1
|
Fernandes B, Alves S, Schmidt V, Bizarro AF, Pinto M, Pereira H, Marto J, Lourenço AM. Primary Prevention of Canine Atopic Dermatitis: Breaking the Cycle-A Narrative Review. Vet Sci 2023; 10:659. [PMID: 37999481 PMCID: PMC10674681 DOI: 10.3390/vetsci10110659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Canine atopic dermatitis (cAD) is a common and distressing skin condition in dogs, affecting up to 30% of the canine population. It not only impacts their quality of life but also that of their owners. Like human atopic dermatitis (hAD), cAD has a complex pathogenesis, including genetic and environmental factors. Current treatments focus on managing clinical signs, but they can be costly and have limitations. This article emphasizes the importance of preventing cAD from developing in the first place. Understanding the role of the skin's protective barrier is crucial, as its dysfunction plays a vital role in both hAD and cAD. hAD prevention studies have shown promising results in enhancing the skin barrier, but more research is needed to support more robust conclusions. While hAD primary prevention is currently a focal point of intensive investigation in human medicine, research on cAD primary prevention remains under-researched and almost non-existent. Pioneering effective prevention strategies for cAD holds immense potential to enhance the quality of life for both dogs and their owners. Additionally, it bears the promise of a translational impact on human research. Hence, further exploration of this crucial topic is not only relevant but also timely and imperative, warranting support and encouragement.
Collapse
Affiliation(s)
- Beatriz Fernandes
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1600-277 Lisbon, Portugal
| | - Susana Alves
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Vanessa Schmidt
- School of Veterinary Science, University of Liverpool, Liverpool L69 3GH, UK
| | - Ana Filipa Bizarro
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1600-277 Lisbon, Portugal
| | - Marta Pinto
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1600-277 Lisbon, Portugal
| | - Hugo Pereira
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Joana Marto
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1600-277 Lisbon, Portugal
| | - Ana Mafalda Lourenço
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
2
|
Brash AR, Noguchi S, Boeglin WE, Calcutt MW, Stec DF, Schneider C, Meyer JM. Two C18 hydroxy-cyclohexenone fatty acids from mammalian epidermis: Potential relation to 12R-lipoxygenase and covalent binding of ceramides. J Biol Chem 2023; 299:104739. [PMID: 37086788 PMCID: PMC10209020 DOI: 10.1016/j.jbc.2023.104739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 04/24/2023] Open
Abstract
A key requirement in forming the water permeability barrier in the mammalian epidermis is the oxidation of linoleate esterified in a skin-specific acylceramide by the sequential actions of 12R-lipoxygenase, epidermal lipoxygenase-3, and the epoxyalcohol dehydrogenase SDR9C7 (short-chain dehydrogenase-reductase family 7 member 9). By mechanisms that remain unclear, this oxidation pathway promotes the covalent binding of ceramides to protein, forming a critical structure of the epidermal barrier, the corneocyte lipid envelope. Here, we detected, in porcine, mouse, and human epidermis, two novel fatty acid derivatives formed by KOH treatment from precursors covalently bound to protein: a "polar" lipid chromatographing on normal-phase HPLC just before omega-hydroxy ceramide and a "less polar" lipid nearer the solvent front. Approximately 100 μg of the novel lipids were isolated from porcine epidermis, and the structures were established by UV-spectroscopy, LC-MS, GC-MS, and NMR. Each is a C18 fatty acid and hydroxy-cyclohexenone with the ring on carbons C9-C14 in the polar lipid and C8-C13 in the less polar lipid. Overnight culture of [14C]linoleic acid with whole mouse skin ex vivo led to recovery of the 14C-labeled hydroxy-cyclohexenones. We deduce they are formed from covalently bound precursors during the KOH treatment used to release esterified lipids. KOH-induced intramolecular aldol reactions from a common precursor can account for their formation. Discovery of these hydroxy-cyclohexenones presents an opportunity for a reverse pathway analysis, namely to work back from these structures to identify their covalently bound precursors and relationship to the linoleate oxidation pathway.
Collapse
Affiliation(s)
- Alan R Brash
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Saori Noguchi
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - William E Boeglin
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - M Wade Calcutt
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Donald F Stec
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Claus Schneider
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jason M Meyer
- Department of Dermatology, Vanderbilt University Medical Center, and Dermatology Service, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Honma N, Hatta I, Okazaki T, Tokudome Y. Modulation of function and structure of stratum corneum in sphingomyelin synthase 2-deficient mice. Chem Phys Lipids 2022; 249:105255. [PMID: 36279928 DOI: 10.1016/j.chemphyslip.2022.105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/22/2022] [Accepted: 10/17/2022] [Indexed: 01/25/2023]
Abstract
Sphingomyelin synthase (SMS) synthesizes sphingomyelin (SM) from ceramide (Cer), a precursor of Cer. The effects of SMS deficiency on stratum corneum (SC) barrier function and SC lamellar structure are unknown. In this report, permeation of hydrophilic and lipophilic compounds through full-thickness skin or stripped skin of SMS2-knockout (KO) and wild-type (WT) mice was examined. Furthermore, small-angle and wide-angle X-ray scattering (SAXS and WAXS) measurements of the SC were performed as a function of temperature to analyze the lamellar structure and hydrocarbon chain packing, where a SC sample was changed from 10 °C to 120 °C at 2 °C/min and the X-ray diffraction profile in the small-angle region and the wide-angle region was observed. Skin permeability of the hydrophilic compound increased significantly for SMS2-KO mice when compared with that of WT mice. In contrast, no difference was observed in the penetration of lipophilic compounds in the skin of both SMS2-KO and WT mice. In SC of SMS2-KO mice, two sharp SAXS peaks were observed due to the lamellar structure with a repetition period of 4.8 nm. The WAXS revealed that the intensity ratio R0.42/0.37 of the 0.42 nm peak at 2.4 nm-1 to the 0.37 nm peak at 2.7 nm-1 was smaller in the SMS2-KO mouse than in the WT mouse. Due to the temperature dependence of the WAXS, the peaks of 2.4 and 2.7 nm-1 remained until the higher temperatures in SMS2-KO mouse SC than those in WT mouse SC. The results of X-ray diffraction suggest that deficiency of SMS2 may cause the appearance of highly ordered structures of SC, which in turn may reduce the barrier function of SC.
Collapse
Affiliation(s)
- Nozomi Honma
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Ichiro Hatta
- Department of Research, Nagoya Industrial Science Research Institute, 1-13 Yotsuyadori, Chikusa-ku, Nagoya 464-0819, Japan
| | - Toshiro Okazaki
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Yoshihiro Tokudome
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan; Laboratory of Cosmetic Sciences, Regional Innovation Center, Saga University, 1 Honjo, Saga 840-8502, Japan.
| |
Collapse
|
4
|
Low-flux electron diffraction study on body site dependence of stratum corneum structures in human skin. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183933. [PMID: 35504319 DOI: 10.1016/j.bbamem.2022.183933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/07/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022]
Abstract
For analysis of the structure of human skin stratum corneum (SC), we introduced low-flux electron diffraction (ED) and developed a new statistical analysis method for obtained ED intensity profiles. By use of this method we compared the differences in the intercellular lipid organization on the SC corneocytes collected at human forehead, cheek, and forearm by the grid-stripping method. As a result, we found a significant regional difference in the distribution of lipid hydrocarbon chain packing domains in the SC; the ring-type ED pattern with orthorhombic symmetry was more often observed in the forearm SC than in the forehead and cheek SCs. We also found that the dependence of the background electron diffraction intensity on the modulus of the scattering vector differed significantly among them. The present method for the analysis of a large number of ED patterns of noninvasively obtained SC samples could be a powerful tool to scrutinize the structural difference between the SCs under various experimental conditions.
Collapse
|
5
|
Zhang Y, Liu C, Wang J, Ren S, Song Y, Quan P, Fang L. Ionic liquids in transdermal drug delivery system: Current applications and future perspectives. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Bazarbashi N, Miller M. Triglycerides: How to Manage Patients with Elevated Triglycerides and When to Refer? Med Clin North Am 2022; 106:299-312. [PMID: 35227432 DOI: 10.1016/j.mcna.2021.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypertriglyceridemia (HTG) is among the most common dyslipidemias seen in clinical practice. Studies in recent years have demonstrated a causal relationship between triglyceride-rich lipoproteins (TRL) and cardiovascular disease (CVD). This is primarily due to enhanced atherogenicity of cholesterol-enriched remnants, the metabolic byproducts of TRLs. Other factors influencing atherogenicity of TRLs include apolipoprotein CIII-directed proinflammatory signaling pathways and triglyceride enrichment of low-density lipoprotein that results in overabundance of small dense atherogenic particles within a prooxidative milieu that serves as the gateway for unregulated incorporation by vascular wall macrophages. HTG is caused by familial and metabolic disorders as well as selected medications that impair TRL hydrolysis.
Collapse
Affiliation(s)
- Najdat Bazarbashi
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael Miller
- Department of Cardiovascular Medicine, University of Maryland School of Medicine, 110 South Paca Street, Baltimore, MD, USA.
| |
Collapse
|
7
|
Jin S, Oh YN, Son YR, Kwon B, Park JH, Gang MJ, Kim BW, Kwon HJ. Three-Dimensional Skin Tissue Printing with Human Skin Cell Lines and Mouse Skin-Derived Epidermal and Dermal Cells. J Microbiol Biotechnol 2022; 32:238-247. [PMID: 34949744 PMCID: PMC9628848 DOI: 10.4014/jmb.2111.11042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
Since the skin covers most surfaces of the body, it is susceptible to damage, which can be fatal depending on the degree of injury to the skin because it defends against external attack and protects internal structures. Various types of artificial skin are being studied for transplantation to repair damaged skin, and recently, the production of replaceable skin using three-dimensional (3D) bioprinting technology has also been investigated. In this study, skin tissue was produced using a 3D bioprinter with human skin cell lines and cells extracted from mouse skin, and the printing conditions were optimized. Gelatin was used as a bioink, and fibrinogen and alginate were used for tissue hardening after printing. Printed skin tissue maintained a survival rate of 90% or more when cultured for 14 days. Culture conditions were established using 8 mM calcium chloride treatment and the skin tissue was exposed to air to optimize epidermal cell differentiation. The skin tissue was cultured for 14 days after differentiation induction by this optimized culture method, and immunofluorescent staining was performed using epidermal cell differentiation markers to investigate whether the epidermal cells had differentiated. After differentiation, loricrin, which is normally found in terminally differentiated epidermal cells, was observed in the cells at the tip of the epidermal layer, and cytokeratin 14 was expressed in the lower cells of the epidermis layer. Collectively, this study may provide optimized conditions for bioprinting and keratinization for three-dimensional skin production.
Collapse
Affiliation(s)
- Soojung Jin
- Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea
| | - You Na Oh
- Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea
| | - Yu Ri Son
- Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea
| | - Boguen Kwon
- Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea
| | - Jung-ha Park
- Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea,Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - Min jeong Gang
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - Byung Woo Kim
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-Eui University, Busan 47340, Republic of Korea,Blue-Bio Industry Regional Innovation Center, Dong-Eui University, Busan 47340, Republic of Korea,
B.W. Kim Phone: +82-51-890-2900 Fax: +82-505-182-6951 E-mail:
| | - Hyun Ju Kwon
- Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea,Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-Eui University, Busan 47340, Republic of Korea,Blue-Bio Industry Regional Innovation Center, Dong-Eui University, Busan 47340, Republic of Korea,Corresponding authors H.J. Kwon Phone: +82-51-890-4471 Fax: +82-505-182-6871 E-mail:
| |
Collapse
|
8
|
Bakar J, Michael-Jubeli R, Tfaili S, Assi A, Baillet-Guffroy A, Tfayli A. Biomolecular modifications during keratinocyte differentiation: Raman spectroscopy and chromatographic techniques. Analyst 2021; 146:2965-2973. [PMID: 33949413 DOI: 10.1039/d1an00231g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
From the basal layer until the stratum corneum, lipid and protein biomarkers associated with morphological changes denote keratinocyte differentiation and characterize each epidermis layer. Herein, we followed keratinocyte differentiation in the early stages using HaCaT cells over a period of two weeks by two complementary analytical techniques: Raman microspectroscopy and high-performance liquid chromatography coupled with high resolution mass spectrometry. A high concentration of calcium in the medium induced HaCaT cell differentiation in vitro. The results from both techniques underlined the keratinocyte passage from the granular layer (day 9) to the stratum corneum layer (day 13). After 13 days of differentiation, we observed a strong increase in the lipid content, decrease in proteins, decrease in DNA, and a decrease in glucosylceramides/ceramides and sphingomyelins/ceramides ratios.
Collapse
Affiliation(s)
- Joudi Bakar
- Lipides: systèmes analytiques et biologiques, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| | - Rime Michael-Jubeli
- Lipides: systèmes analytiques et biologiques, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| | - Sana Tfaili
- Lipides: systèmes analytiques et biologiques, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| | - Ali Assi
- Lipides: systèmes analytiques et biologiques, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| | - Arlette Baillet-Guffroy
- Lipides: systèmes analytiques et biologiques, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| | - Ali Tfayli
- Lipides: systèmes analytiques et biologiques, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| |
Collapse
|
9
|
Ibáñez A, Martínez-Silvestre A, Podkowa D, Woźniakiewicz A, Woźniakiewicz M, Pabijan M. The chemistry and histology of sexually dimorphic mental glands in the freshwater turtle, Mauremys leprosa. PeerJ 2020; 8:e9047. [PMID: 32461828 PMCID: PMC7233278 DOI: 10.7717/peerj.9047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/02/2020] [Indexed: 11/20/2022] Open
Abstract
Despite evidence from anatomy, behavior and genomics indicating that the sense of smell in turtles is important, our understanding of chemical communication in this group is still rudimentary. Our aim was to describe the microanatomy of mental glands (MGs) in a freshwater turtle, Mauremys leprosa (Geoemydidae), and to assess the chemical composition of their secretions with respect to variation among individuals and between sexes. MGs are paired sac-like organs on the gular region of the neck and are dimorphic in this species with males having fully functional holocrine glands while those of females appear non-secretory and vestigial. In adult males, the glandular epithelium of the inner portion of the gland provides exocytotic products as well as cellular debris into the lumen of the gland. The contents of the lumen can be secreted through the narrow duct portion of the gland ending in an orifice on the surface of the skin. Females have invaginated structures similar in general outline to male glands, but lack a glandular epithelium. Using gas chromatography coupled to mass spectrometry, we identified a total of 61 compounds in mental gland secretions, the most numerous being carboxylic acids, carbohydrates, alkanes, steroids and alcohols. The number of compounds per individual varied widely (mean (median) ± SD = 14.54 (13) ± 8.44; min = 3; max = 40), but only cholesterol was found in all samples. We found that the relative abundances of only six chemicals were different between the sexes, although males tended to have larger amounts of particular compounds. Although the lipid fraction of mental gland secretions is rich in chemical compounds, most occur in both sexes suggesting that they are metabolic byproducts with no role in chemical signaling. However, the relative amounts of some compounds tended to be higher in males, with significantly larger amounts of two carboxylic acids and one steroid, suggesting their putative involvement in chemical communication.
Collapse
Affiliation(s)
- Alejandro Ibáñez
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research Jagiellonian University, Krakow, Poland
| | | | - Dagmara Podkowa
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research Jagiellonian University, Krakow, Poland
| | - Aneta Woźniakiewicz
- Department of Analytical Chemistry, Laboratory for Forensic Chemistry, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Michał Woźniakiewicz
- Department of Analytical Chemistry, Laboratory for Forensic Chemistry, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Maciej Pabijan
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research Jagiellonian University, Krakow, Poland
| |
Collapse
|
10
|
Pecoraro B, Tutone M, Hoffman E, Hutter V, Almerico AM, Traynor M. Predicting Skin Permeability by Means of Computational Approaches: Reliability and Caveats in Pharmaceutical Studies. J Chem Inf Model 2019; 59:1759-1771. [PMID: 30658035 DOI: 10.1021/acs.jcim.8b00934] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The skin is the main barrier between the internal body environment and the external one. The characteristics of this barrier and its properties are able to modify and affect drug delivery and chemical toxicity parameters. Therefore, it is not surprising that permeability of many different compounds has been measured through several in vitro and in vivo techniques. Moreover, many different in silico approaches have been used to identify the correlation between the structure of the permeants and their permeability, to reproduce the skin behavior, and to predict the ability of specific chemicals to permeate this barrier. A significant number of issues, like interlaboratory variability, experimental conditions, data set building rationales, and skin site of origin and hydration, still prevent us from obtaining a definitive predictive skin permeability model. This review wants to show the main advances and the principal approaches in computational methods used to predict this property, to enlighten the main issues that have arisen, and to address the challenges to develop in future research.
Collapse
Affiliation(s)
- Beatrice Pecoraro
- Department of Clinical and Pharmaceutical Sciences , University of Hertfordshire , AL10 9AB Hatfield , United Kingdom
| | - Marco Tutone
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies , University of Palermo , 90123 Palermo , Italy
| | - Ewelina Hoffman
- Department of Clinical and Pharmaceutical Sciences , University of Hertfordshire , AL10 9AB Hatfield , United Kingdom
| | - Victoria Hutter
- Department of Clinical and Pharmaceutical Sciences , University of Hertfordshire , AL10 9AB Hatfield , United Kingdom
| | - Anna Maria Almerico
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies , University of Palermo , 90123 Palermo , Italy
| | - Matthew Traynor
- Department of Clinical and Pharmaceutical Sciences , University of Hertfordshire , AL10 9AB Hatfield , United Kingdom
| |
Collapse
|
11
|
Sochorová M, Audrlická P, Červená M, Kováčik A, Kopečná M, Opálka L, Pullmannová P, Vávrová K. Permeability and microstructure of cholesterol-depleted skin lipid membranes and human stratum corneum. J Colloid Interface Sci 2019; 535:227-238. [DOI: 10.1016/j.jcis.2018.09.104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/27/2018] [Accepted: 09/30/2018] [Indexed: 10/28/2022]
|
12
|
Natesan S, Wrice NL, Christy RJ. Peroxisome proliferator‐activated receptor‐α agonist and all‐
trans
retinoic acid induce epithelial differentiation of subcutaneous adipose‐derived stem cells from debrided burn skin. J Cell Biochem 2018; 120:9213-9229. [DOI: 10.1002/jcb.28197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/12/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Shanmugasundaram Natesan
- Combat Trauma and Burn Injury Research United States Army Institute of Surgical Research Fort Sam Houston Texas
| | - Nicole L. Wrice
- Combat Trauma and Burn Injury Research United States Army Institute of Surgical Research Fort Sam Houston Texas
| | - Robert J. Christy
- Combat Trauma and Burn Injury Research United States Army Institute of Surgical Research Fort Sam Houston Texas
| |
Collapse
|
13
|
State of the art in Stratum Corneum research: The biophysical properties of ceramides. Chem Phys Lipids 2018; 216:91-103. [PMID: 30291856 DOI: 10.1016/j.chemphyslip.2018.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/10/2018] [Accepted: 09/29/2018] [Indexed: 11/20/2022]
Abstract
This review is summarizing an important part of the state of the art in stratum corneum research. A complete overview on discoveries about the general biophysical and physicochemical properties of the known ceramide species' is provided. The ceramides are one of the three major components of the lipid matrix and mainly govern its properties and structure. They are shown to exhibit very little redundancy, despite the minor differences in their chemical structure. The results are discussed, compared to each other as well as the current base of knowledge. New interesting aspects and concepts are concluded or suggested. A novel interpretation of the 3-dimensional structure of the lipid matrix and its influence on the barrier function will be discussed. The most important conclusion is the presentation of a new and up to date theoretical model of the nanostructure of the short periodicity phase. The model suggests three perpendicular layers: The rigid head group region, the rigid chain region and, a liquid-like overlapping middle layer. The general principle of the skin barrier function is highlighted in regard to this structure and the ceramides biophysical and physicochemical properties. As a result of these considerations, the entropy vs. enthalpy principle is introduced, shedding light on the function as well as the effectiveness of the skin barrier. Additionally, general ideas to effectively overcome this barrier principle for dermal and transdermal delivery of actives or how to use it for specific targeting of the stratum corneum are proposed.
Collapse
|
14
|
Ferreira FS, Brito SV, Coutinho HDM, Souza EP, Almeida WO, Alves RRN. Vertebrates as a Bactericidal Agent. ECOHEALTH 2018; 15:619-626. [PMID: 29922961 DOI: 10.1007/s10393-018-1345-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
In Brazil, although a large number of animals are used in traditional medicine (at least 354 species), information about their biological activities is scarce. In this context, the objective of this study was to evaluate the bactericidal potential of zootherapeutic by-products from animals used in Brazilian traditional medicine and discuss the ecological and cultural consequences of such practices. The species analyzed were: Tupinambis merianae (skin), Iguana iguana (skin and body fat), Crotalus durissus (skin and body fat), Boa constrictor (skin), Euphractus sexcinctus (body fat) and Coendou prehensilis (quills). Experiments were performed with standard clinical strains of Escherichia coli (EC-ATCC10536) and Staphylococcus aureus (SA-ATCC 25923). For the microbiological assay, the zootherapeutics were evaluated using serial microdilutions. The results indicate that none of the samples possess inhibitory activity against standard bacterial strains. The in vitro ineffectiveness of the analyzed products demonstrate a necessity for new pharmacological research that encompass a large number of species of medicinal animals as well as highlight the importance of zootherapy in the context of plans for animal conservation.
Collapse
Affiliation(s)
- F S Ferreira
- Universidade Federal do Vale do São Francisco, Colegiado Acadêmico de Ecologia, Senhor do Bonfim, BA, Brazil.
| | - S V Brito
- Universidade Federal do Maranhão, Centro de Ciências Agrárias e Ambientais, Chapadinha, MA, Brazil
| | - H D M Coutinho
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato, CE, Brazil
| | - E P Souza
- Departamento de Morfologia, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - W O Almeida
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato, CE, Brazil
| | - R R N Alves
- Departamento de Biologia, Universidade Estadual da Paraíba, Campina Grande, PB, Brazil
| |
Collapse
|
15
|
Kosakowska KA, Casey BK, Albert JNL, Wang Y, Ashbaugh HS, Grayson SM. Synthesis and Self-Assembly of Amphiphilic Star/Linear-Dendritic Polymers: Effect of Core versus Peripheral Branching on Reverse Micelle Aggregation. Biomacromolecules 2018; 19:3177-3189. [PMID: 29986144 DOI: 10.1021/acs.biomac.8b00679] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A series of branched polymers, consisting of a poly(ethylene glycol) (PEG) core and lipophilic peripheral dendrons, were synthesized and their self-assembly into reverse micelles studied toward the ultimate goal of carrier-mediated transdermal drug delivery. More specifically, this investigation systematically explores the structure-property contributions arising from location and extent of branching by varying the number of branch points at the core and the generation of dendrons at the polar/nonpolar interface. For branching at the core, PEGs were selected with one, two or four arms, with one terminal functionality per arm. For peripheral branching, end groups were modified with polyester dendrons (of dendritic generations 0, 1, and 2) for each of the three cores. Finally, lauric acid (LA) was used to esterify the periphery, yielding a library of branched, amphiphilic polymers. Characterization of these materials via MALDI-TOF MS, GPC and NMR confirmed their exceptionally well-defined structure. Furthermore, atomic force microscopy (AFM) and dynamic light scattering (DLS) confirmed these polymers' abilities to make discrete aggregates. As expected, increased multiplicity of branching resulted in more compact aggregates; however, the location of branching (core vs periphery) did not seem as important in defining aggregate size as the extent of branching. Finally, computational modeling of the branched amphiphile series was explored to elucidate the macromolecular interactions governing self-assembly in these systems.
Collapse
|
16
|
Kosakowska KA, Casey BK, Kurtz SL, Lawson LB, Grayson SM. Evaluation of Amphiphilic Star/Linear–Dendritic Polymer Reverse Micelles for Transdermal Drug Delivery: Directing Carrier Properties by Tailoring Core versus Peripheral Branching. Biomacromolecules 2018; 19:3163-3176. [DOI: 10.1021/acs.biomac.8b00680] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Karolina A. Kosakowska
- Department of Chemistry, School of Science and Engineering, Tulane University, New Orleans Louisiana 70118, United States
- Bioinnovation PhD Program, School of Science and Engineering, Tulane University, New Orleans Louisiana 70118, United States
| | - Brittany K. Casey
- Department of Chemistry, School of Science and Engineering, Tulane University, New Orleans Louisiana 70118, United States
| | - Samantha L. Kurtz
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans Louisiana 70112, United States
- Bioinnovation PhD Program, School of Science and Engineering, Tulane University, New Orleans Louisiana 70118, United States
| | - Louise B. Lawson
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans Louisiana 70112, United States
| | - Scott M. Grayson
- Department of Chemistry, School of Science and Engineering, Tulane University, New Orleans Louisiana 70118, United States
| |
Collapse
|
17
|
Okasaka M, Kubota K, Yamasaki E, Yang J, Takata S. Evaluation of anionic surfactants effects on the skin barrier function based on skin permeability. Pharm Dev Technol 2018; 24:99-104. [PMID: 29323614 DOI: 10.1080/10837450.2018.1425885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Anionic surfactants are often used for cleaning and pharmaceutical purposes because of their strong surfactancy and foaming property. However, they are rarely ingested orally, the skin is a part of the human body most affected by surfactants. Barrier function of the skin is very strong, but the anionic surfactants can cause serious damages to it. Recently, amino acid-based surfactants have attracted attention as a safer option owing to their biocompatibility. Cytotoxicity examinations revealed that the amino acid-based surfactants are superior to sulfate-based surfactants. However, a systematical and comprehensive study related to the effect of these surfactants on skin barrier function has not yet been reported. In this work, skin permeation test using the skin of hairless mice and HPLC method is carried out. The material transmission speed through skin in a steady state was different between each surfactant treatment. We performed a comprehensive analysis of the effect of surfactants on skin barrier function and defined Transmission Index as an index for the degree of effect of surfactants. Glutamate series amino acid-based surfactant were effective to Transmission Index and we guessed the cause was due to adsorption. Based on the finding this study, we suggest using adsorptive property as a measure to the effect on the skin barrier function.
Collapse
Affiliation(s)
- Mana Okasaka
- a Department of Fashion and Beauty Sciences , Osaka Shoin Women's University , Higashiosaka-shi , Osaka , Japan.,b Division in Beauty and Fashion Studies, Graduate School of Human Sciences , Osaka Shoin Women's University , Higashiosaka-shi , Osaka , Japan
| | - Koji Kubota
- c Department of Pharmacy , Iwaki Meisei University , Iwaki-shi , Fukushima , Japan.,d Department of Pharmacy , Yasuda Women's University , Hiroshima-shi , Hiroshima , Japan
| | - Emi Yamasaki
- e Beauty Hi-tech Innovation Co., Ltd , Kobe-shi , Hyogo , Japan
| | - Jianzhong Yang
- e Beauty Hi-tech Innovation Co., Ltd , Kobe-shi , Hyogo , Japan.,f Asian Scalp Health Research Center , Kobe-shi , Hyogo , Japan
| | - Sadaki Takata
- a Department of Fashion and Beauty Sciences , Osaka Shoin Women's University , Higashiosaka-shi , Osaka , Japan.,b Division in Beauty and Fashion Studies, Graduate School of Human Sciences , Osaka Shoin Women's University , Higashiosaka-shi , Osaka , Japan
| |
Collapse
|
18
|
Moskot M, Bocheńska K, Jakóbkiewicz-Banecka J, Banecki B, Gabig-Cimińska M. Abnormal Sphingolipid World in Inflammation Specific for Lysosomal Storage Diseases and Skin Disorders. Int J Mol Sci 2018; 19:E247. [PMID: 29342918 PMCID: PMC5796195 DOI: 10.3390/ijms19010247] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/20/2017] [Accepted: 01/11/2018] [Indexed: 02/06/2023] Open
Abstract
Research in recent years has shown that sphingolipids are essential signalling molecules for the proper biological and structural functioning of cells. Long-term studies on the metabolism of sphingolipids have provided evidence for their role in the pathogenesis of a number of diseases. As many inflammatory diseases, such as lysosomal storage disorders and some dermatologic diseases, including psoriasis, atopic dermatitis and ichthyoses, are associated with the altered composition and metabolism of sphingolipids, more studies precisely determining the responsibilities of these compounds for disease states are required to develop novel pharmacological treatment opportunities. It is worth emphasizing that knowledge from the study of inflammatory metabolic diseases and especially the possibility of their treatment may lead to insight into related metabolic pathways, including those involved in the formation of the epidermal barrier and providing new approaches towards workable therapies.
Collapse
Affiliation(s)
- Marta Moskot
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kadki 24, 80-822 Gdańsk, Poland.
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Katarzyna Bocheńska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | | | - Bogdan Banecki
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, 80-307 Gdańsk, Poland.
| | - Magdalena Gabig-Cimińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kadki 24, 80-822 Gdańsk, Poland.
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
19
|
Ezerskaia A, Ras A, Bloemen P, Pereira SF, Urbach HP, Varghese B. High sensitivity optical measurement of skin gloss. BIOMEDICAL OPTICS EXPRESS 2017; 8:3981-3992. [PMID: 29026683 PMCID: PMC5611917 DOI: 10.1364/boe.8.003981] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/13/2017] [Accepted: 07/31/2017] [Indexed: 05/10/2023]
Abstract
We demonstrate a low-cost optical method for measuring the gloss properties with improved sensitivity in the low gloss regime, relevant for skin gloss properties. The gloss estimation method is based on, on the one hand, the slope of the intensity gradient in the transition regime between specular and diffuse reflection and on the other on the sum over the intensities of pixels above threshold, derived from a camera image obtained using unpolarized white light illumination. We demonstrate the improved sensitivity of the two proposed methods using Monte Carlo simulations and experiments performed on ISO gloss calibration standards with an optical prototype. The performance and linearity of the method was compared with different professional gloss measurement devices based on the ratio of specular to diffuse intensity. We demonstrate the feasibility for in-vivo skin gloss measurements by quantifying the temporal evolution of skin gloss after application of standard paraffin cream bases on skin. The presented method opens new possibilities in the fields of cosmetology and dermatopharmacology for measuring the skin gloss and resorption kinetics and the pharmacodynamics of various external agents.
Collapse
Affiliation(s)
- Anna Ezerskaia
- Department of Personal Care and Wellness, Philips Research, 5656AE, Eindhoven, the Netherlands
- Optics Research Group, ImPhys Department, TNW Faculty, Delft University of Technology, Lorentzweg 1, Delft 2628 CJ, the Netherlands
| | - Arno Ras
- Department of Multiphysics and Optics, Philips Research, 5656AE, Eindhoven, the Netherlands
| | - Pascal Bloemen
- Department of Multiphysics and Optics, Philips Research, 5656AE, Eindhoven, the Netherlands
| | - Silvania F. Pereira
- Optics Research Group, ImPhys Department, TNW Faculty, Delft University of Technology, Lorentzweg 1, Delft 2628 CJ, the Netherlands
| | - H. Paul Urbach
- Optics Research Group, ImPhys Department, TNW Faculty, Delft University of Technology, Lorentzweg 1, Delft 2628 CJ, the Netherlands
| | - Babu Varghese
- Department of Personal Care and Wellness, Philips Research, 5656AE, Eindhoven, the Netherlands
| |
Collapse
|
20
|
Stratum corneum modulation by chemical enhancers and lipid nanostructures: implications for transdermal drug delivery. Ther Deliv 2017; 8:701-718. [DOI: 10.4155/tde-2017-0045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Skin is the outermost and largest protective covering of the body. The uppermost layer of the skin, stratum corneum also called the horny layer is composed of keratin-filled cells covered by a lipid matrix which shields the skin from physical and chemical entrants. The lipid lamellar structure comprises of ceramides, cholesterol, fatty acids and proteins. Chemical enhancers that mimic the lamellar chemistry, reversibly fluidize the latter can be utilized for enhancing transport of cargo across the epidermis into the dermis. This review deals with the stratum corneum chemistry, mechanisms to modulate its packing with the aid of chemical enhancers, biophysical techniques for characterization and applications in the design of nature-inspired biocompatible lipid nanostructures for transdermal delivery of drugs and bioactive agents.
Collapse
|
21
|
Feng X, Moy AJ, Nguyen HTM, Zhang J, Fox MC, Sebastian KR, Reichenberg JS, Markey MK, Tunnell JW. Raman active components of skin cancer. BIOMEDICAL OPTICS EXPRESS 2017; 8:2835-2850. [PMID: 28663910 PMCID: PMC5480433 DOI: 10.1364/boe.8.002835] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/26/2017] [Accepted: 05/01/2017] [Indexed: 05/05/2023]
Abstract
Raman spectroscopy (RS) has shown great potential in noninvasive cancer screening. Statistically based algorithms, such as principal component analysis, are commonly employed to provide tissue classification; however, they are difficult to relate to the chemical and morphological basis of the spectroscopic features and underlying disease. As a result, we propose the first Raman biophysical model applied to in vivo skin cancer screening data. We expand upon previous models by utilizing in situ skin constituents as the building blocks, and validate the model using previous clinical screening data collected from a Raman optical fiber probe. We built an 830nm confocal Raman microscope integrated with a confocal laser-scanning microscope. Raman imaging was performed on skin sections spanning various disease states, and multivariate curve resolution (MCR) analysis was used to resolve the Raman spectra of individual in situ skin constituents. The basis spectra of the most relevant skin constituents were combined linearly to fit in vivo human skin spectra. Our results suggest collagen, elastin, keratin, cell nucleus, triolein, ceramide, melanin and water are the most important model components. We make available for download (see supplemental information) a database of Raman spectra for these eight components for others to use as a reference. Our model reveals the biochemical and structural makeup of normal, nonmelanoma and melanoma skin cancers, and precancers and paves the way for future development of this approach to noninvasive skin cancer diagnosis.
Collapse
Affiliation(s)
- Xu Feng
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton Street C0800, Austin, TX 78712, USA
| | - Austin J Moy
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton Street C0800, Austin, TX 78712, USA
| | - Hieu T. M. Nguyen
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton Street C0800, Austin, TX 78712, USA
| | - Jason Zhang
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton Street C0800, Austin, TX 78712, USA
| | - Matthew C. Fox
- Medicine, Dell Medical School, The University of Texas at Austin, 1400 N IH-35 Suite C2-470, Austin, TX 78701, USA
| | - Katherine R. Sebastian
- Medicine, Dell Medical School, The University of Texas at Austin, 1400 N IH-35 Suite C2-470, Austin, TX 78701, USA
| | - Jason S. Reichenberg
- Medicine, Dell Medical School, The University of Texas at Austin, 1400 N IH-35 Suite C2-470, Austin, TX 78701, USA
| | - Mia K. Markey
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton Street C0800, Austin, TX 78712, USA
| | - James W. Tunnell
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton Street C0800, Austin, TX 78712, USA
| |
Collapse
|
22
|
Plochocki JH, Ruiz S, Rodriguez-Sosa JR, Hall MI. Histological study of white rhinoceros integument. PLoS One 2017; 12:e0176327. [PMID: 28441468 PMCID: PMC5404766 DOI: 10.1371/journal.pone.0176327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/09/2017] [Indexed: 11/19/2022] Open
Abstract
In this study, we report findings from a microscopic analysis of the white rhinoceros (Ceratotherium simum) integumentary ultrastructure. Skin samples from the cheek, shoulder, flank and rump were taken from a 46-year-old female southern white rhinoceros and examined using H&E and elastic histological stains. The epidermis was thickest in the flank (1.003 mm) followed by the rump, cheek and shoulder. The stratum corneum comprised more than half the epidermal thickness. Numerous melanin granules were found in the basal and spinosum layers. The epidermal-dermal junction was characterized by abundant papillary folds increasing surface contact between integument layers. Most of the dermal thickness consisted of organized collagen bundles with scattered elastic fibers. Collagen fiber bundles were thickest in the flank (210.9 μm) followed by shoulder, rump and cheek. Simple coiled sweat glands were present in the dermis, but hair and sebaceous glands were absent. Together, these data suggest the white rhinoceros has a unique integumentary system among large terrestrial herbivores.
Collapse
Affiliation(s)
- Jeffrey H. Plochocki
- Department of Anatomy, Midwestern University, Glendale, Arizona, United States of America
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona, United States of America
- * E-mail:
| | - Saul Ruiz
- Department of Anatomy, Midwestern University, Glendale, Arizona, United States of America
| | - José R. Rodriguez-Sosa
- Department of Anatomy, Midwestern University, Glendale, Arizona, United States of America
- College of Veterinary Medicine, Midwestern University, Glendale, Arizona, United States of America
| | - Margaret I. Hall
- Department of Anatomy, Midwestern University, Glendale, Arizona, United States of America
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona, United States of America
- College of Veterinary Medicine, Midwestern University, Glendale, Arizona, United States of America
| |
Collapse
|
23
|
Phospholipase Cδ1 regulates p38 MAPK activity and skin barrier integrity. Cell Death Differ 2017; 24:1079-1090. [PMID: 28430185 DOI: 10.1038/cdd.2017.56] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 03/09/2017] [Accepted: 03/14/2017] [Indexed: 02/06/2023] Open
Abstract
Keratinocytes undergo a unique type of programmed cell death known as cornification, which leads to the formation of the stratum corneum (SC), the main physical barrier of the epidermis. A defective epidermal barrier is a hallmark of the two most common inflammatory skin disorders, psoriasis, and atopic dermatitis. However, the detailed molecular mechanisms of skin barrier formation are not yet fully understood. Here, we showed that downregulation of phospholipase C (PLC) δ1, a Ca2+-mobilizing and phosphoinositide-metabolizing enzyme abundantly expressed in the epidermis, impairs the barrier functions of the SC. PLCδ1 downregulation also impairs localization of tight junction proteins. Loss of PLCδ1 leads to a decrease in intracellular Ca2+ concentrations and nuclear factor of activated T cells activity, along with hyperactivation of p38 mitogen-activated protein kinase (MAPK) and inactivation of RhoA. Treatment with a p38 MAPK inhibitor reverses the barrier defects caused by PLCδ1 downregulation. Interestingly, this treatment also attenuates psoriasis-like skin inflammation in imiquimod-treated mice. These findings demonstrate that PLCδ1 is essential for epidermal barrier integrity. This study also suggests a possible link between PLCδ1 downregulation, p38 MAPK hyperactivation, and barrier defects in psoriasis-like skin inflammation.
Collapse
|
24
|
Ortega-Insaurralde I, Ceferino Toloza A, Gonzalez-Audino P, Inés Picollo M. Arrestant Effect of Human Scalp Components on Head Louse (Phthiraptera: Pediculidae) Behavior. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:258-263. [PMID: 28011730 DOI: 10.1093/jme/tjw192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
Relevant evidence has shown that parasites process host-related information using chemical, visual, tactile, or auditory cues. However, the cues that are involved in the host-parasite interaction between Pediculus humanus capitis (De Geer 1767) and humans have not been identified yet. In this work, we studied the effect of human scalp components on the behavior of adult head lice. Filter paper segments were rubbed on volunteers' scalps and then placed in the experimental arena, where adult head lice were individually tested. The movement of the insects was recorded for each arena using the software EthoVision. Average movement parameters were calculated for the treatments in the bioassays such as total distance, velocity, number of times a head louse crossed between zones of the arena, and time in each zone of the arena. We found that scalp components induced head lice to decrease average locomotor activity and to remain arrested on the treated paper. The effect of the ageing of human scalp samples in the response of head lice was not statistically significant (i.e., human scalp samples of 4, 18, 40, and 60 h of ageing did not elicit a significant change in head louse behavior). When we analyzed the effect of the sex in the response of head lice to human scalp samples, males demonstrated significant differences. Our results showed for the first time the effect of host components conditioning head lice behavior. We discuss the role of these components in the dynamic of head lice infestation.
Collapse
Affiliation(s)
- Isabel Ortega-Insaurralde
- Centro de investigaciones de plagas e insecticidas (CITEDEF-CONICET), Juan Bautista de Lasalle 4397 (B1603ALO), Villa Martelli, Buenos Aires, Argentina (; ; ; )
| | - Ariel Ceferino Toloza
- Centro de investigaciones de plagas e insecticidas (CITEDEF-CONICET), Juan Bautista de Lasalle 4397 (B1603ALO), Villa Martelli, Buenos Aires, Argentina (; ; ; )
| | - Paola Gonzalez-Audino
- Centro de investigaciones de plagas e insecticidas (CITEDEF-CONICET), Juan Bautista de Lasalle 4397 (B1603ALO), Villa Martelli, Buenos Aires, Argentina (; ; ; )
| | - María Inés Picollo
- Centro de investigaciones de plagas e insecticidas (CITEDEF-CONICET), Juan Bautista de Lasalle 4397 (B1603ALO), Villa Martelli, Buenos Aires, Argentina (; ; ; )
| |
Collapse
|
25
|
Hertzberg O, Bauer A, Küderle A, Pleitez MA, Mäntele W. Depth-selective photothermal IR spectroscopy of skin: potential application for non-invasive glucose measurement. Analyst 2017; 142:495-502. [DOI: 10.1039/c6an02278b] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photothermal depth profiling is applied to total internal reflection enhanced photothermal deflection spectroscopy (TIR-PTDS) in order to study skin characteristicsin vivoand to improve the sensing technique for non-invasive glucose monitoring.
Collapse
Affiliation(s)
- Otto Hertzberg
- Institute für Biophysik
- Goethe-Universität Frankfurt
- 60438 Frankfurt am Main
- Germany
| | - Alexander Bauer
- Institute für Biophysik
- Goethe-Universität Frankfurt
- 60438 Frankfurt am Main
- Germany
| | - Arne Küderle
- Institute für Biophysik
- Goethe-Universität Frankfurt
- 60438 Frankfurt am Main
- Germany
| | - Miguel A. Pleitez
- Institute für Biophysik
- Goethe-Universität Frankfurt
- 60438 Frankfurt am Main
- Germany
| | - Werner Mäntele
- Institute für Biophysik
- Goethe-Universität Frankfurt
- 60438 Frankfurt am Main
- Germany
| |
Collapse
|
26
|
Chemical penetration enhancers in stratum corneum - Relation between molecular effects and barrier function. J Control Release 2016; 232:175-87. [PMID: 27108613 DOI: 10.1016/j.jconrel.2016.04.030] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/14/2016] [Accepted: 04/20/2016] [Indexed: 01/28/2023]
Abstract
Skin is attractive for drug therapy because it offers an easily accessible route without first-pass metabolism. Transdermal drug delivery is also associated with high patient compliance and through the site of application, the drug delivery can be locally directed. However, to succeed with transdermal drug delivery it is often required to overcome the low permeability of the upper layer of the skin, the stratum corneum (SC). One common strategy is to employ so-called penetration enhancers that supposedly act to increase the drug passage across SC. Still, there is a lack of understanding of the molecular effects of so-called penetration enhancers on the skin barrier membrane, the SC. In this study, we provide a molecular characterization of how different classes of compounds, suggested as penetration enhancers, influence lipid and protein components in SC. The compounds investigated include monoterpenes, fatty acids, osmolytes, surfactant, and Azone. We employ natural abundance (13)C polarization transfer solid-state nuclear magnetic resonance (NMR) on intact porcine SC. With this method it is possible to detect small changes in the mobility of the minor fluid lipid and protein SC components, and simultaneously obtain information on the major fraction of solid SC components. The balance between fluid and solid components in the SC is essential to determine macroscopic material properties of the SC, including barrier and mechanical properties. We study SC at different hydration levels corresponding to SC in ambient air and under occlusion. The NMR studies are complemented with diffusion cell experiments that provide quantitative data on skin permeability when treated with different compounds. By correlating the effects on SC molecular components and SC barrier function, we aim at deepened understanding of diffusional transport in SC, and how this can be controlled, which can be utilized for optimal design of transdermal drug delivery formulations.
Collapse
|
27
|
Yamane T, Muramatsu A, Yoshino S, Matsui S, Shimura M, Tsujii Y, Iwatsuki K, Kobayashi-Hattori K, Oishi Y. mTOR inhibition by rapamycin increases ceramide synthesis by promoting transforming growth factor-β1/Smad signaling in the skin. FEBS Open Bio 2016; 6:317-25. [PMID: 27239444 PMCID: PMC4821357 DOI: 10.1002/2211-5463.12039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 01/10/2023] Open
Abstract
Although mammalian target of rapamycin (mTOR) mediates a wide variety of biological functions, little information is available on the effect of mTOR on the functions of skin cells. In this study, we investigated effects of mTOR inhibition by rapamycin on ceramide synthesis in the skin of rats and human keratinocytes and its regulatory mechanisms. The phosphorylation of p70 S6 kinase, which indicates mTOR activation, was induced in the skin of rats fed a high-fat diet, but this abnormality was reversed by supplementation with rapamycin. Ceramide levels and the mRNA levels of serine palmitoyltransferase (SPT) and transforming growth factor (TGF)-β1 were suppressed in the skin of rats fed high-fat diets, but this abnormality was reversed by supplementation with rapamycin. TGF-β1-induced SPT mRNA expression was blocked by SB525334, an inhibitor of TGF-β1-induced Smad2/3 nuclear localization, in human keratinocytes. Rapamycin-induced SPT mRNA expression was blocked by an anti-TGF-β1 antibody or SB525334 in human keratinocytes. These results show that mTOR inhibition by rapamycin increases ceramide synthesis by promoting TGF-β1/Smad signaling in the skin.
Collapse
Affiliation(s)
- Takumi Yamane
- Department of Nutritional Science and Food Safety Faculty of Applied Bioscience Tokyo University of Agriculture Setagaya-ku Japan
| | - Aimi Muramatsu
- Department of Nutritional Science Faculty of Applied Bioscience Tokyo University of Agriculture Setagaya-ku Japan
| | - Sawako Yoshino
- Department of Nutritional Science and Food Safety Faculty of Applied Bioscience Tokyo University of Agriculture Setagaya-ku Japan
| | - Sho Matsui
- Department of Nutritional Science Faculty of Applied Bioscience Tokyo University of Agriculture Setagaya-ku Japan
| | - Mari Shimura
- Department of Nutritional Science and Food Safety Faculty of Applied Bioscience Tokyo University of Agriculture Setagaya-ku Japan
| | - Yoshimasa Tsujii
- Department of Applied Biology and Chemistry Faculty of Applied Bioscience Tokyo University of Agriculture Setagaya-ku Japan
| | - Ken Iwatsuki
- Department of Nutritional Science and Food Safety Faculty of Applied Bioscience Tokyo University of Agriculture Setagaya-ku Japan
| | - Kazuo Kobayashi-Hattori
- Department of Nutritional Science Faculty of Applied Bioscience Tokyo University of Agriculture Setagaya-ku Japan
| | - Yuichi Oishi
- Department of Nutritional Science and Food Safety Faculty of Applied Bioscience Tokyo University of Agriculture Setagaya-ku Japan
| |
Collapse
|
28
|
Mojumdar EH, Gooris GS, Barlow DJ, Lawrence MJ, Deme B, Bouwstra JA. Skin lipids: localization of ceramide and fatty acid in the unit cell of the long periodicity phase. Biophys J 2016; 108:2670-9. [PMID: 26039168 DOI: 10.1016/j.bpj.2015.04.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 03/17/2015] [Accepted: 04/21/2015] [Indexed: 12/22/2022] Open
Abstract
The lipid matrix of the skin's stratum corneum plays a key role in the barrier function, which protects the body from desiccation. The lipids that make up this matrix consist of ceramides, cholesterol, and free fatty acids, and can form two coexisting crystalline lamellar phases: the long periodicity phase (LPP) and the short periodicity phase (SPP). To fully understand the skin barrier function, information on the molecular arrangement of the lipids in the unit cell of these lamellar phases is very desirable. To determine this arrangement in previous studies, we examined the molecular arrangement of the SPP. In this study, neutron diffraction studies were performed to obtain information on the molecular arrangement of the LPP. The diffraction pattern reveals nine diffraction orders attributed to the LPP with a repeating unit of 129.4 ± 0.5 Å. Using D2O/H2O contrast variation, the scattering length density profiles were calculated for protiated samples and samples that included either the perdeuterated acyl chain of the most abundant ceramide or the most abundant perdeuterated fatty acid. Both perdeuterated chains are predominantly located in the central part of the unit cell with substantial interdigitation of the acyl chains in the unit cell center. However, a fraction of the perdeuterated chains is also located near the border of the unit cell with their acyl chains directing toward the center. This arrangement of lipids in the LPP unit cell corresponds with the location of their lipid headgroups at the border and also inside of the unit cell at a well-defined position (±21 Å from the unit cell center), indicative of a three-layer lipid arrangement within the 129.4 ± 0.5 Å repeating unit.
Collapse
Affiliation(s)
- Enamul H Mojumdar
- Leiden Academic Centre for Drug Research, Department of Drug Delivery Technology, Gorlaeus Laboratories, University of Leiden, Leiden, the Netherlands
| | - Gert S Gooris
- Leiden Academic Centre for Drug Research, Department of Drug Delivery Technology, Gorlaeus Laboratories, University of Leiden, Leiden, the Netherlands
| | - David J Barlow
- Pharmaceutical Science Division, King's College London, London, United Kingdom
| | - M Jayne Lawrence
- Pharmaceutical Science Division, King's College London, London, United Kingdom
| | - Bruno Deme
- Institute Laue-Langevin, Grenoble, France
| | - Joke A Bouwstra
- Leiden Academic Centre for Drug Research, Department of Drug Delivery Technology, Gorlaeus Laboratories, University of Leiden, Leiden, the Netherlands.
| |
Collapse
|
29
|
García IE, Bosen F, Mujica P, Pupo A, Flores-Muñoz C, Jara O, González C, Willecke K, Martínez AD. From Hyperactive Connexin26 Hemichannels to Impairments in Epidermal Calcium Gradient and Permeability Barrier in the Keratitis-Ichthyosis-Deafness Syndrome. J Invest Dermatol 2016; 136:574-583. [PMID: 26777423 DOI: 10.1016/j.jid.2015.11.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 01/19/2023]
Abstract
The keratitis-ichthyosis-deafness (KID) syndrome is characterized by corneal, skin, and hearing abnormalities. KID has been linked to heterozygous dominant missense mutations in the GJB2 and GJB6 genes, encoding connexin26 and 30, respectively. In vitro evidence indicates that KID mutations lead to hyperactive (open) hemichannels, which in some cases is accompanied by abnormal function of gap junction channels. Transgenic mouse models expressing connexin26 KID mutations reproduce human phenotypes and present impaired epidermal calcium homeostasis and abnormal lipid composition of the stratum corneum affecting the water barrier. Here we have compiled relevant data regarding the KID syndrome and propose a mechanism for the epidermal aspects of the disease.
Collapse
Affiliation(s)
- Isaac E García
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Felicitas Bosen
- LIMES (Life and Medical Sciences) Institute, University of Bonn, Bonn, Germany
| | - Paula Mujica
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Amaury Pupo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Oscar Jara
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Klaus Willecke
- LIMES (Life and Medical Sciences) Institute, University of Bonn, Bonn, Germany.
| | - Agustín D Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
30
|
Tosato M, Orallo D, Ali S, Churio M, Martin A, Dicelio L. Confocal Raman spectroscopy: In vivo biochemical changes in the human skin by topical formulations under UV radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 153:51-8. [DOI: 10.1016/j.jphotobiol.2015.08.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/12/2015] [Accepted: 08/30/2015] [Indexed: 12/13/2022]
|
31
|
Pleitez MA, Hertzberg O, Bauer A, Seeger M, Lieblein T, Lilienfeld-Toal HV, Mäntele W. Photothermal deflectometry enhanced by total internal reflection enables non-invasive glucose monitoring in human epidermis. Analyst 2015; 140:483-8. [PMID: 25408951 DOI: 10.1039/c4an01185f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present TIR-PTD spectroscopy, an IR-pump/VIS-probe method for the measurement of IR absorption spectra by means of photothermal deflectometry (PTD) enhanced by total internal reflection (TIR). It overcomes the limitations of IR spectroscopy for the study of opaque samples and allows molecular fingerprinting of IR-active liquids or solids. Another important advantage of the presented approach over traditional IR spectroscopy methods is the ability to obtain IR information by means of VIS detection, which is generally much cheaper and easier to handle than IR detection. By application of mid-IR TIR-PTD spectroscopy on human skin in vivo, we are demonstrating the correlation between epidermal- and blood-glucose levels on a type 1 diabetic patient.
Collapse
Affiliation(s)
- M A Pleitez
- Institut für Biophysik, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 1, 60438 Frankfurtam Main, Germany.
| | | | | | | | | | | | | |
Collapse
|
32
|
Bosen F, Celli A, Crumrine D, vom Dorp K, Ebel P, Jastrow H, Dörmann P, Winterhager E, Mauro T, Willecke K. Altered epidermal lipid processing and calcium distribution in the KID syndrome mouse model Cx26S17F. FEBS Lett 2015; 589:1904-10. [PMID: 26070424 DOI: 10.1016/j.febslet.2015.05.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/23/2022]
Abstract
The keratitis-ichthyosis-deafness (KID) syndrome is caused by mutations in the gap junctional channel protein connexin 26 (Cx26), among them the mutation Cx26S17F. Heterozygous Cx26S17F mice resemble the human KID syndrome, i.e. exhibiting epidermal hyperplasia and hearing impairments. Newborn Cx26S17F mice show a defective epidermal water barrier as well as altered epidermal lipid secretion and location. Linoleoyl ω-esterified ceramides are strongly decreased on the skin surface of Cx26S17F mice. Moreover, the epidermal calcium gradient is altered in the mutant mice. These alterations may be caused by an abnormal Cx26S17F channel function that leads to a defective epidermal water barrier, which in turn may trigger the hyperproliferation seen in the KID syndrome.
Collapse
Affiliation(s)
- Felicitas Bosen
- LIMES (Life and Medical Science Institute), Molecular Genetics, University of Bonn, 53115 Bonn, Germany
| | - Anna Celli
- Department of Dermatology, SF-VAMC and UCSF, San Francisco, CA, USA
| | - Debra Crumrine
- Department of Dermatology, SF-VAMC and UCSF, San Francisco, CA, USA
| | - Katharina vom Dorp
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Germany
| | - Philipp Ebel
- LIMES (Life and Medical Science Institute), Molecular Genetics, University of Bonn, 53115 Bonn, Germany
| | - Holger Jastrow
- Electron Microscopy Unit, Imaging Center Essen, University Clinic Essen, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Germany
| | - Elke Winterhager
- Electron Microscopy Unit, Imaging Center Essen, University Clinic Essen, Germany
| | - Theodora Mauro
- Department of Dermatology, SF-VAMC and UCSF, San Francisco, CA, USA
| | - Klaus Willecke
- LIMES (Life and Medical Science Institute), Molecular Genetics, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
33
|
Bellezza I, Gatticchi L, del Sordo R, Peirce MJ, Sidoni A, Roberti R, Minelli A. The loss of Tm7sf gene accelerates skin papilloma formation in mice. Sci Rep 2015; 5:9471. [PMID: 25804527 PMCID: PMC4372794 DOI: 10.1038/srep09471] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/16/2015] [Indexed: 01/04/2023] Open
Abstract
The 3β-hydroxysterol Δ14-reductase, encoded by the Tm7sf2 gene, is an enzyme involved in cholesterol biosynthesis. Cholesterol and its derivatives control epidermal barrier integrity and are protective against environmental insults. To determine the role of the gene in skin cholesterol homeostasis, we applied 12-o-tetradecanoylphorbol-13-acetate (TPA) to the skin of Tm7sf2+/+ and Tm7sf2-/- mice. TPA increased skin cholesterol levels by inducing de novo synthesis and up-take only in Tm7sf2+/+ mouse, confirming that the gene maintains cholesterol homeostasis under stress conditions. Cholesterol sulfate, one of the major players in skin permeability, was doubled by TPA treatment in the skin of wild-type animals but this response was lost in Tm7sf2-/- mice. The expression of markers of epidermal differentiation concomitant with farnesoid-X-receptor and p38 MAPK activation were also disrupted in Tm7sf2-/- mice. We then subjected Tm7sf2+/+ and Tm7sf2-/- mice to a classical two-stage skin carcinogenesis protocol. We found that the loss of Tm7sf2 increased incidence and multiplicity of skin papillomas. Interestingly, the null genotype showed reduced expression of nur77, a gene associated with resistance to neoplastic transformation. In conclusion, the loss of Tm7sf2 alters the expression of proteins involved in epidermal differentiation by reducing the levels of cholesterol sulfate.
Collapse
Affiliation(s)
- I Bellezza
- Dipartimento di Medicina Sperimentale, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, p.le Gambuli, Perugia, 06132; Italia
| | - L Gatticchi
- Dipartimento di Medicina Sperimentale, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, p.le Gambuli, Perugia, 06132; Italia
| | - R del Sordo
- Dipartimento di Medicina Sperimentale, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, p.le Gambuli, Perugia, 06132; Italia
| | - M J Peirce
- Dipartimento di Medicina Sperimentale, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, p.le Gambuli, Perugia, 06132; Italia
| | - A Sidoni
- Dipartimento di Medicina Sperimentale, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, p.le Gambuli, Perugia, 06132; Italia
| | - R Roberti
- Dipartimento di Medicina Sperimentale, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, p.le Gambuli, Perugia, 06132; Italia
| | - A Minelli
- Dipartimento di Medicina Sperimentale, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, p.le Gambuli, Perugia, 06132; Italia
| |
Collapse
|
34
|
Winget JM, Watts JD, Hoopmann MR, DiColandrea T, Robinson MK, Huggins T, Bascom CC, Isfort RJ, Moritz RL. Quantitative proteogenomic profiling of epidermal barrier formation in vitro. J Dermatol Sci 2015; 78:173-80. [PMID: 25862149 DOI: 10.1016/j.jdermsci.2015.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/13/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND The barrier function of the epidermis is integral to personal well-being, and defects in the skin barrier are associated with several widespread diseases. Currently there is a limited understanding of system-level proteomic changes during epidermal stratification and barrier establishment. OBJECTIVE Here we report the quantitative proteogenomic profile of an in vitro reconstituted epidermis at three time points of development in order to characterize protein changes during stratification. METHODS The proteome was measured using data-dependent "shotgun" mass spectrometry and quantified with statistically validated label-free proteomic methods for 20 replicates at each of three time points during the course of epidermal development. RESULTS Over 3600 proteins were identified in the reconstituted epidermis, with more than 1200 of these changing in abundance over the time course. We also collected and discuss matched transcriptomic data for the three time points, allowing alignment of this new dataset with previously published characterization of the reconstituted epidermis system. CONCLUSION These results represent the most comprehensive epidermal-specific proteome to date, and therefore reveal several aspects of barrier formation and skin composition. The limited correlation between transcript and protein abundance underscores the importance of proteomic analysis in developing a full understanding of epidermal maturation.
Collapse
Affiliation(s)
- Jason M Winget
- Institute for Systems Biology, 401 Terry Ave N., Seattle, WA 98109, USA
| | - Julian D Watts
- Institute for Systems Biology, 401 Terry Ave N., Seattle, WA 98109, USA
| | | | - Teresa DiColandrea
- The Procter & Gamble Company, Mason Business Center, Cincinnati, OH 45040, USA
| | - Michael K Robinson
- The Procter & Gamble Company, Mason Business Center, Cincinnati, OH 45040, USA
| | - Tom Huggins
- The Procter & Gamble Company, Mason Business Center, Cincinnati, OH 45040, USA
| | - Charles C Bascom
- The Procter & Gamble Company, Mason Business Center, Cincinnati, OH 45040, USA
| | - Robert J Isfort
- The Procter & Gamble Company, Mason Business Center, Cincinnati, OH 45040, USA
| | - Robert L Moritz
- Institute for Systems Biology, 401 Terry Ave N., Seattle, WA 98109, USA.
| |
Collapse
|
35
|
Liu X, Kruger P, Maibach H, Colditz PB, Roberts MS. Using skin for drug delivery and diagnosis in the critically ill. Adv Drug Deliv Rev 2014; 77:40-9. [PMID: 25305335 DOI: 10.1016/j.addr.2014.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/09/2014] [Accepted: 10/01/2014] [Indexed: 02/08/2023]
Abstract
Skin offers easy access, convenience and non-invasiveness for drug delivery and diagnosis. In principle, these advantages of skin appear to be attractive for critically ill patients given potential difficulties that may be associated with oral and parenteral access in these patients. However, the profound changes in skin physiology that can be seen in these patients provide a challenge to reliably deliver drugs or provide diagnostic information. Drug delivery through skin may be used to manage burn injury, wounds, infection, trauma and the multisystem complications that rise from these conditions. Local anaesthetics and analgesics can be delivered through skin and may have wide application in critically ill patients. To ensure accurate information, diagnostic tools require validation in the critically ill patient population as information from other patient populations may not be applicable.
Collapse
|
36
|
Leroy M, Labbé JF, Ouellet M, Jean J, Lefèvre T, Laroche G, Auger M, Pouliot R. A comparative study between human skin substitutes and normal human skin using Raman microspectroscopy. Acta Biomater 2014; 10:2703-11. [PMID: 24530562 DOI: 10.1016/j.actbio.2014.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 01/27/2014] [Accepted: 02/03/2014] [Indexed: 11/17/2022]
Abstract
Research in the field of bioengineered skin substitutes is motivated by the need to find new dressings for people affected by skin injuries (burns, diabetic ulcers), and to develop adequate skin models to test new formulations developed in vitro. Thanks to advances in tissue engineering, it is now possible to produce human skin substitutes without any exogenous material, using the self-assembly method developed by the Laboratoire d'Organogénèse Expérimentale. These human skin substitutes consist of a dermis and a stratified epidermis (stratum corneum and living epidermis). Raman microspectroscopy has been used to characterize and compare the molecular organization of skin substitutes with normal human skin. Our results confirm that the stratum corneum is a layer rich in lipids which are well ordered (trans conformers) in both substitutes and normal human skin. The amount of lipids decreases and more gauche conformers appear in the living epidermis in both cases. However, the results also show that there are fewer lipids in the substitutes and that the lipids are more organized in the normal human skin. Concerning the secondary structure of proteins and protein content, the data show that they are similar in the substitutes and in the normal human skin. In fact, the epidermis is rich in α-keratin, whereas the dermis contains mainly type I collagen.
Collapse
Affiliation(s)
- Marie Leroy
- Laboratoire d'Ingénierie de Surface (LIS), Département de Génie des Mines, de la Métallurgie et des Matériaux, Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, 1065 avenue de la médecine, Québec, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec, QC G1L 3L5, Canada; Centre LOEX de l'Université Laval, Génie Tissulaire et Régénération: LOEX-Centre de Recherche du CHU de Québec, Hôpital de l'Enfant Jesus, 1401, 18(e) rue, Québec, QC G1J 1Z4, Canada; Département de Chimie, Regroupement québécois sur la fonction, la structure et l'ingénierie des protéines (PROTEO), CERMA, Université Laval, 1045 avenue de la médecine, Québec, QC G1V 0A6, Canada
| | - Jean-François Labbé
- Département de Chimie, Regroupement québécois sur la fonction, la structure et l'ingénierie des protéines (PROTEO), CERMA, Université Laval, 1045 avenue de la médecine, Québec, QC G1V 0A6, Canada
| | - Marise Ouellet
- Département de Chimie, Regroupement québécois sur la fonction, la structure et l'ingénierie des protéines (PROTEO), CERMA, Université Laval, 1045 avenue de la médecine, Québec, QC G1V 0A6, Canada
| | - Jessica Jean
- Centre LOEX de l'Université Laval, Génie Tissulaire et Régénération: LOEX-Centre de Recherche du CHU de Québec, Hôpital de l'Enfant Jesus, 1401, 18(e) rue, Québec, QC G1J 1Z4, Canada
| | - Thierry Lefèvre
- Département de Chimie, Regroupement québécois sur la fonction, la structure et l'ingénierie des protéines (PROTEO), CERMA, Université Laval, 1045 avenue de la médecine, Québec, QC G1V 0A6, Canada
| | - Gaétan Laroche
- Laboratoire d'Ingénierie de Surface (LIS), Département de Génie des Mines, de la Métallurgie et des Matériaux, Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, 1065 avenue de la médecine, Québec, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec, QC G1L 3L5, Canada
| | - Michèle Auger
- Département de Chimie, Regroupement québécois sur la fonction, la structure et l'ingénierie des protéines (PROTEO), CERMA, Université Laval, 1045 avenue de la médecine, Québec, QC G1V 0A6, Canada.
| | - Roxane Pouliot
- Centre LOEX de l'Université Laval, Génie Tissulaire et Régénération: LOEX-Centre de Recherche du CHU de Québec, Hôpital de l'Enfant Jesus, 1401, 18(e) rue, Québec, QC G1J 1Z4, Canada.
| |
Collapse
|
37
|
Barcelos RCS, Vey LT, Segat HJ, Roversi K, Roversi K, Dias VT, Trevizol F, Kuhn FT, Dolci GS, Pase CS, Piccolo J, Veit JC, Emanuelli T, Luz SCA, Bürger ME. Cross-generational trans fat intake exacerbates UV radiation-induced damage in rat skin. Food Chem Toxicol 2014; 69:38-45. [PMID: 24694906 DOI: 10.1016/j.fct.2014.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/28/2014] [Accepted: 03/25/2014] [Indexed: 01/11/2023]
Abstract
We evaluated the influence of dietary fats on ultraviolet radiation (UVR)-induced oxidative damage in skin of rats. Animals from two consecutive generations born of dams supplemented with fats during pregnancy and breastfeeding were maintained in the same supplementation: soybean-oil (SO, rich in n-6 FA, control group), fish-oil (FO, rich in n-3 FA) or hydrogenated-vegetable-fat (HVF, rich in TFA). At 90 days of age, half the animals from the 2nd generation were exposed to UVR (0.25 J/cm(2)) 3×/week for 12 weeks. The FO group presented higher incorporation of n-3 FA in dorsal skin, while the HVF group incorporated TFA. Biochemical changes per se were observed in skin of the HVF group: greater generation of reactive oxygen species (ROS), lower mitochondrial integrity and increased Na(+)K(+)-ATPase activity. UVR exposure increased skin wrinkles scores and ROS generation and decreased mitochondrial integrity and reduced-glutathione levels in the HVF group. In FO, UVR exposure was associated with smaller skin thickness and reduced levels of protein-carbonyl, together with increased catalase activity and preserved Na(+)K(+)-ATPase function. In conclusion, while FO may be protective, trans fat may be harmful to skin health by making it more vulnerable to UVR injury and thus more prone to develop photoaging and skin cancer.
Collapse
Affiliation(s)
- R C S Barcelos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | - L T Vey
- Departamento de Fisiologia e Farmacologia, UFSM, RS, Brazil
| | - H J Segat
- Departamento de Fisiologia e Farmacologia, UFSM, RS, Brazil
| | - K Roversi
- Departamento de Fisiologia e Farmacologia, UFSM, RS, Brazil
| | - Kr Roversi
- Departamento de Fisiologia e Farmacologia, UFSM, RS, Brazil
| | - V T Dias
- Departamento de Fisiologia e Farmacologia, UFSM, RS, Brazil
| | - F Trevizol
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | - F T Kuhn
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | - G S Dolci
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | - C S Pase
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | - J Piccolo
- Departamento de Tecnologia dos Alimentos, Programa de Pós-Graduação em Ciência Tecnologia dos Alimentos, UFSM, RS, Brazil
| | - J C Veit
- Departamento de Tecnologia dos Alimentos, Programa de Pós-Graduação em Ciência Tecnologia dos Alimentos, UFSM, RS, Brazil
| | - T Emanuelli
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil; Departamento de Tecnologia dos Alimentos, Programa de Pós-Graduação em Ciência Tecnologia dos Alimentos, UFSM, RS, Brazil
| | - S C A Luz
- Departamento de Patologia, UFSM, RS, Brazil
| | - M E Bürger
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil; Departamento de Fisiologia e Farmacologia, UFSM, RS, Brazil.
| |
Collapse
|
38
|
Kim B, Choi YE, Kim HS. Eruca sativaand its Flavonoid Components, Quercetin and Isorhamnetin, Improve Skin Barrier Function by Activation of Peroxisome Proliferator-Activated Receptor (PPAR)-α and Suppression of Inflammatory Cytokines. Phytother Res 2014; 28:1359-66. [DOI: 10.1002/ptr.5138] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 02/05/2014] [Accepted: 02/08/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Bora Kim
- Skin & Bio Research; Ellead Co., Ltd.; 325, Hwangsaeul-ro, Bundang-gu Seongnam-si Gyeonggi-do 463-824 Republic of Korea
| | - Yoon-E Choi
- LED Agri-bio Fusion Technology Research Center; Chonbuk National University; 79, Gobong-ro Iksan-si Jeollabuk-do 570-752 Republic of Korea
| | - Hyun-Soo Kim
- Department of Food Science and Industry; Jungwon University; 85, Munmu-ro, Geosan-eup Geosan-gun Chungcheongbuk-do 367-805 Republic of Korea
| |
Collapse
|
39
|
Effect of Scutellaria baicalensis extract on skin barrier function via peroxisome proliferator-activated receptor-α. KOREAN J CHEM ENG 2013. [DOI: 10.1007/s11814-013-0202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
van Smeden J, Janssens M, Gooris GS, Bouwstra JA. The important role of stratum corneum lipids for the cutaneous barrier function. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:295-313. [PMID: 24252189 DOI: 10.1016/j.bbalip.2013.11.006] [Citation(s) in RCA: 353] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/08/2013] [Accepted: 11/10/2013] [Indexed: 01/28/2023]
Abstract
The skin protects the body from unwanted influences from the environment as well as excessive water loss. The barrier function of the skin is located in the stratum corneum (SC). The SC consists of corneocytes embedded in a lipid matrix. This lipid matrix is crucial for the lipid skin barrier function. This paper provides an overview of the reported SC lipid composition and organization mainly focusing on healthy and diseased human skin. In addition, an overview is provided on the data describing the relation between lipid modulations and the impaired skin barrier function. Finally, the use of in vitro lipid models for a better understanding of the relation between the lipid composition, lipid organization and skin lipid barrier is discussed. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- J van Smeden
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - M Janssens
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - G S Gooris
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - J A Bouwstra
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
41
|
Kim B, Kim JE, Kim HS. Caffeic acid induces keratinocyte differentiation by activation of PPAR-α. J Pharm Pharmacol 2013; 66:84-92. [DOI: 10.1111/jphp.12159] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/16/2013] [Indexed: 01/27/2023]
Abstract
Abstract
Objectives
Peroxisome proliferator-activated receptors (PPAR)-α plays an important role in epidermal differentiation and barrier recovery, and topical treatment with PPAR-α agonists restores epidermal homeostasis in essential fatty acid deficiency and permeability barrier in skin disruptions. Therefore, we performed structure-based pharmacophore screening to search for a novel PPAR-α agonist. Caffeic acid was ultimately selected and evaluated for its effects on keratinocyte differentiation and epidermal permeability barrier.
Methods
The transactivation activity of PPAR-responsive element (PPRE) and cornified envelope (CE) formation were assayed. Also, immunoblot analysis and anti-oxidant activity were investigated on caffeic acid.
Key findings
Caffeic acid increases the transactivation activity of PPRE and CE formation in keratinocytes. In addition, caffeic acid promotes the expression of genes and proteins related to CE formation such as involucrin and transglutaminase-1. Additionally, anti-oxidant activity were improved by caffeic acid.
Conclusions
Caffeic acid can promote keratinocyte differentiation and restore skin barrier homeostasis and is suggested to be an appropriate skin therapeutic agent for improving epidermal permeability barrier function.
Collapse
Affiliation(s)
- Bora Kim
- R&D Center of Skin Science and Cosmetics, Enprani Co., Ltd, Incheon, Korea
| | - Jin Eun Kim
- R&D Center of Skin Science and Cosmetics, Enprani Co., Ltd, Incheon, Korea
| | - Hyun-Soo Kim
- Department of Food Science and Industry, Jungwon University, Chungbuk, Korea
| |
Collapse
|
42
|
Elias PM, Gruber R, Crumrine D, Menon G, Williams ML, Wakefield JS, Holleran WM, Uchida Y. Formation and functions of the corneocyte lipid envelope (CLE). Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:314-8. [PMID: 24076475 DOI: 10.1016/j.bbalip.2013.09.011] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/11/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
Abstract
Corneocytes in mammalian stratum corneum are surrounded by a monolayer of covalently bound ω-OH-ceramides that form the corneocyte (-bound) lipid envelope (CLE). We review here the structure, composition, and possible functions of this structure, with insights provided by inherited and acquired disorders of lipid metabolism. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Peter M Elias
- Dermatology Services, Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Dermatology, University of California, San Francisco, CA, USA.
| | - Robert Gruber
- Dermatology Services, Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Dermatology, Innsbruck Medical University, Innsbruck, Austria; Department of Dermatology, University of California, San Francisco, CA, USA
| | - Debra Crumrine
- Dermatology Services, Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Dermatology, University of California, San Francisco, CA, USA
| | - Gopinathan Menon
- Department of Ornithology & Mammals, California Academy of Sciences, San Francisco, CA, USA
| | - Mary L Williams
- Departments of Dermatology and Pediatrics, University of California, San Francisco, CA, USA
| | - Joan S Wakefield
- Dermatology Services, Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Dermatology, University of California, San Francisco, CA, USA
| | - Walter M Holleran
- Dermatology Services, Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Dermatology, University of California, San Francisco, CA, USA
| | - Yoshikazu Uchida
- Dermatology Services, Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Dermatology, University of California, San Francisco, CA, USA
| |
Collapse
|
43
|
Ceramide synthesis in the epidermis. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:422-34. [PMID: 23988654 DOI: 10.1016/j.bbalip.2013.08.011] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 11/20/2022]
Abstract
The epidermis and in particular its outermost layer the stratum corneum provides terrestrial vertebrates with a pivotal defensive barrier against water loss, xenobiotics and harmful pathogens. A vital demand for this epidermal permeability barrier is the lipid-enriched lamellar matrix that embeds the enucleated corneocytes. Ceramides are the major components of these highly ordered intercellular lamellar structures, in which linoleic acid- and protein-esterified ceramides are crucial for structuring and maintaining skin barrier integrity. In this review, we describe the fascinating diversity of epidermal ceramides including 1-O-acylceramides. We focus on epidermal ceramide biosynthesis emphasizing its metabolic and topological requirements and discuss enzymes that may be involved in α- and ω-hydroxylation. Finally, we turn to epidermal ceramide regulation, highlighting transcription factors and liposensors recently described to play crucial roles in modulating skin lipid metabolism and epidermal barrier homeostasis. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier.
Collapse
|
44
|
The Flux of Phenolic Compounds through Silicone Membranes. Pharmaceutics 2013; 5:434-44. [PMID: 24300516 PMCID: PMC3836618 DOI: 10.3390/pharmaceutics5030434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/14/2013] [Accepted: 08/14/2013] [Indexed: 11/21/2022] Open
Abstract
Phenols as a class of molecules have been reported to exhibit higher log maximum fluxes through human stratum corneum, SC, from water, log JMHAQ, than other classes of molecules. This suggests that their corresponding log maximum fluxes through silicone from water, log JMPAQ, may be useful to extend the existing n = 63 log JMPAQ database to include more log JMPAQ values greater than 0.0. The log JMPAQ values for n = 7 phenols predicted to give log JMPAQ values greater than 0.0 based on their log JMHAQ values have been experimentally determined. These n = 7 new log JMPAQ values have been added to the existing n = 63 log JMPAQ database to give a new n = 70 database and the n = 7 literature log JMHAQ values have been added to the existing n = 48 log JMHAQ database (matched to the n = 63 log JMPAQ database) to give a new n = 55 database. The addition of the n = 7 phenols improved the correlations of these flux databases when fitted to the Roberts-Sloan equation, RS, as well as the correlation between the matched experimental (Exp.) log JMPAQ with the Exp. log JMHAQ.
Collapse
|
45
|
Breiden B, Sandhoff K. The role of sphingolipid metabolism in cutaneous permeability barrier formation. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:441-52. [PMID: 23954553 DOI: 10.1016/j.bbalip.2013.08.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/04/2013] [Accepted: 08/08/2013] [Indexed: 11/15/2022]
Abstract
The epidermal permeability barrier of mammalian skin is localized in the stratum corneum. Corneocytes are embedded in an extracellular, highly ordered lipid matrix of hydrophobic lipids consisting of about 50% ceramides, 25% cholesterol and 15% long and very long chain fatty acids. The most important lipids for the epidermal barrier are ceramides. The scaffold of the lipid matrix is built of acylceramides, containing ω-hydroxylated very long chain fatty acids, acylated at the ω-position with linoleic acid. After glucosylation of the acylceramides at Golgi membranes and secretion, the linoleic acid residues are replaced by glutamate residues originating from proteins exposed on the surface of corneocytes. Removal of their glucosyl residues generates a hydrophobic surface on the corneocytes used as a template for the formation of extracellular lipid layers of the water permeability barrier. Misregulation or defects in the formation of extracellular ceramide structures disturb barrier function. Important anabolic steps are the synthesis of ultra long chain fatty acids, their ω-hydroxylation, and formation of ultra long chain ceramides and glucosylceramides. The main probarrier precursor lipids, glucosylceramides and sphingomyelins, are packed in lamellar bodies together with hydrolytic enzymes such as glucosylceramide-β-glucosidase and acid sphingomyelinase and secreted into the intercelullar space between the stratum corneum and stratum granulosum. Inherited defects in the extracellular hydrolytic processing of the probarrier acylglucosylceramides impair epidermal barrier formation and cause fatal diseases: such as prosaposin deficiency resulting in lack of lysosomal lipid binding and transfer proteins, or the symptomatic clinical picture of the "collodion baby" in the absence of glucocerebrosidase. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Bernadette Breiden
- LIMES, Membrane Biology & Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| | - Konrad Sandhoff
- LIMES, Membrane Biology & Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
| |
Collapse
|
46
|
Jung JY, Nam EH, Park SH, Han SH, Hwang CY. Clinical use of a ceramide-based moisturizer for treating dogs with atopic dermatitis. J Vet Sci 2013; 14:199-205. [PMID: 23814473 PMCID: PMC3694192 DOI: 10.4142/jvs.2013.14.2.199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/30/2012] [Accepted: 10/23/2012] [Indexed: 11/20/2022] Open
Abstract
In humans, skin barrier dysfunction is thought to be responsible for enhanced penetration of allergens. Similar to conditions seen in humans, canine atopic dermatitis (CAD) is characterized by derangement of corneocytes and disorganization of intercellular lipids in the stratum corenum (SC) with decreased ceramide levels. This study was designed to evaluate the effects of a moisturizer containing ceramide on dogs with CAD. Dogs (n = 20, 3~8 years old) with mild to moderate clinical signs were recruited and applied a moisturizer containing ceramide for 4 weeks. Transepidermal water loss (TEWL), skin hydration, pruritus index for canine atopic dermatitis (PICAD) scores, and canine atopic dermatitis extent and severity index (CADESI) scores of all dogs were evaluated. Skin samples from five dogs were also examined with transmission electron microscopy (TEM) using ruthenium tetroxide. TEWL, PICAD, and CADESI values decreased (p < 0.05) and skin hydration increased dramatically over time (p < 0.05). Electron micrographs showed that the skin barrier of all five dogs was partially restored (p < 0.05). In conclusion, these results demonstrated that moisturizer containing ceramide was effective for treating skin barrier dysfunction and CAD symptoms.
Collapse
Affiliation(s)
- Ji-young Jung
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
47
|
Characterization of the structure of human skin substitutes by infrared microspectroscopy. Anal Bioanal Chem 2013; 405:8709-18. [DOI: 10.1007/s00216-013-7103-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/17/2013] [Accepted: 05/29/2013] [Indexed: 01/23/2023]
|
48
|
Verma S, Bhardwaj A, Vij M, Bajpai P, Goutam N, Kumar L. Oleic acid vesicles: a new approach for topical delivery of antifungal agent. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013; 42:95-101. [DOI: 10.3109/21691401.2013.794351] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Stabilization of sphingomyelin interactions by interfacial hydroxyls — A study of phytosphingomyelin properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:391-7. [DOI: 10.1016/j.bbamem.2012.08.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/27/2012] [Accepted: 08/30/2012] [Indexed: 01/11/2023]
|
50
|
Pleitez MA, Lieblein T, Bauer A, Hertzberg O, von Lilienfeld-Toal H, Mäntele W. In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy. Anal Chem 2012; 85:1013-20. [PMID: 23214424 DOI: 10.1021/ac302841f] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The noninvasive determination of glucose in the interstitial layer of the human skin by mid-infrared spectroscopy is reported. The sensitivity for this measurement was obtained by combining the high pulse energy from an external cavity quantum cascade laser (EC-QCL) tunable in the infrared glucose fingerprint region (1000-1220 cm(-1)) focused on the skin, with a detection of the absorbance process by photoacoustic spectroscopy in the ultrasound region performed by a gas cell coupled to the skin. This combination facilitates a quantitative measurement for concentrations of skin glucose in the range from <50 mg/dL to >300 mg/dL, which is the relevant range for the glucose monitoring in diabetes patients. Since the interstitial fluid glucose level is representative of the blood glucose level and follows it without significant delay (<10 min), this method could be applied to establish a noninvasive, painless glucose measurement procedure that is urgently awaited by diabetes patients. We report here the design of the photoacoustic experiments, the spectroscopy of glucose in vivo, and the calibration method for the quantitative determination of glucose in skin. Finally, a preliminary test with healthy volunteers and volunteers suffering from diabetes mellitus demonstrates the viability of a noninvasive glucose monitoring for patients based on the combination of infrared QCL and photoacoustic detection.
Collapse
Affiliation(s)
- Miguel A Pleitez
- Institut für Biophysik, Goethe-Universität Frankfurt, Max von Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|