatty acids play a role in suppressing the induced cholelithiasis.
Collapse
Affiliation(s)
- N Ayyad
- Department of Surgery, Beth Israel Medical Center, New York, New York 10003, USA
| | | | | | | |
Collapse
|