1
|
Rios-Soto L, Hernández-Campos A, Tovar-Escobar D, Castillo R, Sierra-Campos E, Valdez-Solana M, Téllez-Valencia A, Avitia-Domínguez C. Inhibition of Shikimate Kinase from Methicillin-Resistant Staphylococcus aureus by Benzimidazole Derivatives. Kinetic, Computational, Toxicological, and Biological Activity Studies. Int J Mol Sci 2024; 25:5077. [PMID: 38791117 PMCID: PMC11121535 DOI: 10.3390/ijms25105077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of the biggest threats in modern times. It was estimated that in 2019, 1.27 million deaths occurred around the globe due to AMR. Methicillin-resistant Staphylococcus aureus (MRSA) strains, a pathogen considered of high priority by the World Health Organization, have proven to be resistant to most of the actual antimicrobial treatments. Therefore, new treatments are required to be able to manage this increasing threat. Under this perspective, an important metabolic pathway for MRSA survival, and absent in mammals, is the shikimate pathway, which is involved in the biosynthesis of chorismate, an intermediate for the synthesis of aromatic amino acids, folates, and ubiquinone. Therefore, the enzymes of this route have been considered good targets to design novel antibiotics. The fifth step of the route is performed by shikimate kinase (SK). In this study, an in-house chemical library of 170 benzimidazole derivatives was screened against MRSA shikimate kinase (SaSK). This effort led to the identification of the first SaSK inhibitors, and the two inhibitors with the greatest inhibition activity (C1 and C2) were characterized. Kinetic studies showed that both compounds were competitive inhibitors with respect to ATP and non-competitive for shikimate. Structural analysis through molecular docking and molecular dynamics simulations indicated that both inhibitors interacted with ARG113, an important residue involved in ATP binding, and formed stable complexes during the simulation period. Biological activity evaluation showed that both compounds were able to inhibit the growth of a MRSA strain. Mitochondrial assays showed that both compounds modify the activity of electron transport chain complexes. Finally, ADMETox predictions suggested that, in general, C1 and C2 can be considered as potential drug candidates. Therefore, the benzimidazole derivatives reported here are the first SaSK inhibitors, representing a promising scaffold and a guide to design new drugs against MRSA.
Collapse
Affiliation(s)
- Lluvia Rios-Soto
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny, Anitúa S/N, Durango 34000, Mexico;
| | - Alicia Hernández-Campos
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, México City 04510, Mexico; (A.H.-C.); (D.T.-E.); (R.C.)
| | - David Tovar-Escobar
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, México City 04510, Mexico; (A.H.-C.); (D.T.-E.); (R.C.)
| | - Rafael Castillo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, México City 04510, Mexico; (A.H.-C.); (D.T.-E.); (R.C.)
| | - Erick Sierra-Campos
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio 35010, Mexico; (E.S.-C.); (M.V.-S.)
| | - Mónica Valdez-Solana
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio 35010, Mexico; (E.S.-C.); (M.V.-S.)
| | - Alfredo Téllez-Valencia
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny, Anitúa S/N, Durango 34000, Mexico;
| | - Claudia Avitia-Domínguez
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny, Anitúa S/N, Durango 34000, Mexico;
| |
Collapse
|
2
|
Chagaleti BK, Reddy MBR, Saravanan V, B S, D P, Senthil Kumar P, Kathiravan MK. An overview of mechanism and chemical inhibitors of shikimate kinase. J Biomol Struct Dyn 2023; 41:14582-14598. [PMID: 36974959 DOI: 10.1080/07391102.2023.2193985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/04/2023] [Indexed: 03/29/2023]
Abstract
Tuberculosis is a highly infectious disease other than HIV/AIDS and it is one of the top ten causes of death worldwide. Resistance development in the bacteria occurs because of genetic alterations, and the molecular insights suggest that the accumulation of mutation in the individual drug target genes is the primary mechanism of multi-drug resistant tuberculosis. Chorismate is an essential structural fragment for the synthesis of aromatic amino acids and synthesized biochemically by a number of bacteria, including Mycobacterium tuberculosis, utilizing the shikimate pathway. This shikimate kinase is the newer possible target for the generation of novel antitubercular drug because this pathway is expressed only in mycobacterium and not in Mammals. The discovery and development of shikimate kinase inhibitors provide an opportunity for the development of novel selective medications. Multiple shikimate kinase inhibitors have been identified via insilico virtual screening and related protein-ligand interactions along with their in-vitro studies. These inhibitors bind to the active site in a similar fashion to shikimate. In the current review, we present an overview of the biology and chemistry of the shikimate kinase protein and its inhibitors, with special emphasis on the various active scaffold against the enzyme. A variety of chemically diversified synthetic scaffolds including Benzothiazoles, Oxadiazoles, Thiobarbiturates, Naphthoquinones, Thiazoleacetonitriles, Hybridized Pyrazolone derivatives, Orthologous biological macromolecule derivatives, Manzamine Alkaloids derivatives, Dipeptide inhibitor, and Chalcones are discussed in detail. These derivatives bind to the specific target appropriately proving their potential ability through different binding interactions and effectively explored as an effective and selective Sk inhibitor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bharath Kumar Chagaleti
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM IST Kattankulathur, Kancheepuram, Tamil Nadu, India
| | - M B Rahul Reddy
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM IST Kattankulathur, Kancheepuram, Tamil Nadu, India
| | - Venkatesan Saravanan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM IST Kattankulathur, Kancheepuram, Tamil Nadu, India
| | - Shanthakumar B
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM IST Kattankulathur, Kancheepuram, Tamil Nadu, India
| | - Priya D
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM IST Kattankulathur, Kancheepuram, Tamil Nadu, India
| | - P Senthil Kumar
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - M K Kathiravan
- 209, Dr. APJ Abdul Kalam Research Lab, Dept of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM IST Kattankulathur, Kancheepuram, Tamil Nadu, India
| |
Collapse
|
3
|
Rajput VS, Runthala A, Khan IA. Shikimate Kinase Inhibitors: An Update on Promising Strategy against Mycobacterium tuberculosis. Curr Drug Targets 2023; 24:388-405. [PMID: 36752299 DOI: 10.2174/1389450124666230208102645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 02/09/2023]
Abstract
Humanity has been battling with tuberculosis (TB) for a long period, and despite the availability of drugs well-known to act against the deadly microbe, the menace is still very far from reaching its end. Moreover, problems related to TB chemotherapy, such as lengthy treatment periods leading to poor patient compliance, increasing drug resistance, and association with another deadlier disease HIV-AIDS, make the situation alarming, thereby pressing the need for the discovery of new potent drugs urgently. Therefore, a drug target that is essential for survival and exclusive to M. tuberculosis presents a promising platform to explore novel molecules against the microorganism for better pathogen clearance with minimal toxicity. The shikimate pathway that leads to the synthesis of essential aromatic amino acids is one such attractive target. Shikimate kinase, the fifth enzyme of this pathway, converts shikimate to shikimate-3-phosphate by using ATP as a cosubstrate. Targeting shikimate kinase could be an effective strategy in light of its essentiality and absence of any homologue in mammals. This review discusses different strategies adopted for discovering novel compounds or scaffolds targeting M. tuberculosis shikimate kinase (MtSK) in vitro. The application of substrate analogues, their structure, and ligand-based approach for screening a library of anti-mycobacterial compounds, marine-derived molecules, and commercially available libraries have yielded promising MtSK inhibitors exhibiting micro-molar activities. To develop these leads into future drugs with minimum off-target effects on the host microenvironment, the molecules need to be structurally optimized for improved activities against enzymes and whole-cell organisms.
Collapse
Affiliation(s)
- Vikrant Singh Rajput
- Department of Biomedical Engineering, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817, Ajmer, Rajasthan, India
| | - Ashish Runthala
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Inshad Ali Khan
- Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817, Ajmer, Rajasthan, India
| |
Collapse
|
4
|
Shikimate Kinase Plays Important Roles in Anthocyanin Synthesis in Petunia. Int J Mol Sci 2022; 23:ijms232415964. [PMID: 36555606 PMCID: PMC9786173 DOI: 10.3390/ijms232415964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
In plants, the shikimate pathway is responsible for the production of aromatic amino acids L-tryptophan, L-phenylalanine, and L-tyrosine. L-Phenylalanine is the upstream substrate of flavonoid and anthocyanin synthesis. Shikimate kinase (SK) catalyzes the phosphorylation of the C3 hydroxyl group of shikimate to produce 3-phosphate shikimate (S3P), the fifth step of the shikimate pathway. However, whether SK participates in flavonoid and anthocyanin synthesis is unknown. This study characterized the single-copy PhSK gene in the petunia (Petunia hybrida) genome. PhSK was localized in chloroplasts. PhSK showed a high transcription level in corollas, especially in the coloring stage of flower buds. Suppression of PhSK changed flower color and shape, reduced the content of anthocyanins, and changed the flavonoid metabolome profile in petunia. Surprisingly, PhSK silencing caused a reduction in the shikimate, a substrate of PhSK. Further qPCR analysis showed that PhSK silencing resulted in a reduction in the mRNA level of PhDHQ/SDH, which encodes the protein catalyzing the third and fourth steps of the shikimate pathway, showing a feedback regulation mechanism of gene expression in the shikimate pathway.
Collapse
|
5
|
Stogios PJ, Liston SD, Semper C, Quade B, Michalska K, Evdokimova E, Ram S, Otwinowski Z, Borek D, Cowen LE, Savchenko A. Molecular analysis and essentiality of Aro1 shikimate biosynthesis multi-enzyme in Candida albicans. Life Sci Alliance 2022; 5:e202101358. [PMID: 35512834 PMCID: PMC9074039 DOI: 10.26508/lsa.202101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022] Open
Abstract
In the human fungal pathogen Candida albicans, ARO1 encodes an essential multi-enzyme that catalyses consecutive steps in the shikimate pathway for biosynthesis of chorismate, a precursor to folate and the aromatic amino acids. We obtained the first molecular image of C. albicans Aro1 that reveals the architecture of all five enzymatic domains and their arrangement in the context of the full-length protein. Aro1 forms a flexible dimer allowing relative autonomy of enzymatic function of the individual domains. Our activity and in cellulo data suggest that only four of Aro1's enzymatic domains are functional and essential for viability of C. albicans, whereas the 3-dehydroquinate dehydratase (DHQase) domain is inactive because of active site substitutions. We further demonstrate that in C. albicans, the type II DHQase Dqd1 can compensate for the inactive DHQase domain of Aro1, suggesting an unrecognized essential role for this enzyme in shikimate biosynthesis. In contrast, in Candida glabrata and Candida parapsilosis, which do not encode a Dqd1 homolog, Aro1 DHQase domains are enzymatically active, highlighting diversity across Candida species.
Collapse
Affiliation(s)
- Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Sean D Liston
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Cameron Semper
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Bradley Quade
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Karolina Michalska
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA
| | - Elena Evdokimova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Shane Ram
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Zbyszek Otwinowski
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dominika Borek
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
6
|
Rios-Soto L, Téllez-Valencia A, Sierra-Campos E, Valdez-Solana M, Cisneros-Martínez J, Gómez Palacio-Gastélum M, Castillo-Villanueva A, Avitia-Domínguez C. Finding the First Potential Inhibitors of Shikimate Kinase from Methicillin Resistant Staphylococcus aureus through Computer-Assisted Drug Design. Molecules 2021; 26:molecules26216736. [PMID: 34771148 PMCID: PMC8587801 DOI: 10.3390/molecules26216736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important threat as it causes serious hospital and community acquired infections with deathly outcomes oftentimes, therefore, development of new treatments against this bacterium is a priority. Shikimate kinase, an enzyme in the shikimate pathway, is considered a good target for developing antimicrobial drugs; this is given because of its pathway, which is essential in bacteria whereas it is absent in mammals. In this work, a computer-assisted drug design strategy was used to report the first potentials inhibitors for Shikimate kinase from methicillin-resistant Staphylococcus aureus (SaSK), employing approximately 5 million compounds from ZINC15 database. Diverse filtering criteria, related to druglike characteristics and virtual docking screening in the shikimate binding site, were performed to select structurally diverse potential inhibitors from SaSK. Molecular dynamics simulations were performed to elucidate the dynamic behavior of each SaSK–ligand complex. The potential inhibitors formed important interactions with residues that are crucial for enzyme catalysis, such as Asp37, Arg61, Gly82, and Arg138. Therefore, the compounds reported provide valuable information and can be seen as the first step toward developing SaSK inhibitors in the search of new drugs against MRSA.
Collapse
Affiliation(s)
- Lluvia Rios-Soto
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitua S/N, Durango 34000, Mexico; (L.R.-S.); (J.C.-M.)
| | - Alfredo Téllez-Valencia
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitua S/N, Durango 34000, Mexico; (L.R.-S.); (J.C.-M.)
- Correspondence: (A.T.-V.); (C.A.-D.); Tel./Fax: +52(618)8271382 (A.T.-V. & C.A.-D.)
| | - Erick Sierra-Campos
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio, Durango 35010, Mexico; (E.S.-C.); (M.V.-S.)
| | - Mónica Valdez-Solana
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio, Durango 35010, Mexico; (E.S.-C.); (M.V.-S.)
| | - Jorge Cisneros-Martínez
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitua S/N, Durango 34000, Mexico; (L.R.-S.); (J.C.-M.)
| | - Marcelo Gómez Palacio-Gastélum
- Facultad de Odontología, Universidad Juárez del Estado de Durango, Predio Canoas S/N, Los Angeles, Durango 34070, Mexico;
| | - Adriana Castillo-Villanueva
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de Mexico 04530, Mexico;
| | - Claudia Avitia-Domínguez
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitua S/N, Durango 34000, Mexico; (L.R.-S.); (J.C.-M.)
- Correspondence: (A.T.-V.); (C.A.-D.); Tel./Fax: +52(618)8271382 (A.T.-V. & C.A.-D.)
| |
Collapse
|
7
|
Lukman V, Odeyemi SW, Roth RL, Mbabala L, Tshililo N, Vlok NM, Dewar MJB, Kenyon CP. Novel kinase platform for the validation of the anti-tubercular activities of Pelargonium sidoides (Geraniaceae). BMC Biotechnol 2020; 20:50. [PMID: 32993619 PMCID: PMC7523293 DOI: 10.1186/s12896-020-00643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/28/2020] [Indexed: 05/30/2023] Open
Abstract
Background Pelargonium sidoides is an important traditional medicine in South Africa with a well-defined history of both traditional and documented use of an aqueous-ethanolic formulation of the roots of P. sidoides (EPs 7630), which is successfully employed for the treatment of respiratory tract infections. There is also historical evidence of use in the treatment of tuberculosis. The aim of this study was to develop a platform of Mycobacterium tuberculosis (Mtb) kinase enzymes that may be used for the identification of therapeutically relevant ethnobotanical extracts that will allow drug target identification, as well as the subsequent isolation of the active compounds. Results Mtb kinases, Nucleoside diphosphokinase, Homoserine kinase, Acetate kinase, Glycerol kinase, Thiamine monophosphate kinase, Ribokinase, Aspartokinase and Shikimate kinase were cloned, produced in Escherichia coli and characterized. HPLC-based assays were used to determine the enzyme activities and subsequently the inhibitory potentials of varying concentrations of a P. sidoides extract against the produced enzymes. The enzyme activity assays indicated that these enzymes were active at low ATP concentrations. The 50% inhibitory concentration (IC50) of an aqueous root extract of P. sidoides against the kinases indicated SK has an IC50 of 1.2 μg/ml and GK 1.4 μg/ml. These enzyme targets were further assessed for compound identification from the P. sidoides literature. Conclusion This study suggests P. sidoides is potentially a source of anti-tubercular compounds and the Mtb kinase platform has significant potential as a tool for the subsequent screening of P. sidoides extracts and plant extracts in general, for compound identification and elaboration by selected extract target inhibitor profiling.
Collapse
Affiliation(s)
- V Lukman
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg, 1709, South Africa.,Council for Scientific and Industrial Research, Pretoria, South Africa
| | - S W Odeyemi
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg, 1709, South Africa
| | - R L Roth
- Council for Scientific and Industrial Research, Pretoria, South Africa
| | - L Mbabala
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7505, South Africa
| | - N Tshililo
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7505, South Africa
| | - N M Vlok
- Proteomics Spectrometry Unit, Central Analytical Facility, University of Stellenbosch, Private Bag X1, Matieland, Stellenbsoch, 7600, South Africa
| | - M J B Dewar
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg, 1709, South Africa
| | - C P Kenyon
- Council for Scientific and Industrial Research, Pretoria, South Africa. .,DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7505, South Africa.
| |
Collapse
|
8
|
Rahul Reddy MB, Krishnasamy SK, Kathiravan MK. Identification of novel scaffold using ligand and structure based approach targeting shikimate kinase. Bioorg Chem 2020; 102:104083. [PMID: 32745735 DOI: 10.1016/j.bioorg.2020.104083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
Tuberculosis (TB) remains a major global health problem. It causes ill-health among millions of people each year and rank as the second leading cause of death from an infectious disease worldwide, after the human immunodeficiency virus (HIV). Shikimate kinase is one of the major enzymes targeted for TB. Most approaches to overcome TB were based on synthesis and screening of a known compounds to obtain a few representatives with desired potency. In this study, we have applied a virtual screening approach which combines ligand- and structure-based approaches to screen a large library of compounds as a starting point for the identification of new scaffolds for the development of shikimate kinase inhibitors. The combined approach has identified 2 new scaffolds as potential inhibitors of shikimate kinase. To prove the approach, few of the molecules and their derivatives, a total of 17 compounds, were synthesized. The compounds were tested for biological activity and shows moderate activity against shikimate kinase. The shikimate kinase enzyme inhibition study reveals that the compounds showed inhibition (IC50) at concentrations of 50 µg/mL (Compounds 21, 22, 24, 25, 26, 27, 30, 32, 34) and 25 µg/mL (14, 19, 23, 31, 33).
Collapse
Affiliation(s)
- M B Rahul Reddy
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM IST Kattankulathur, Kancheepuram, Tamil Nadu 603203, India
| | | | - M K Kathiravan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM IST Kattankulathur, Kancheepuram, Tamil Nadu 603203, India; 209, Dr APJ Abdul Kalam Research Lab, SRM College of Pharmacy, SRM IST Kattankulathur, Kancheepuram, Tamil Nadu 603203, India
| |
Collapse
|
9
|
Mycobacterium tuberculosis Shikimate Pathway Enzymes as Targets for the Rational Design of Anti-Tuberculosis Drugs. Molecules 2020; 25:molecules25061259. [PMID: 32168746 PMCID: PMC7144000 DOI: 10.3390/molecules25061259] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Roughly a third of the world’s population is estimated to have latent Mycobacterium tuberculosis infection, being at risk of developing active tuberculosis (TB) during their lifetime. Given the inefficacy of prophylactic measures and the increase of drug-resistant M. tuberculosis strains, there is a clear and urgent need for the development of new and more efficient chemotherapeutic agents, with selective toxicity, to be implemented on patient treatment. The component enzymes of the shikimate pathway, which is essential in mycobacteria and absent in humans, stand as attractive and potential targets for the development of new drugs to treat TB. This review gives an update on published work on the enzymes of the shikimate pathway and some insight on what can be potentially explored towards selective drug development.
Collapse
|
10
|
Sahu PK, Mohapatra PK, Rajani DP, Raval MK. Structure-based Discovery of Narirutin as a Shikimate kinase Inhibitor with Anti-tubercular Potency. Curr Comput Aided Drug Des 2019; 16:523-529. [PMID: 31654517 DOI: 10.2174/1573409915666191025112150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/05/2019] [Accepted: 10/10/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Shikimate pathway is essential for tubercular bacillus but it is absent in mammals. Therefore, Shikimate kinase and other enzymes in the pathway are potential targets for the development of novel anti-tuberculosis drugs. OBJECTIVE In the present study, Shikimate kinase is selected as the target for in silico screening of phytochemicals with an aim to discover a novel herbal drug against Mycobacterium tuberculosis (Mtb). METHODS A structure-based drug discovery approach is undertaken for the execution of the objective. Virtual screening of phytochemical database NPACT against the target, Shikimate kinase (PDB ID 3BAF), is carried out followed by toxicity and drug-likeness filtration. Finally, a lead, narirutin was selected for in vitro anti-tubercular study. RESULTS Narirutin, present in citrus fruits, emerges as the lead. It is considered to be non-toxic with predicted high LD50 value, 12000 mg/kg body weight. The phytochemical is tested for its antitubercular activity in vitro. It has MIC99 62.5 μg/mL against the MtbH37Rv strain. CONCLUSION This is the first-ever report to show anti-tuberculosis potency of narirutin.
Collapse
Affiliation(s)
- Pramod Kumar Sahu
- Department of Chemistry, Gangadhar Meher University, Sambalpur, 768004, Odisha, India
| | - Pranab Kishor Mohapatra
- Department of Chemistry, CV Raman College of Engineering, Bidyanagar, Mahura, Janla, Bhubaneswar 752054, Odisha, India
| | - Dhanji Popatbhai Rajani
- Microcare Laboratory and Tuberculosis Research Center, 105, Manthan Point, Unapani Road, Lal Darwaja, Surat - 395003, Gujarat, India
| | - Mukesh Kumar Raval
- Department of Chemistry, Gangadhar Meher University, Sambalpur, 768004, Odisha, India
| |
Collapse
|
11
|
Favela-Candia A, Téllez-Valencia A, Campos-Almazán M, Sierra-Campos E, Valdez-Solana M, Oria-Hernández J, Castillo-Villanueva A, Nájera H, Avitia-Domínguez C. Biochemical, Kinetic, and Computational Structural Characterization of Shikimate Kinase from Methicillin-Resistant Staphylococcus aureus. Mol Biotechnol 2019; 61:274-285. [PMID: 30747382 DOI: 10.1007/s12033-019-00159-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the most widespread pathogens worldwide is methicillin-resistant Staphylococcus aureus, a bacterium that provokes severe life-threatening illnesses both in hospitals and in the community. The principal challenge lies in the resistance of MRSA to current treatments, which encourages the study of different molecular targets that could be used to develop new drugs against this infectious agent. With this goal, a detailed characterization of shikimate kinase from this microorganism (SaSK) is described. The results showed that SaSK has a Km of 0.153 and 224 µM for shikimate and ATP, respectively, and a global reaction rate of 13.4 µmol/min/mg; it is suggested that SaSK utilizes the Bi-Bi Ping Pong reaction mechanism. Furthermore, the physicochemical data indicated that SaSK is an unstable, hydrophilic, and acidic protein. Finally, structural information showed that SaSK presented folding that is typical of its homologous counterparts and contains the typical domains of this family of proteins. Amino acids that have been shown to be important for SaSK protein function are conserved. Therefore, this study provides fundamental information that may aid in the design of inhibitors that could be used to develop new antibacterial agents.
Collapse
Affiliation(s)
- Alejandro Favela-Candia
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitua S/N, C.P. 34000, Durango, Dgo, Mexico
| | - Alfredo Téllez-Valencia
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitua S/N, C.P. 34000, Durango, Dgo, Mexico
| | - Mara Campos-Almazán
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitua S/N, C.P. 34000, Durango, Dgo, Mexico
| | - Erick Sierra-Campos
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio, C.P. 35010, Durango, Mexico
| | - Mónica Valdez-Solana
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio, C.P. 35010, Durango, Mexico
| | - Jesús Oria-Hernández
- Laboratorio de Bioquímica Genética, Secretaría de Salud, Instituto Nacional de Pediatría, C.P. 04534, Ciudad de México, Mexico
| | - Adriana Castillo-Villanueva
- Laboratorio de Bioquímica Genética, Secretaría de Salud, Instituto Nacional de Pediatría, C.P. 04534, Ciudad de México, Mexico
| | - Hugo Nájera
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Delegación Cuajimalpa de Morelos, Av. Vasco de Quiroga 4871, Colonia Santa Fe Cuajimalpa, C.P. 05300, Ciudad de México, Mexico
| | - Claudia Avitia-Domínguez
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitua S/N, C.P. 34000, Durango, Dgo, Mexico.
| |
Collapse
|
12
|
Schoenenberger B, Wszolek A, Meier R, Brundiek H, Obkircher M, Wohlgemuth R. Recombinant AroL-Catalyzed Phosphorylation for the Efficient Synthesis of Shikimic Acid 3-Phosphate. Biotechnol J 2018; 13:e1700529. [PMID: 29697210 DOI: 10.1002/biot.201700529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 04/03/2018] [Indexed: 01/01/2023]
Abstract
Shikimic acid 3-phosphate, as a central metabolite of the shikimate pathway, is of high interest as enzyme substrate for 5-enolpyruvoyl-shikimate 3-phosphate synthase, a drug target in infectious diseases and a prime enzyme target for the herbicide glyphosate. As the important substrate shikimic acid 3-phosphate is only accessible via a chemical multi-step route, a new straightforward preparative one-step enzymatic phosphorylation of shikimate using a stable recombinant shikimate kinase has been developed for the selective phosphorylation of shikimate in the 3-position. Highly active shikimate kinase is produced by straightforward expression of a synthetic aroL gene in Escherichia coli. The time course of the shikimate kinase-catalyzed phosphorylation is investigated by 1 H- and 31 P-NMR, using the phosphoenolpyruvate/pyruvate kinase system for the regeneration of the ATP cofactor. This enables the development of a quantitative biocatalytic 3-phosphorylation of shikimic acid. After a standard workup procedure, a good yield of shikimic acid 3-phosphate, with high HPLC- and NMR purity, is obtained. This efficient biocatalytic synthesis of shikimic acid 3-phosphate is superior to any other method and has been successfully scaled up to multi-gram scale.
Collapse
Affiliation(s)
| | - Agata Wszolek
- Enzymicals, Walther-Rathenau-Strasse 49a, 17489, Greifswald, Germany
| | - Roland Meier
- Sigma-Aldrich, Member of Merck Group, Industriestrasse 25, CH-9470, Buchs, Switzerland
| | - Henrike Brundiek
- Enzymicals, Walther-Rathenau-Strasse 49a, 17489, Greifswald, Germany
| | - Markus Obkircher
- Sigma-Aldrich, Member of Merck Group, Industriestrasse 25, CH-9470, Buchs, Switzerland
| | - Roland Wohlgemuth
- Sigma-Aldrich, Member of Merck Group, Industriestrasse 25, CH-9470, Buchs, Switzerland
| |
Collapse
|
13
|
Design, synthesis, molecular modeling, and ADMET studies of some pyrazoline derivatives as shikimate kinase inhibitors. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2081-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Yao J, Wang X, Luo H, Gu P. Understanding the Catalytic Mechanism and the Nature of the Transition State of an Attractive Drug‐Target Enzyme (Shikimate Kinase) by Quantum Mechanical/Molecular Mechanical (QM/MM) Studies. Chemistry 2017; 23:16380-16387. [DOI: 10.1002/chem.201703867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Jianzhuang Yao
- School of Biological Science and Technology University of Jinan Jinan 250022 P.R. China
| | - Xia Wang
- School of Biological Science and Technology University of Jinan Jinan 250022 P.R. China
| | - Haixia Luo
- Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Life Science School Ningxia University Yinchuan 750021 P.R. China
| | - Pengfei Gu
- School of Biological Science and Technology University of Jinan Jinan 250022 P.R. China
| |
Collapse
|
15
|
Masoko P, Mabusa IH, Howard RL. Isolation of alpha-linolenic acid from Sutherlandia frutescens and its inhibition of Mycobacterium tuberculosis' shikimate kinase enzyme. Altern Ther Health Med 2016; 16:366. [PMID: 27639973 PMCID: PMC5027073 DOI: 10.1186/s12906-016-1344-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 09/08/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Sutherlandia frutescens (L) R.Br. is one of traditional herbal medicines that formed the basis of primary health care systems since the earliest days and is still widely used. Sutherlandia is prescribed for people with tuberculosis (TB), but is still not known which compound(s) acts against M. tuberculosis and its mode of action. The aim of this study was to identify and isolate antimycobacterial compounds from S. frutescens extracts against shikimate kinase, a drug target for M. tuberculosis. METHODS S. frutescens were dried, ground and extracted with ethanol, dichloromethane: methanol and water. Fractionation and separation of compounds was done with column chromatography. Chromatograms were developed in butanol/acetic acid/water (BAW) [21:6:3]; chloroform/methanol/water/formic acid (CMWF1) [60:15:2:1] and (CMWF2) [21:9:1:0.3]. Separation and isolation of active compounds were done using preparative HPLC. The activity of the plant extracts were also screened against shikimate kinase enzyme (MtbSK) using the MtbSK inhibition assay. RESULTS The DCM: MeOH (1:1) extract showed a high percentage inhibition (with an IC50 of 0.1 μg/ml) of MtbSK and the purified inhibitor was an Alpha-Linolenic Acid (ALA) compound and it had a significant IC50 of 3.7 μg/ml. CONCLUSIONS This study demonstrated that ALA from S. frustescens is an inhibitor of shikimate kinase a good drug target for M. tuberculosis.
Collapse
|
16
|
Mehra R, Rajput VS, Gupta M, Chib R, Kumar A, Wazir P, Khan IA, Nargotra A. Benzothiazole Derivative as a Novel Mycobacterium tuberculosis Shikimate Kinase Inhibitor: Identification and Elucidation of Its Allosteric Mode of Inhibition. J Chem Inf Model 2016; 56:930-40. [PMID: 27149193 DOI: 10.1021/acs.jcim.6b00056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycobacterium tuberculosis shikimate kinase (Mtb-SK) is a key enzyme involved in the biosynthesis of aromatic amino acids through the shikimate pathway. Since it is proven to be essential for the survival of the microbe and is absent from mammals, it is a promising target for anti-TB drug discovery. In this study, a combined approach of in silico similarity search and pharmacophore building using already reported inhibitors was used to screen a procured library of 20,000 compounds of the commercially available ChemBridge database. From the in silico screening, 15 hits were identified, and these hits were evaluated in vitro for Mtb-SK enzyme inhibition. Two compounds presented significant enzyme inhibition with IC50 values of 10.69 ± 0.9 and 46.22 ± 1.2 μM. The best hit was then evaluated for the in vitro mode of inhibition where it came out to be an uncompetitive and noncompetitive inhibitor with respect to shikimate (SKM) and ATP, respectively, suggesting its binding at an allosteric site. Potential binding sites of Mtb-SK were identified which confirmed the presence of an allosteric binding pocket apart from the ATP and SKM binding sites. The docking simulations were performed at this pocket in order to find the mode of binding of the best hit in the presence of substrates and the products of the enzymatic reaction. Molecular dynamics (MD) simulations elucidated the probability of inhibitor binding at the allosteric site in the presence of ADP and shikimate-3-phosphate (S-3-P), that is, after the formation of products of the reaction. The inhibitor binding may prevent the release of the product from Mtb-SK, thereby inhibiting its activity. The binding stability and the key residue interactions of the inhibitor to this product complex were also revealed by the MD simulations. Residues ARG43, ILE45, and PHE57 were identified as crucial that were involved in interactions with the best hit. This is the first report of an allosteric binding site of Mtb-SK, which could largely address the selectivity issue associated with kinase inhibitors.
Collapse
Affiliation(s)
- Rukmankesh Mehra
- Discovery Informatics Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| | - Vikrant Singh Rajput
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India.,Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| | - Monika Gupta
- Discovery Informatics Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| | - Reena Chib
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| | - Amit Kumar
- Discovery Informatics Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| | - Priya Wazir
- Instrumentation Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| | - Inshad Ali Khan
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India.,Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| | - Amit Nargotra
- Discovery Informatics Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India.,Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| |
Collapse
|
17
|
Screening of antitubercular compound library identifies novel shikimate kinase inhibitors of Mycobacterium tuberculosis. Appl Microbiol Biotechnol 2016; 100:5415-26. [DOI: 10.1007/s00253-015-7268-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 11/26/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
|
18
|
Prado V, Lence E, Vallejo JA, Beceiro A, Thompson P, Hawkins AR, González-Bello C. Study of the Phosphoryl-Transfer Mechanism of Shikimate Kinase by NMR Spectroscopy. Chemistry 2016; 22:2758-68. [PMID: 26797764 DOI: 10.1002/chem.201504438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Indexed: 01/16/2023]
Abstract
The phosphoryl-transfer mechanism of shikimate kinase from Mycobacterium tuberculosis and Helicobacter pylori, which is an attractive target for antibiotic drug discovery, has been studied by 1D (1)H and (31)P NMR spectroscopy. Metaphosphoric acid proved to be a good mimetic of the metaphosphate intermediate and facilitated the ready and rapid evaluation by NMR spectroscopic analysis of a dissociative mechanism. The required closed form of the active site for catalysis was achieved by the use of ADP (product) or two synthetic ADP analogues (AMPNP, AMPCP). Molecular dynamics simulation studies reported here also revealed that the essential arginine (Arg116/Arg117 in H. pylori and M. tuberculosis, respectively), which activates the γ-phosphate group of ATP for catalysis and triggers the release of the product for turnover, would also be involved in the stabilisation of the metaphosphate intermediate during catalysis. We believe that the studies reported here will be helpful for future structure-based design of inhibitors of this attractive target. The approach is also expected be useful for studies on the possible dissociative mechanism of other kinase enzymes.
Collapse
Affiliation(s)
- Verónica Prado
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, calle Jenaro de la Fuente s/n, 15782, Santiago de Compostela, Spain
| | - Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, calle Jenaro de la Fuente s/n, 15782, Santiago de Compostela, Spain
| | - Juan A Vallejo
- Servicio de Microbioloxía-INIBIC, Complexo Hospitalario Universitario A Coruña (CHUAC), Hospital Teresa Herrera, As Xubias, 84, 15006 A, Coruña, Spain
| | - Alejandro Beceiro
- Servicio de Microbioloxía-INIBIC, Complexo Hospitalario Universitario A Coruña (CHUAC), Hospital Teresa Herrera, As Xubias, 84, 15006 A, Coruña, Spain
| | - Paul Thompson
- Institute of Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Alastair R Hawkins
- Institute of Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, calle Jenaro de la Fuente s/n, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
19
|
Sutton KA, Breen J, MacDonald U, Beanan JM, Olson R, Russo TA, Schultz LW, Umland TC. Structure of shikimate kinase, an in vivo essential metabolic enzyme in the nosocomial pathogen Acinetobacter baumannii, in complex with shikimate. ACTA ACUST UNITED AC 2015; 71:1736-44. [PMID: 26249354 DOI: 10.1107/s139900471501189x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/22/2015] [Indexed: 11/10/2022]
Abstract
Acinetobacter baumannii is an opportunistic Gram-negative pathogen that is an important cause of healthcare-associated infections exhibiting high mortality rates. Clinical isolates of multidrug-resistant (MDR) and extremely drug-resistant (XDR) A. baumannii strains are increasingly being observed. Compounding this concern is the dearth of new antibacterial agents in late-stage development that are effective against MDR and XDR A. baumannii. As part of an effort to address these concerns, two genes (aroA and aroC) of the shikimate pathway have previously been determined to be essential for the growth and survival of A. baumannii during host infection (i.e. to be essential in vivo). This study expands upon these results by demonstrating that the A. baumannii aroK gene, encoding shikimate kinase (SK), is also essential in vivo in a rat soft-tissue infection model. The crystal structure of A. baumannii SK in complex with the substrate shikimate and a sulfate ion that mimics the binding interactions expected for the β-phosphate of ATP was then determined to 1.91 Å resolution and the enzyme kinetics were characterized. The flexible shikimate-binding domain and LID region are compared with the analogous regions in other SK crystal structures. The impact of structural differences and sequence divergence between SKs from pathogenic bacteria that may influence antibiotic-development efforts is discussed.
Collapse
Affiliation(s)
- Kristin A Sutton
- Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203, USA
| | - Jennifer Breen
- Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203, USA
| | - Ulrike MacDonald
- Department of Medicine and The Witebsky Center for Microbial Pathogenesis, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Janet M Beanan
- Department of Medicine and The Witebsky Center for Microbial Pathogenesis, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Ruth Olson
- Department of Medicine and The Witebsky Center for Microbial Pathogenesis, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Thomas A Russo
- Department of Medicine and The Witebsky Center for Microbial Pathogenesis, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - L Wayne Schultz
- Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203, USA
| | - Timothy C Umland
- Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203, USA
| |
Collapse
|
20
|
Gordon S, Simithy J, Goodwin DC, Calderón AI. Selective Mycobacterium tuberculosis Shikimate Kinase Inhibitors as Potential Antibacterials. PERSPECTIVES IN MEDICINAL CHEMISTRY 2015; 7:9-20. [PMID: 25861218 PMCID: PMC4362912 DOI: 10.4137/pmc.s13212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/19/2015] [Accepted: 01/27/2015] [Indexed: 11/08/2022]
Abstract
Owing to the persistence of tuberculosis (TB) as well as the emergence of multidrug-resistant and extensively drug-resistant (XDR) forms of the disease, the development of new antitubercular drugs is crucial. Developing inhibitors of shikimate kinase (SK) in the shikimate pathway will provide a selective target for antitubercular agents. Many studies have used in silico technology to identify compounds that are anticipated to interact with and inhibit SK. To a much more limited extent, SK inhibition has been evaluated by in vitro methods with purified enzyme. Currently, there are no data on in vivo activity of Mycobacterium tuberculosis shikimate kinase (MtSK) inhibitors available in the literature. In this review, we present a summary of the progress of SK inhibitor discovery and evaluation with particular attention toward development of new antitubercular agents.
Collapse
Affiliation(s)
- Sara Gordon
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Johayra Simithy
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Douglas C Goodwin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA
| | - Angela I Calderón
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| |
Collapse
|
21
|
Simithy J, Gill G, Wang Y, Goodwin DC, Calderón AI. Development of an ESI-LC-MS-Based Assay for Kinetic Evaluation of Mycobacterium tuberculosis Shikimate Kinase Activity and Inhibition. Anal Chem 2015; 87:2129-36. [DOI: 10.1021/ac503210n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Johayra Simithy
- Department
of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, Alabama 36849, United States
| | - Gobind Gill
- Department
of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Yu Wang
- Department
of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Douglas C. Goodwin
- Department
of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Angela I. Calderón
- Department
of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, Alabama 36849, United States
| |
Collapse
|
22
|
Blanco B, Prado V, Lence E, Otero JM, Garcia-Doval C, van Raaij MJ, Llamas-Saiz AL, Lamb H, Hawkins AR, González-Bello C. Mycobacterium tuberculosis shikimate kinase inhibitors: design and simulation studies of the catalytic turnover. J Am Chem Soc 2013; 135:12366-76. [PMID: 23889343 DOI: 10.1021/ja405853p] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Shikimate kinase (SK) is an essential enzyme in several pathogenic bacteria and does not have any counterpart in human cells, thus making it an attractive target for the development of new antibiotics. The key interactions of the substrate and product binding and the enzyme movements that are essential for catalytic turnover of the Mycobacterium tuberculosis shikimate kinase enzyme (Mt-SK) have been investigated by structural and computational studies. Based on these studies several substrate analogs were designed and assayed. The crystal structure of Mt-SK in complex with ADP and one of the most potent inhibitors has been solved at 2.15 Å. These studies reveal that the fixation of the diaxial conformation of the C4 and C5 hydroxyl groups recognized by the enzyme or the replacement of the C3 hydroxyl group in the natural substrate by an amino group is a promising strategy for inhibition because it causes a dramatic reduction of the flexibility of the LID and shikimic acid binding domains. Molecular dynamics simulation studies showed that the product is expelled from the active site by three arginines (Arg117, Arg136, and Arg58). This finding represents a previously unknown key role of these conserved residues. These studies highlight the key role of the shikimic acid binding domain in the catalysis and provide guidance for future inhibitor designs.
Collapse
Affiliation(s)
- Beatriz Blanco
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mir R, Jallu S, Singh TP. The shikimate pathway: Review of amino acid sequence, function and three-dimensional structures of the enzymes. Crit Rev Microbiol 2013; 41:172-89. [DOI: 10.3109/1040841x.2013.813901] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Rosado LA, Vasconcelos IB, Palma MS, Frappier V, Najmanovich RJ, Santos DS, Basso LA. The mode of action of recombinant Mycobacterium tuberculosis shikimate kinase: kinetics and thermodynamics analyses. PLoS One 2013; 8:e61918. [PMID: 23671579 PMCID: PMC3646032 DOI: 10.1371/journal.pone.0061918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 03/14/2013] [Indexed: 12/03/2022] Open
Abstract
Tuberculosis remains as one of the main cause of mortality worldwide due to a single infectious agent, Mycobacterium tuberculosis. The aroK-encoded M. tuberculosis Shikimate Kinase (MtSK), shown to be essential for survival of bacilli, catalyzes the phosphoryl transfer from ATP to the carbon-3 hydroxyl group of shikimate (SKH), yielding shikimate-3-phosphate and ADP. Here we present purification to homogeneity, and oligomeric state determination of recombinant MtSK. Biochemical and biophysical data suggest that the chemical reaction catalyzed by monomeric MtSK follows a rapid-equilibrium random order of substrate binding, and ordered product release. Isothermal titration calorimetry (ITC) for binding of ligands to MtSK provided thermodynamic signatures of non-covalent interactions to each process. A comparison of steady-state kinetics parameters and equilibrium dissociation constant value determined by ITC showed that ATP binding does not increase the affinity of MtSK for SKH. We suggest that MtSK would more appropriately be described as an aroL-encoded type II shikimate kinase. Our manuscript also gives thermodynamic description of SKH binding to MtSK and data for the number of protons exchanged during this bimolecular interaction. The negative value for the change in constant pressure heat capacity (ΔCp) and molecular homology model building suggest a pronounced contribution of desolvation of non-polar groups upon binary complex formation. Thermodynamic parameters were deconvoluted into hydrophobic and vibrational contributions upon MtSK:SKH binary complex formation. Data for the number of protons exchanged during this bimolecular interaction are interpreted in light of a structural model to try to propose the likely amino acid side chains that are the proton donors to bulk solvent following MtSK:SKH complex formation.
Collapse
Affiliation(s)
- Leonardo Astolfi Rosado
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Porto Alegre, RS, Brazil
| | - Igor Bordin Vasconcelos
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Porto Alegre, RS, Brazil
| | - Mário Sérgio Palma
- Laboratório de Biologia Estrutural e Zooquímica, Centro de Estudos de Insetos Sociais, Departamento de Biologia, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil
| | - Vincent Frappier
- Department of Biochemistry, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Rafael Josef Najmanovich
- Department of Biochemistry, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Diógenes Santiago Santos
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, PUCRS, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Porto Alegre, RS, Brazil
| | - Luiz Augusto Basso
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, PUCRS, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Porto Alegre, RS, Brazil
| |
Collapse
|
25
|
Kapnick SM, Zhang Y. New tuberculosis drug development: targeting the shikimate pathway. Expert Opin Drug Discov 2013; 3:565-77. [PMID: 23484927 DOI: 10.1517/17460441.3.5.565] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Tuberculosis (TB) remains a leading cause of morbidity and mortality worldwide, yet no new drugs have been developed in the last 40 years. OBJECTIVE The exceedingly lengthy TB chemotherapy and the increasing emergence of drug resistance complicated by HIV co-infection call for the development of new TB drugs. These problems are further compounded by a poor understanding of the biology of persister bacteria. METHODS New molecular tools have offered insights into potential new drug targets, particularly the enzymes of the shikimate pathway, which is the focus of this review. RESULTS/CONCLUSION Shikimate pathway enzymes, especially shikimate kinase, may offer attractive targets for new TB drug and vaccine development.
Collapse
Affiliation(s)
- Senta M Kapnick
- Johns Hopkins University, Department of Molecular Microbiology & Immunology, Bloomberg School of Public Health, 615 N Wolfe Street, Baltimore, MD 21205, USA +1 410 614 2975 ; +1 410 955 0105 ;
| | | |
Collapse
|
26
|
Crystal structure of LpxK, the 4'-kinase of lipid A biosynthesis and atypical P-loop kinase functioning at the membrane interface. Proc Natl Acad Sci U S A 2012; 109:12956-61. [PMID: 22826246 DOI: 10.1073/pnas.1206072109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In Gram-negative bacteria, the hydrophobic anchor of the outer membrane lipopolysaccharide is lipid A, a saccharolipid that plays key roles in both viability and pathogenicity of these organisms. The tetraacyldisaccharide 4'-kinase (LpxK) of the diverse P-loop-containing nucleoside triphosphate hydrolase superfamily catalyzes the sixth step in the biosynthetic pathway of lipid A, and is the only known P-loop kinase to act upon a lipid substrate at the membrane. Here, we report the crystal structures of apo- and ADP/Mg(2+)-bound forms of Aquifex aeolicus LpxK to a resolution of 1.9 Å and 2.2 Å, respectively. LpxK consists of two α/β/α sandwich domains connected by a two-stranded β-sheet linker. The N-terminal domain, which has most structural homology to other family members, is responsible for catalysis at the P-loop and positioning of the disaccharide-1-phosphate substrate for phosphoryl transfer on the inner membrane. The smaller C-terminal domain, a substructure unique to LpxK, helps bind the nucleotide substrate and Mg(2+) cation using a 25° hinge motion about its base. Activity was severely reduced in alanine point mutants of conserved residues D138 and D139, which are not directly involved in ADP or Mg(2+) binding in our structures, indicating possible roles in phosphoryl acceptor positioning or catalysis. Combined structural and kinetic studies have led to an increased understanding of the enzymatic mechanism of LpxK and provided the framework for structure-based antimicrobial design.
Collapse
|
27
|
Cheng WC, Chen YF, Wang HJ, Hsu KC, Lin SC, Chen TJ, Yang JM, Wang WC. Structures of Helicobacter pylori shikimate kinase reveal a selective inhibitor-induced-fit mechanism. PLoS One 2012; 7:e33481. [PMID: 22438938 PMCID: PMC3306394 DOI: 10.1371/journal.pone.0033481] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 02/14/2012] [Indexed: 12/13/2022] Open
Abstract
Shikimate kinase (SK), which catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid in the presence of ATP, is the enzyme in the fifth step of the shikimate pathway for biosynthesis of aromatic amino acids. This pathway is present in bacteria, fungi, and plants but absent in mammals and therefore represents an attractive target pathway for the development of new antimicrobial agents, herbicides, and antiparasitic agents. Here we investigated the detailed structure–activity relationship of SK from Helicobacter pylori (HpSK). Site-directed mutagenesis and isothermal titration calorimetry studies revealed critical conserved residues (D33, F48, R57, R116, and R132) that interact with shikimate and are therefore involved in catalysis. Crystal structures of HpSK·SO4, R57A, and HpSK•shikimate-3-phosphate•ADP show a characteristic three-layer architecture and a conformationally elastic region consisting of F48, R57, R116, and R132, occupied by shikimate. The structure of the inhibitor complex, E114A•162535, was also determined, which revealed a dramatic shift in the elastic LID region and resulted in conformational locking into a distinctive form. These results reveal considerable insight into the active-site chemistry of SKs and a selective inhibitor-induced-fit mechanism.
Collapse
Affiliation(s)
- Wen-Chi Cheng
- Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Yen-Fu Chen
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Hung-Jung Wang
- Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Kai-Cheng Hsu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Shuang-Chih Lin
- Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Tzu-Jung Chen
- Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Jinn-Moon Yang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- * E-mail: (J-MY); (W-CW)
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail: (J-MY); (W-CW)
| |
Collapse
|
28
|
Hsu KC, Cheng WC, Chen YF, Wang HJ, Li LT, Wang WC, Yang JM. Core site-moiety maps reveal inhibitors and binding mechanisms of orthologous proteins by screening compound libraries. PLoS One 2012; 7:e32142. [PMID: 22393385 PMCID: PMC3290551 DOI: 10.1371/journal.pone.0032142] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 01/24/2012] [Indexed: 01/08/2023] Open
Abstract
Members of protein families often share conserved structural subsites for interaction with chemically similar moieties despite low sequence identity. We propose a core site-moiety map of multiple proteins (called CoreSiMMap) to discover inhibitors and mechanisms by profiling subsite-moiety interactions of immense screening compounds. The consensus anchor, the subsite-moiety interactions with statistical significance, of a CoreSiMMap can be regarded as a "hot spot" that represents the conserved binding environments involved in biological functions. Here, we derive the CoreSiMMap with six consensus anchors and identify six inhibitors (IC(50)<8.0 µM) of shikimate kinases (SKs) of Mycobacterium tuberculosis and Helicobacter pylori from the NCI database (236,962 compounds). Studies of site-directed mutagenesis and analogues reveal that these conserved interacting residues and moieties contribute to pocket-moiety interaction spots and biological functions. These results reveal that our multi-target screening strategy and the CoreSiMMap can increase the accuracy of screening in the identification of novel inhibitors and subsite-moiety environments for elucidating the binding mechanisms of targets.
Collapse
Affiliation(s)
- Kai-Cheng Hsu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | | | | | | | | | | | | |
Collapse
|
29
|
Kenyon CP, Steyn A, Roth RL, Steenkamp PA, Nkosi TC, Oldfield LC. The role of the C8 proton of ATP in the regulation of phosphoryl transfer within kinases and synthetases. BMC BIOCHEMISTRY 2011; 12:36. [PMID: 21749731 PMCID: PMC3145573 DOI: 10.1186/1471-2091-12-36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 07/13/2011] [Indexed: 11/18/2022]
Abstract
BACKGROUND The kinome comprises functionally diverse enzymes, with the current classification indicating very little about the extent of conserved regulatory mechanisms associated with phosphoryl transfer. The apparent Km of the kinases ranges from less than 0.4 μM to in excess of 1000 μM for ATP. It is not known how this diverse range of enzymes mechanistically achieves the regulation of catalysis via an affinity range for ATP varying by three-orders of magnitude. RESULTS We have demonstrated a previously undiscovered mechanism in kinase and synthetase enzymes where the overall rate of reaction is regulated via the C8-H of ATP. Using ATP deuterated at the C8 position (C8D-ATP) as a molecular probe it was shown that the C8-H plays a direct role in the regulation of the overall rate of reaction in a range of kinase and synthetase enzymes. Using comparative studies on the effect of the concentration of ATP and C8D-ATP on the activity of the enzymes we demonstrated that not only did C8D-ATP give a kinetic isotope effect (KIE) but the KIE's obtained are clearly not secondary KIE effects as the magnitude of the KIE in all cases was at least 2 fold and in most cases in excess of 7 fold. CONCLUSIONS Kinase and synthetase enzymes utilise C8D-ATP in preference to non-deuterated ATP. The KIE obtained at low ATP concentrations is clearly a primary KIE demonstrating strong evidence that the bond to the isotopically substituted hydrogen is being broken. The effect of the ATP concentration profile on the KIE was used to develop a model whereby the C8H of ATP plays a role in the overall regulation of phosphoryl transfer. This role of the C8H of ATP in the regulation of substrate binding appears to have been conserved in all kinase and synthetase enzymes as one of the mechanisms associated with binding of ATP. The induction of the C8H to be labile by active site residues coordinated to the ATP purine ring may play a significant role in explaining the broad range of Km associated with kinase enzymes.
Collapse
Affiliation(s)
- Colin P Kenyon
- CSIR, Biosciences, Meiring Naude Road, Pretoria, 0001, Gauteng, South Africa
| | - Anjo Steyn
- CSIR, Biosciences, Meiring Naude Road, Pretoria, 0001, Gauteng, South Africa
| | - Robyn L Roth
- CSIR, Biosciences, Meiring Naude Road, Pretoria, 0001, Gauteng, South Africa
| | - Paul A Steenkamp
- CSIR, Biosciences, Meiring Naude Road, Pretoria, 0001, Gauteng, South Africa
| | - Thokozani C Nkosi
- CSIR, Biosciences, Meiring Naude Road, Pretoria, 0001, Gauteng, South Africa
| | - Lyndon C Oldfield
- CSIR, Biosciences, Meiring Naude Road, Pretoria, 0001, Gauteng, South Africa
| |
Collapse
|
30
|
Fucile G, Garcia C, Carlsson J, Sunnerhagen M, Christendat D. Structural and biochemical investigation of two Arabidopsis shikimate kinases: the heat-inducible isoform is thermostable. Protein Sci 2011; 20:1125-36. [PMID: 21520319 PMCID: PMC3149186 DOI: 10.1002/pro.640] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 04/08/2011] [Accepted: 04/08/2011] [Indexed: 11/12/2022]
Abstract
The expression of plant shikimate kinase (SK; EC 2.7.1.71), an intermediate step in the shikimate pathway to aromatic amino acid biosynthesis, is induced under specific conditions of environmental stress and developmental requirements in an isoform-specific manner. Despite their important physiological role, experimental structures of plant SKs have not been determined and the biochemical nature of plant SK regulation is unknown. The Arabidopsis thaliana genome encodes two SKs, AtSK1 and AtSK2. We demonstrate that AtSK2 is highly unstable and becomes inactivated at 37 °C whereas the heat-induced isoform, AtSK1, is thermostable and fully active under identical conditions at this temperature. We determined the crystal structure of AtSK2, the first SK structure from the plant kingdom, and conducted biophysical characterizations of both AtSK1 and AtSK2 towards understanding this mechanism of thermal regulation. The crystal structure of AtSK2 is generally conserved with bacterial SKs with the addition of a putative regulatory phosphorylation motif forming part of the adenosine triphosphate binding site. The heat-induced isoform, AtSK1, forms a homodimer in solution, the formation of which facilitates its relative thermostability compared to AtSK2. In silico analyses identified AtSK1 site variants that may contribute to AtSK1 stability. Our findings suggest that AtSK1 performs a unique function under heat stress conditions where AtSK2 could become inactivated. We discuss these findings in the context of regulating metabolic flux to competing downstream pathways through SK-mediated control of steady state concentrations of shikimate.
Collapse
Affiliation(s)
- Geoffrey Fucile
- Department of Cell and Systems Biology, University of TorontoOntario, Canada
| | - Christel Garcia
- Department of Cell and Systems Biology, University of TorontoOntario, Canada
| | - Jonas Carlsson
- Department of Physics, Chemistry and Biology, Linköping UniversityLinköping, Sweden
| | - Maria Sunnerhagen
- Department of Physics, Chemistry and Biology, Linköping UniversityLinköping, Sweden
| | - Dinesh Christendat
- Department of Cell and Systems Biology, University of TorontoOntario, Canada
- Center for the Analysis of Genome Evolution and Function, University of TorontoOntario, Canada
| |
Collapse
|
31
|
Vianna CP, de Azevedo WF. Identification of new potential Mycobacterium tuberculosis shikimate kinase inhibitors through molecular docking simulations. J Mol Model 2011; 18:755-64. [DOI: 10.1007/s00894-011-1113-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 04/28/2011] [Indexed: 10/18/2022]
|
32
|
Durante-Rodríguez G, Valderrama JA, Mancheño JM, Rivas G, Alfonso C, Arias-Palomo E, Llorca O, García JL, Díaz E, Carmona M. Biochemical characterization of the transcriptional regulator BzdR from Azoarcus sp. CIB. J Biol Chem 2010; 285:35694-705. [PMID: 20826820 DOI: 10.1074/jbc.m110.143503] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The BzdR transcriptional regulator that controls the P(N) promoter responsible for the anaerobic catabolism of benzoate in Azoarcus sp. CIB constitutes the prototype of a new subfamily of transcriptional regulators. Here, we provide some insights about the functional-structural relationships of the BzdR protein. Analytical ultracentrifugation studies revealed that BzdR is homodimeric in solution. An electron microscopy three-dimensional reconstruction of the BzdR dimer has been obtained, and the predicted structures of the respective N- and C-terminal domains of each BzdR monomer could be fitted into such a reconstruction. Gel retardation and ultracentrifugation experiments have shown that the binding of BzdR to its cognate promoter is cooperative. Different biochemical approaches revealed that the effector molecule benzoyl-CoA induces conformational changes in BzdR without affecting its oligomeric state. The BzdR-dependent inhibition of the P(N) promoter and its activation in the presence of benzoyl-CoA have been established by in vitro transcription assays. The monomeric BzdR4 and BzdR5 mutant regulators revealed that dimerization of BzdR is essential for DNA binding. Remarkably, a BzdRΔL protein lacking the linker region connecting the N- and C-terminal domains of BzdR is also dimeric and behaves as a super-repressor of the P(N) promoter. These data suggest that the linker region of BzdR is not essential for protein dimerization, but rather it is required to transfer the conformational changes induced by the benzoyl-CoA to the DNA binding domain leading to the release of the repressor. A model of action of the BzdR regulator has been proposed.
Collapse
Affiliation(s)
- Gonzalo Durante-Rodríguez
- Department of Environmental Biology, Centro de Investigaciones Biológicas-Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
In silico characterization of Shikimate Kinase of Shigella flexneri: a potential drug target. Interdiscip Sci 2010; 2:280-90. [PMID: 20658341 DOI: 10.1007/s12539-010-0012-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/06/2010] [Accepted: 03/12/2010] [Indexed: 10/19/2022]
Abstract
Shigella flexneri is a major pathogen responsible for Shigellosis causing massive morbidity among young population and imposes huge socio-economic burden. In this study, Shikimate Kinase (SK) from S. flexneri was characterized in silico and disordered regions were predicted. Motifs and domains were calculated using computational tools. A three dimensional model of Shikimate Kinase of S.flexneri was constructed using Shikimate Kinase of E.coli (PDBID: 1KAG_A) as template by comparative modeling approach. Molecular dynamics calculations were carried out to check the stable conformation embedded in water sphere with least RMSD possible. Perusal of backbone conformation of the modeled structure by PROCHECK revealed that more than 98% of the residues fell in the allowed regions and ERRAT results confirmed good quality of modeled structure. Active site and its important residues were predicted for the derived model. Disulphide bridges were estimated by computational method and most probable pattern of cysteine residues was found in the pairs 8-22. Results of this study will shed light on the structural aspects of Shikimate Kinase of S. flexneri and will aid in rational drug designing.
Collapse
|
34
|
Okazaki S, Okabe S, Higashi M, Shimoda Y, Sato S, Tabata S, Hashiguchi M, Akashi R, Göttfert M, Saeki K. Identification and functional analysis of type III effector proteins in Mesorhizobium loti. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:223-34. [PMID: 20064065 DOI: 10.1094/mpmi-23-2-0223] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Mesorhizobium loti MAFF303099, a microsymbiont of the model legume Lotus japonicus, possesses a cluster of genes (tts) that encode a type III secretion system (T3SS). In the presence of heterologous nodD from Rhizobium leguminosarum and a flavonoid naringenin, we observed elevated expression of the tts genes and secretion of several proteins into the culture medium. Inoculation experiments with wild-type and T3SS mutant strains revealed that the presence of the T3SS affected nodulation at a species level within the Lotus genus either positively (L. corniculatus subsp. frondosus and L. filicaulis) or negatively (L. halophilus and two other species). By inoculating L. halophilus with mutants of various type III effector candidate genes, we identified open reading frame mlr6361 as a major determinant of the nodulation restriction observed for L. halophilus. The predicted gene product of mlr6361 is a protein of 3,056 amino acids containing 15 repetitions of a sequence motif of 40 to 45 residues and a shikimate kinase-like domain at its carboxyl terminus. Homologues with similar repeat sequences are present in the hypersensitive-response and pathogenicity regions of several plant pathogens, including strains of Pseudomonas syringae, Ralstonia solanacearum, and Xanthomonas species. These results suggest that L. halophilus recognizes Mlr6361 as potentially pathogen derived and subsequently halts the infection process.
Collapse
Affiliation(s)
- Shin Okazaki
- Department of Biological Sciences, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
The role of UPF0157 in the folding of M. tuberculosis dephosphocoenzyme A kinase and the regulation of the latter by CTP. PLoS One 2009; 4:e7645. [PMID: 19876400 PMCID: PMC2765170 DOI: 10.1371/journal.pone.0007645] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 09/13/2009] [Indexed: 11/19/2022] Open
Abstract
Background Targeting the biosynthetic pathway of Coenzyme A (CoA) for drug development will compromise multiple cellular functions of the tubercular pathogen simultaneously. Structural divergence in the organization of the penultimate and final enzymes of CoA biosynthesis in the host and pathogen and the differences in their regulation mark out the final enzyme, dephosphocoenzyme A kinase (CoaE) as a potential drug target. Methodology/Principal Findings We report here a complete biochemical and biophysical characterization of the M. tuberculosis CoaE, an enzyme essential for the pathogen's survival, elucidating for the first time the interactions of a dephosphocoenzyme A kinase with its substrates, dephosphocoenzyme A and ATP; its product, CoA and an intrinsic yet novel inhibitor, CTP, which helps modulate the enzyme's kinetic capabilities providing interesting insights into the regulation of CoaE activity. We show that the mycobacterial enzyme is almost 21 times more catalytically proficient than its counterparts in other prokaryotes. ITC measurements illustrate that the enzyme follows an ordered mechanism of substrate addition with DCoA as the leading substrate and ATP following in tow. Kinetic and ITC experiments demonstrate that though CTP binds strongly to the enzyme, it is unable to participate in DCoA phosphorylation. We report that CTP actually inhibits the enzyme by decreasing its Vmax. Not surprisingly, a structural homology search for the modeled mycobacterial CoaE picks up cytidylmonophosphate kinases, deoxycytidine kinases, and cytidylate kinases as close homologs. Docking of DCoA and CTP to CoaE shows that both ligands bind at the same site, their interactions being stabilized by 26 and 28 hydrogen bonds respectively. We have also assigned a role for the universal Unknown Protein Family 0157 (UPF0157) domain in the mycobacterial CoaE in the proper folding of the full length enzyme. Conclusions/Significance In view of the evidence presented, it is imperative to assign a greater role to the last enzyme of Coenzyme A biosynthesis in metabolite flow regulation through this critical biosynthetic pathway.
Collapse
|
36
|
Carmona M, Zamarro MT, Blázquez B, Durante-Rodríguez G, Juárez JF, Valderrama JA, Barragán MJL, García JL, Díaz E. Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev 2009; 73:71-133. [PMID: 19258534 PMCID: PMC2650882 DOI: 10.1128/mmbr.00021-08] [Citation(s) in RCA: 270] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach.
Collapse
Affiliation(s)
- Manuel Carmona
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fucile G, Falconer S, Christendat D. Evolutionary diversification of plant shikimate kinase gene duplicates. PLoS Genet 2008; 4:e1000292. [PMID: 19057671 PMCID: PMC2593004 DOI: 10.1371/journal.pgen.1000292] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 11/03/2008] [Indexed: 01/03/2023] Open
Abstract
Shikimate kinase (SK; EC 2.7.1.71) catalyzes the fifth reaction of the shikimate pathway, which directs carbon from the central metabolism pool to a broad range of secondary metabolites involved in plant development, growth, and stress responses. In this study, we demonstrate the role of plant SK gene duplicate evolution in the diversification of metabolic regulation and the acquisition of novel and physiologically essential function. Phylogenetic analysis of plant SK homologs resolves an orthologous cluster of plant SKs and two functionally distinct orthologous clusters. These previously undescribed genes, shikimate kinase-like 1 (SKL1) and -2 (SKL2), do not encode SK activity, are present in all major plant lineages, and apparently evolved under positive selection following SK gene duplication over 400 MYA. This is supported by functional assays using recombinant SK, SKL1, and SKL2 from Arabidopsis thaliana (At) and evolutionary analyses of the diversification of SK-catalytic and -substrate binding sites based on theoretical structure models. AtSKL1 mutants yield albino and novel variegated phenotypes, which indicate SKL1 is required for chloroplast biogenesis. Extant SKL2 sequences show a strong genetic signature of positive selection, which is enriched in a protein–protein interaction module not found in other SK homologs. We also report the first kinetic characterization of plant SKs and show that gene expression diversification among the AtSK inparalogs is correlated with developmental processes and stress responses. This study examines the functional diversification of ancient and recent plant SK gene duplicates and highlights the utility of SKs as scaffolds for functional innovation. Gene duplicates provide an opportunity for functional innovation by buffering their ancestral function. Mutations or genomic rearrangements altering when and where the duplicates are expressed, or the structure/function of the products encoded by the genes, can provide a selective advantage to the organism and are subsequently retained. In this study, we demonstrate that duplicates of genes encoding the metabolic enzyme shikimate kinase (SK) in plants have evolved to acquire novel gene product functions and novel gene expression patterns. We introduce two ancient genes, SKL1 and SKL2, present in all higher plant groups that were previously overlooked due to their overall similarity to the ancestral SKs from which they originated. SKL1 mutants in the model plant Arabidopsis indicate this gene is required for chloroplast biogenesis. We show that SKL2 acquired a protein–protein interaction domain that is evolving under positive selection. We also show that SK duplicates that retained their ancestral enzyme function have acquired new expression patterns correlated with developmental processes and stress responses. These findings demonstrate that plant SK evolution has played an important role in both the acquisition of novel gene function as well as the diversification of metabolic regulation.
Collapse
Affiliation(s)
- Geoffrey Fucile
- Department of Cell and Systems Biology, University of Toronto, Canada
| | - Shannon Falconer
- Department of Cell and Systems Biology, University of Toronto, Canada
| | - Dinesh Christendat
- Department of Cell and Systems Biology, University of Toronto, Canada
- * E-mail:
| |
Collapse
|
38
|
Structure-based prediction of Mycobacterium tuberculosis shikimate kinase inhibitors by high-throughput virtual screening. Bioorg Med Chem Lett 2008; 18:3152-7. [DOI: 10.1016/j.bmcl.2008.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 04/25/2008] [Accepted: 05/01/2008] [Indexed: 10/22/2022]
|
39
|
Molecular modeling and dynamics studies of cytidylate kinase from Mycobacterium tuberculosis H37Rv. J Mol Model 2008; 14:427-34. [PMID: 18343960 DOI: 10.1007/s00894-008-0291-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 02/12/2008] [Indexed: 10/22/2022]
Abstract
Bacterial cytidylate kinase or cytidine monophosphate kinase (CMP kinase) catalyses the phosphoryl transfer from ATP to CMP and dCMP, resulting in the formation nucleoside diphosphates. In eukaryotes, CMP/UMP kinase catalyses the conversion of UMP and CMP to, respectively, UDP and CDP with high efficiency. This work describes for the first time a model of bacterial cytidylate kinase or cytidine monophosphate kinase (CMP kinase) from mycobacterium tuberculosis (MtCMPK). We modeled MtPCMPK in apo form and in complex with cytidine 5'-monophosphate (CMP) to try to determine the structural basis for specificity. Comparative analysis of the model of MtCMPK allowed identification of structural features responsible for ligand affinities. Analysis of the molecular dynamics simulations of these two systems indicates the structural features responsible for the stability of the structure, and may help in the identification of new inhibitors for this enzyme.
Collapse
|
40
|
Dias MVB, Faím LM, Vasconcelos IB, de Oliveira JS, Basso LA, Santos DS, de Azevedo WF. Effects of the magnesium and chloride ions and shikimate on the structure of shikimate kinase from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:1-6. [PMID: 17183161 PMCID: PMC2330112 DOI: 10.1107/s1744309106046823] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 11/06/2006] [Indexed: 11/10/2022]
Abstract
Bacteria, fungi and plants can convert carbohydrate and phosphoenolpyruvate into chorismate, which is the precursor of various aromatic compounds. The seven enzymes of the shikimate pathway are responsible for this conversion. Shikimate kinase (SK) is the fifth enzyme in this pathway and converts shikimate to shikimate-3-phosphate. In this work, the conformational changes that occur on binding of shikimate, magnesium and chloride ions to SK from Mycobacterium tuberculosis (MtSK) are described. It was observed that both ions and shikimate influence the conformation of residues of the active site of MtSK. Magnesium influences the conformation of the shikimate hydroxyl groups and the position of the side chains of some of the residues of the active site. Chloride seems to influence the affinity of ADP and its position in the active site and the opening length of the LID domain. Shikimate binding causes a closing of the LID domain and also seems to influence the crystallographic packing of SK. The results shown here could be useful for understanding the catalytic mechanism of SK and the role of ions in the activity of this protein.
Collapse
Affiliation(s)
- Marcio Vinicius Bertacine Dias
- Programa de Pós-Graduação em Biofísica Molecular, Departamento de Física, UNESP, São José do Rio Preto, SP 15054-000, Brazil
| | - Lívia Maria Faím
- Programa de Pós-Graduação em Biofísica Molecular, Departamento de Física, UNESP, São José do Rio Preto, SP 15054-000, Brazil
| | - Igor Bordin Vasconcelos
- Pontifícia Universidade Católica do Rio Grande do Sul, Centro de Pesquisa em Biologia Molecular e Funcional, Porto Alegre, RS, Brazil
| | - Jaim Simões de Oliveira
- Pontifícia Universidade Católica do Rio Grande do Sul, Centro de Pesquisa em Biologia Molecular e Funcional, Porto Alegre, RS, Brazil
| | - Luiz Augusto Basso
- Pontifícia Universidade Católica do Rio Grande do Sul, Centro de Pesquisa em Biologia Molecular e Funcional, Porto Alegre, RS, Brazil
| | - Diógenes Santiago Santos
- Pontifícia Universidade Católica do Rio Grande do Sul, Centro de Pesquisa em Biologia Molecular e Funcional, Porto Alegre, RS, Brazil
| | - Walter Filgueira de Azevedo
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681 Porto Alegre-RS, CEP 90619-900, Brazil
| |
Collapse
|
41
|
|
42
|
Hartmann MD, Bourenkov GP, Oberschall A, Strizhov N, Bartunik HD. Mechanism of phosphoryl transfer catalyzed by shikimate kinase from Mycobacterium tuberculosis. J Mol Biol 2006; 364:411-23. [PMID: 17020768 DOI: 10.1016/j.jmb.2006.09.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 08/31/2006] [Accepted: 09/01/2006] [Indexed: 10/24/2022]
Abstract
The structural mechanism of the catalytic functioning of shikimate kinase from Mycobacterium tuberculosis was investigated on the basis of a series of high-resolution crystal structures corresponding to individual steps in the enzymatic reaction. The catalytic turnover of shikimate and ATP into the products shikimate-3-phosphate and ADP, followed by release of ADP, was studied in the crystalline environment. Based on a comparison of the structural states before initiation of the reaction and immediately after the catalytic step, we derived a structural model of the transition state that suggests that phosphoryl transfer proceeds with inversion by an in-line associative mechanism. The random sequential binding of shikimate and nucleotides is associated with domain movements. We identified a synergic mechanism by which binding of the first substrate may enhance the affinity for the second substrate.
Collapse
Affiliation(s)
- Marcus D Hartmann
- Max Planck Unit for Structural Molecular Biology, MPG-ASMB c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
| | | | | | | | | |
Collapse
|
43
|
Zhai R, Meng G, Zhao Y, Liu B, Zhang G, Zheng X. A novel nuclear-localized protein with special adenylate kinase properties from Caenorhabditis elegans. FEBS Lett 2006; 580:3811-7. [PMID: 16781712 DOI: 10.1016/j.febslet.2006.05.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 05/29/2006] [Accepted: 05/31/2006] [Indexed: 11/27/2022]
Abstract
The adrenal gland protein AD-004 like protein (ADLP) from Caenorhabditis elegans was cloned and expressed in Escherichia coli. Enzyme assays showed that ADLP has special adenylate kinase (AK) properties, with ATP and dATP as the preferred phosphate donors. In contrast to all other AK isoforms, AMP and dAMP were the preferred substrates of ADLP; CMP, TMP and shikimate acid were also good substrates. Subcellular localization studies showed a predominant nuclear localization for this protein, which is different from AK1-AK5, but similar to that of human AK6. These results suggest that ADLP is more likely a member of the AK6 family. Furthermore, RNAi experiments targeting ADLP were conducted and showed that RNAi treatment resulted in the suppression of worm growth.
Collapse
Affiliation(s)
- Ruitong Zhai
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
44
|
Cheng WC, Chang YN, Wang WC. Structural basis for shikimate-binding specificity of Helicobacter pylori shikimate kinase. J Bacteriol 2005; 187:8156-63. [PMID: 16291688 PMCID: PMC1291267 DOI: 10.1128/jb.187.23.8156-8163.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shikimate kinase (EC 2.7.1.71) catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid in the presence of ATP. As the fifth key step in the shikimate pathway for aromatic amino acid biosynthesis in bacteria, fungi, and plants, but not mammals, shikimate kinase represents an attractive target for the development of new antimicrobial agents, herbicides, and antiparasitic agents. Here, we report the 1.8-Angstroms crystal structure of Helicobacter pylori shikimate kinase (HpSK). The crystal structure shows a three-layer alpha/beta fold consisting of a central sheet of five parallel beta-strands flanked by seven alpha-helices. An HpSK-shikimate-PO(4) complex was also determined and refined to 2.3 Angstroms, revealing induced-fit movement from an open to a closed form on substrate binding. Shikimate is located above a short 3(10) helix formed by a strictly conserved motif (GGGXV) after beta(3). Moreover, several highly conserved charged residues including Asp33 (in a conserved DT/SD motif), Arg57, and Arg132 (interacting with shikimate) are identified, guiding the development of novel inhibitors of shikimate kinase.
Collapse
Affiliation(s)
- Wen-Chi Cheng
- Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | | | | |
Collapse
|
45
|
Kasai K, Kanno T, Akita M, Ikejiri-Kanno Y, Wakasa K, Tozawa Y. Identification of three shikimate kinase genes in rice: characterization of their differential expression during panicle development and of the enzymatic activities of the encoded proteins. PLANTA 2005; 222:438-47. [PMID: 15891897 DOI: 10.1007/s00425-005-1559-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 04/04/2005] [Indexed: 05/02/2023]
Abstract
The shikimate pathway is common to the biosynthesis of the three aromatic amino acids and that of various secondary metabolites in land plants. Shikimate kinase (SK; EC 2.7.1.71) catalyzes the phosphorylation of shikimate to yield shikimate 3-phosphate. In an attempt to elucidate the functional roles of enzymes that participate in the shikimate pathway in rice (Oryza sativa), we have now identified and characterized cDNAs corresponding to three SK genes--OsSK1, OsSK2, and OsSK3--in this monocotyledenous plant. These SK cDNAs encode proteins with different NH(2)-terminal regions and with putative mature regions that share sequence similarity with other plant and microbial SK proteins. An in vitro assay of protein import into intact chloroplasts isolated from pea (Pisum sativum) seedlings revealed that the full-length forms of the three rice SK proteins are translocated into chloroplasts and processed, consistent with the assumption that the different NH(2)-terminal sequences function as chloroplast transit peptides. The processed forms of all three rice proteins synthesized in vitro manifested SK catalytic activity. Northern blot analysis revealed that the expression of OsSK1 and OsSK2 was induced in rice calli by treatment with the elicitor N-acetylchitoheptaose, and that expression of OsSK1 and OsSK3 was up-regulated specifically during the heading stage of panicle development. These results suggest that differential expression of the three rice SK genes and the accompanying changes in the production of shikimate 3-phosphate may contribute to the defense response and to panicle development in rice.
Collapse
Affiliation(s)
- Koji Kasai
- Japan Science and Technology Agency for Core Research for Evolutional Science and Technology, Kawaguchi 332-0012, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Miled N, Riviere M, Cavalier JF, Buono G, Berti L, Verger R. Discrimination between closed and open forms of lipases using electrophoretic techniques. Anal Biochem 2005; 338:171-8. [PMID: 15745736 DOI: 10.1016/j.ab.2004.11.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Indexed: 10/25/2022]
Abstract
The enhanced catalytic activity of lipases is often associated with structural changes. The three-dimensional (3D) structures showed that the covalently inhibited lipases exist under their open conformations, in contrast to their native closed forms. We studied the inhibition of various lipases--human and dog gastric lipases, human pancreatic lipase, and Humicola lanuginosa lipase--by the octyl-undecyl phosphonate inhibitor, and we measured the subsequent modifications of their respective electrophoretic mobility. Furthermore, the experimental values of the isoelectric points found for the native (closed) and inhibited (open) lipases are in agreement with theoretical calculations based on the electrostatic potential. We concluded that there is a significant difference in the isoelectric points between the closed (native) and open (inhibited) conformations of the four lipases investigated. Thus, analysis of the electrophoretic pattern is proposed as an easy experimental tool to differentiate between a closed and an open form of a given lipase.
Collapse
Affiliation(s)
- N Miled
- UPR 9025 du CNRS, Laboratoire de Lipolyse Enzymatique, 31 Chemin Joseph-Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|
47
|
Barragán MJL, Blázquez B, Zamarro MT, Mancheño JM, García JL, Díaz E, Carmona M. BzdR, a repressor that controls the anaerobic catabolism of benzoate in Azoarcus sp. CIB, is the first member of a new subfamily of transcriptional regulators. J Biol Chem 2005; 280:10683-94. [PMID: 15634675 DOI: 10.1074/jbc.m412259200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this work, we have studied the transcriptional regulation of the bzd operon involved in the anaerobic catabolism of benzoate in the denitrifying Azoarcus sp. strain CIB. The transcription start site of the P(N) promoter running the expression of the bzd catabolic genes was identified. Gel retardation assays and P(N)::lacZ translational fusion experiments performed both in Azoarcus sp. CIB and Escherichia coli cells have shown that bzdR encodes a specific repressor that controls the inducible expression of the adjacent bzd catabolic operon, being the first intermediate of the catabolic pathway (i.e. benzoyl-CoA, the actual inducer molecule). This is the first report of a transcriptional repressor and a CoA-derived aromatic inducer controlling gene expression in the anaerobic catabolism of aromatic compounds. DNase I footprinting experiments revealed that BzdR protected three regions (operators) at the P(N) promoter. The three operators contain direct repetitions of a TGCA sequence that forms part of longer palindromic structures. In agreement with the repressor role of BzdR, operator region I spans the transcription initiation site as well as the -10 sequence for recognition of the RNA polymerase. Primary sequence analyses of BzdR showed an unusual modular organization with an N-terminal region homologous to members of the HTH-XRE family of transcriptional regulators and a C-terminal region similar to shikimate kinases. A three-dimensional model of the N-terminal and C-terminal regions of BzdR, generated by comparison with the crystal structures of the SinR regulator from Bacillus subtilis and the shikimate kinase I protein from E. coli, strongly suggests that they contain the helix-turn-helix DNA-binding motif and the benzoyl-CoA binding groove, respectively. The BzdR protein constitutes, therefore, the prototype of a new subfamily of transcriptional regulators.
Collapse
Affiliation(s)
- María J L Barragán
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
Dhaliwal B, Nichols CE, Ren J, Lockyer M, Charles I, Hawkins AR, Stammers DK. Crystallographic studies of shikimate binding and induced conformational changes in Mycobacterium tuberculosis shikimate kinase. FEBS Lett 2004; 574:49-54. [PMID: 15358538 DOI: 10.1016/j.febslet.2004.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 07/07/2004] [Accepted: 08/04/2004] [Indexed: 11/19/2022]
Abstract
The X-ray crystal structure of Mycobacterium tuberculosis shikimate kinase (SK) with bound shikimate and adenosine diphosphate (ADP) has been determined to a resolution of 2.15 A. The binding of shikimate in a shikimate kinase crystal structure has not previously been reported. The substrate binds in a pocket lined with hydrophobic residues and interacts with several highly conserved charged residues including Asp34, Arg58, Glu61 and Arg136 which project into the cavity. Comparisons of our ternary SK-ADP-shikimate complex with an earlier binary SK-ADP complex show that conformational changes occur on shikimate binding with the substrate-binding domain rotating by 10 degrees. Detailed knowledge of shikimate binding is an important step in the design of inhibitors of SK, which have potential as novel anti-tuberculosis agents.
Collapse
Affiliation(s)
- Balvinder Dhaliwal
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | | | | | | | | | | | | |
Collapse
|
49
|
Arcuri HA, Canduri F, Pereira JH, da Silveira NJF, Camera Júnior JC, de Oliveira JS, Basso LA, Palma MS, Santos DS, de Azevedo Júnior WF. Molecular models for shikimate pathway enzymes of Xylella fastidiosa. Biochem Biophys Res Commun 2004; 320:979-91. [PMID: 15240145 DOI: 10.1016/j.bbrc.2004.05.220] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Indexed: 11/30/2022]
Abstract
The Xylella fastidiosa is a bacterium that is the cause of citrus variegated chlorosis (CVC). The shikimate pathway is of pivotal importance for production of a plethora of aromatic compounds in plants, bacteria, and fungi. Putative structural differences in the enzymes from the shikimate pathway, between the proteins of bacterial origin and those of plants, could be used for the development of a drug for the control of CVC. However, inhibitors for shikimate pathway enzymes should have high specificity for X. fastidiosa enzymes, since they are also present in plants. In order to pave the way for structural and functional efforts towards antimicrobial agent development, here we describe the molecular modeling of seven enzymes of the shikimate pathway of X. fastidiosa. The structural models of shikimate pathway enzymes, complexed with inhibitors, strongly indicate that the previously identified inhibitors may also inhibit the X. fastidiosa enzymes.
Collapse
|
50
|
Bellinzoni M, Riccardi G. Techniques and applications: The heterologous expression of Mycobacterium tuberculosis genes is an uphill road. Trends Microbiol 2003; 11:351-8. [PMID: 12915092 DOI: 10.1016/s0966-842x(03)00180-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Marco Bellinzoni
- Dipartimento di Genetica e Microbiologia, Università di Pavia, via Ferrata, 1, 27100, Pavia, Italy
| | | |
Collapse
|