1
|
Lee H, Park H, Kwak K, Lee CE, Yun J, Lee D, Lee JH, Lee SH, Kang LW. Structural comparison of substrate-binding pockets of serine β-lactamases in classes A, C, and D. J Enzyme Inhib Med Chem 2025; 40:2435365. [PMID: 39714271 DOI: 10.1080/14756366.2024.2435365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/08/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
β-lactams have been the most successful antibiotics, but the rise of multi-drug resistant (MDR) bacteria threatens their effectiveness. Serine β-lactamases (SBLs), among the most common causes of resistance, are classified as A, C, and D, with numerous variants complicating structural and substrate spectrum comparisons. This study compares representative SBLs of these classes, focusing on the substrate-binding pocket (SBP). SBP is kidney bean-shaped on the indented surface, formed mainly by loops L1, L2, and L3, and an additional loop Lc in class C. β-lactams bind in a conserved orientation, with the β-lactam ring towards L2 and additional rings towards the space between L1 and L3. Structural comparison shows each class has distinct SBP structures, but subclasses share a conserved scaffold. The SBP structure, accommodating complimentary β-lactams, determines the substrate spectrum of SBLs. The systematic comparison of SBLs, including structural compatibility between β-lactams and SBPs, will help understand their substrate spectrum.
Collapse
Affiliation(s)
- Hyeonmin Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Hyunjae Park
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Kiwoong Kwak
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Chae-Eun Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jiwon Yun
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Donghyun Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, Republic of Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, Republic of Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Ren Y, Manefield M. Evolution of pollutant biodegradation. Appl Microbiol Biotechnol 2025; 109:36. [PMID: 39903283 PMCID: PMC11794338 DOI: 10.1007/s00253-025-13418-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
Pollutant-derived risks to human and environmental health are exacerbated by slow natural attenuation rates, often driven by pollutant toxicity to microorganisms that can degrade them or limitations to the ability of microorganisms to metabolise them. This review explores mechanisms employed by bacteria to protect themselves from pollutant toxicity in the context of the evolution of pollutant-degrading abilities. The role of promiscuous enzymes in pollutant transformation is subsequently reviewed, highlighting the emergence of novel metabolic pathways and their transcriptional regulation in response to pollutant exposure, followed by the gene transcription regulation to optimise the cellular component synthesis for adaptation on the novel substrate. Additionally, we discuss epistatic interactions among mutations vital for this process both at macromolecular and at cellular levels. Finally, evolutionary constraints towards enhanced fitness in the context of pollutant degradation are considered, the constraints imposed by the epistasis from mutations on both enzyme level and cellular level, concluding with challenges and emerging opportunities to develop sustainable contaminated site remediation technologies. KEY POINTS: •Pollutants can exert toxicity on cellular membrane, enzyme and gene transcription. •Bacteria can patch promiscuous enzymes into novel pathway to degrade pollutants. •The evolution trajectory is constrained by epistasis from mutations on enzyme and cellular level.
Collapse
Affiliation(s)
- Yi Ren
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mike Manefield
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
3
|
Huang Y, Zhang P, Wang H, Chen Y, Liu T, Luo X. Genetic Code Expansion: Recent Developments and Emerging Applications. Chem Rev 2025; 125:523-598. [PMID: 39737807 PMCID: PMC11758808 DOI: 10.1021/acs.chemrev.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025]
Abstract
The concept of genetic code expansion (GCE) has revolutionized the field of chemical and synthetic biology, enabling the site-specific incorporation of noncanonical amino acids (ncAAs) into proteins, thus opening new avenues in research and applications across biology and medicine. In this review, we cover the principles of GCE, including the optimization of the aminoacyl-tRNA synthetase (aaRS)/tRNA system and the advancements in translation system engineering. Notable developments include the refinement of aaRS/tRNA pairs, enhancements in screening methods, and the biosynthesis of noncanonical amino acids. The applications of GCE technology span from synthetic biology, where it facilitates gene expression regulation and protein engineering, to medicine, with promising approaches in drug development, vaccine production, and gene editing. The review concludes with a perspective on the future of GCE, underscoring its potential to further expand the toolkit of biology and medicine. Through this comprehensive review, we aim to provide a detailed overview of the current state of GCE technology, its challenges, opportunities, and the frontier it represents in the expansion of the genetic code for novel biological research and therapeutic applications.
Collapse
Affiliation(s)
- Yujia Huang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Pan Zhang
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
| | - Haoyu Wang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Yan Chen
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Liu
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Xiaozhou Luo
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Hossain KA, Nierzwicki L, Orozco M, Czub J, Palermo G. Flexibility in PAM Recognition Expands DNA Targeting in xCas9. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.26.609653. [PMID: 39803448 PMCID: PMC11722361 DOI: 10.1101/2024.08.26.609653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
xCas9 is an evolved variant of the CRISPR-Cas9 genome editing system, engineered to improve specificity and reduce undesired off-target effects. How xCas9 expands the DNA targeting capability of Cas9 by recognizing a series of alternative Protospacer Adjacent Motif (PAM) sequences while ignoring others is unknown. Here, we elucidate the molecular mechanism underlying xCas9's expanded PAM recognition and provide critical insights for expanding DNA targeting. We demonstrate that while wild-type Cas9 enforces stringent guanine selection through the rigidity of its interacting arginine dyad, xCas9 introduces flexibility in R1335, enabling selective recognition of specific PAM sequences. This increased flexibility confers a pronounced entropic preference, which also improves recognition of the canonical TGG PAM. Furthermore, xCas9 enhances DNA binding to alternative PAM sequences during the early evolution cycles, while favouring binding to the canonical PAM in the final evolution cycle. This dual functionality highlights how xCas9 broadens PAM recognition and underscores the importance of fine-tuning the flexibility of the PAM-interacting cleft as a key strategy for expanding the DNA targeting potential of CRISPR-Cas systems. These findings deepen our understanding of DNA recognition in xCas9 and may apply to other CRISPR-Cas systems with similar PAM recognition requirements.
Collapse
Affiliation(s)
- Kazi A. Hossain
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
- Department of Physical Chemistry, Gdańsk University of Technology, Gdańsk 80-233, Poland
| | - Lukasz Nierzwicki
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jacek Czub
- Department of Physical Chemistry, Gdańsk University of Technology, Gdańsk 80-233, Poland
- BioTechMed Center, Gdańsk University of Technology, Gdańsk 80-233, Poland
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
- Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| |
Collapse
|
5
|
Arantes P, Chen X, Sinha S, Saha A, Patel A, Sample M, Nierzwicki Ł, Lapinaite A, Palermo G. Dimerization of the deaminase domain and locking interactions with Cas9 boost base editing efficiency in ABE8e. Nucleic Acids Res 2024; 52:13931-13944. [PMID: 39569582 PMCID: PMC11662675 DOI: 10.1093/nar/gkae1066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
CRISPR-based DNA adenine base editors (ABEs) hold remarkable promises to address human genetic diseases caused by point mutations. ABEs were developed by combining CRISPR-Cas9 with a transfer RNA (tRNA) adenosine deaminase enzyme and through directed evolution, conferring the ability to deaminate DNA. However, the molecular mechanisms driving the efficient DNA deamination in the evolved ABEs remain unresolved. Here, extensive molecular simulations and biochemical experiments reveal the biophysical basis behind the astonishing base editing efficiency of ABE8e, the most efficient ABE to date. We demonstrate that the ABE8e's DNA deaminase domain, TadA8e, forms remarkably stable dimers compared to its tRNA-deaminating progenitor and that the strength of TadA dimerization is crucial for DNA deamination. The TadA8e dimer forms robust interactions involving its R98 and R129 residues, the RuvC domain of Cas9 and the DNA. These locking interactions are exclusive to ABE8e, distinguishing it from its predecessor, ABE7.10, and are indispensable to boost DNA deamination. Additionally, we identify three critical residues that drive the evolution of ABE8e toward improved base editing by balancing the enzyme's activity and stability, reinforcing the TadA8e dimer and improving the ABE8e's functionality. These insights offer new directions to engineer superior ABEs, advancing the design of safer precision genome editing tools.
Collapse
Affiliation(s)
- Pablo R Arantes
- Department of Bioengineering, University of California Riverside, 900 University Avenue, 92512 Riverside, CA, USA
| | - Xiaoyu Chen
- School of Molecular Sciences, Arizona State University, 551 E University Dr, Tempe, AZ 85281, USA
- Gavin Herbert Eye Institute - Centre for Translational Vision Research, University of California Irvine School of Medicine, 850 Health Sciences Rd, Irvine, CA 92617, USA
| | - Souvik Sinha
- Department of Bioengineering, University of California Riverside, 900 University Avenue, 92512 Riverside, CA, USA
| | - Aakash Saha
- Department of Bioengineering, University of California Riverside, 900 University Avenue, 92512 Riverside, CA, USA
| | - Amun C Patel
- Department of Bioengineering, University of California Riverside, 900 University Avenue, 92512 Riverside, CA, USA
| | - Matthew Sample
- Department of Bioengineering, University of California Riverside, 900 University Avenue, 92512 Riverside, CA, USA
| | - Łukasz Nierzwicki
- Department of Bioengineering, University of California Riverside, 900 University Avenue, 92512 Riverside, CA, USA
| | - Audrone Lapinaite
- Gavin Herbert Eye Institute - Centre for Translational Vision Research, University of California Irvine School of Medicine, 850 Health Sciences Rd, Irvine, CA 92617, USA
- Department of Ophthalmology, University of California Irvine School of Medicine, 850 Health Sciences Rd, Irvine, CA 92617, USA
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, 900 University Avenue, 92512 Riverside, CA, USA
- Department of Chemistry, University of California Riverside, 900 University Avenue, 92512 Riverside, CA, USA
| |
Collapse
|
6
|
Tripp A, Braun M, Wieser F, Oberdorfer G, Lechner H. Click, Compute, Create: A Review of Web-based Tools for Enzyme Engineering. Chembiochem 2024; 25:e202400092. [PMID: 38634409 DOI: 10.1002/cbic.202400092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
Enzyme engineering, though pivotal across various biotechnological domains, is often plagued by its time-consuming and labor-intensive nature. This review aims to offer an overview of supportive in silico methodologies for this demanding endeavor. Starting from methods to predict protein structures, to classification of their activity and even the discovery of new enzymes we continue with describing tools used to increase thermostability and production yields of selected targets. Subsequently, we discuss computational methods to modulate both, the activity as well as selectivity of enzymes. Last, we present recent approaches based on cutting-edge machine learning methods to redesign enzymes. With exception of the last chapter, there is a strong focus on methods easily accessible via web-interfaces or simple Python-scripts, therefore readily useable for a diverse and broad community.
Collapse
Affiliation(s)
- Adrian Tripp
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Markus Braun
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Florian Wieser
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Gustav Oberdorfer
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
- BioTechMed, Graz, Austria
| | - Horst Lechner
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
7
|
Nordquist EB, Zhao M, Kumar A, MacKerell AD. Combined Physics- and Machine-Learning-Based Method to Identify Druggable Binding Sites Using SILCS-Hotspots. J Chem Inf Model 2024; 64:7743-7757. [PMID: 39283165 PMCID: PMC11473228 DOI: 10.1021/acs.jcim.4c01189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Identifying druggable binding sites on proteins is an important and challenging problem, particularly for cryptic, allosteric binding sites that may not be obvious from X-ray, cryo-EM, or predicted structures. The Site-Identification by Ligand Competitive Saturation (SILCS) method accounts for the flexibility of the target protein using all-atom molecular simulations that include various small molecule solutes in aqueous solution. During the simulations, the combination of protein flexibility and comprehensive sampling of the water and solute spatial distributions can identify buried binding pockets absent in experimentally determined structures. Previously, we reported a method for leveraging the information in the SILCS sampling to identify binding sites (termed Hotspots) of small mono- or bicyclic compounds, a subset of which coincide with known binding sites of drug-like molecules. Here, we build on that physics-based approach and present a ML model for ranking the Hotspots according to the likelihood they can accommodate drug-like molecules (e.g., molecular weight >200 Da). In the independent validation set, which includes various enzymes and receptors, our model recalls 67% and 89% of experimentally validated ligand binding sites in the top 10 and 20 ranked Hotspots, respectively. Furthermore, we show that the model's output Decision Function is a useful metric to predict binding sites and their potential druggability in new targets. Given the utility the SILCS method for ligand discovery and optimization, the tools presented represent an important advancement in the identification of orthosteric and allosteric binding sites and the discovery of drug-like molecules targeting those sites.
Collapse
Affiliation(s)
- Erik B. Nordquist
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Baltimore, Maryland 21201, United States
| | - Mingtian Zhao
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Baltimore, Maryland 21201, United States
| | - Anmol Kumar
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Baltimore, Maryland 21201, United States
| | - Alexander D. MacKerell
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Baltimore, Maryland 21201, United States
| |
Collapse
|
8
|
Yehorova D, Crean RM, Kasson PM, Kamerlin SCL. Friends and relatives: insight into conformational regulation from orthologues and evolutionary lineages using KIF and KIN. Faraday Discuss 2024; 252:341-353. [PMID: 38842247 PMCID: PMC11389856 DOI: 10.1039/d4fd00018h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Noncovalent interaction networks provide a powerful means to represent and analyze protein structure. Such networks can represent both static structures and dynamic conformational ensembles. We have recently developed two tools for analyzing such interaction networks and generating hypotheses for protein engineering. Here, we apply these tools to the conformational regulation of substrate specificity in class A β-lactamases, particularly the evolutionary development from generalist to specialist catalytic function and how that can be recapitulated or reversed by protein engineering. These tools, KIF and KIN, generate a set of prioritized residues and interactions as targets for experimental protein engineering.
Collapse
Affiliation(s)
- Dariia Yehorova
- School of Chemistry and Biochemistry, Georgia Institute of Technology, USA.
| | - Rory M Crean
- Department of Chemistry-BMC, Uppsala University, Sweden
| | - Peter M Kasson
- Department of Biomedical Engineering, University of Virginia, USA
- Department of Cell and Molecular Biology, Uppsala University, Sweden
- Departments of Chemistry & Biochemistry and Biomedical Engineering, Georgia Institute of Technology, USA.
| | | |
Collapse
|
9
|
Grigorenko VG, Krivitskaya AV, Khrenova MG, Rubtsova MY, Presnova GV, Andreeva IP, Serova OV, Egorov AM. Saturation Mutagenesis and Molecular Modeling: The Impact of Methionine 182 Substitutions on the Stability of β-Lactamase TEM-1. Int J Mol Sci 2024; 25:7691. [PMID: 39062934 PMCID: PMC11276661 DOI: 10.3390/ijms25147691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Serine β-lactamase TEM-1 is the first β-lactamase discovered and is still common in Gram-negative pathogens resistant to β-lactam antibiotics. It hydrolyzes penicillins and cephalosporins of early generations. Some of the emerging TEM-1 variants with one or several amino acid substitutions have even broader substrate specificity and resistance to known covalent inhibitors. Key amino acid substitutions affect catalytic properties of the enzyme, and secondary mutations accompany them. The occurrence of the secondary mutation M182T, called a "global suppressor", has almost doubled over the last decade. Therefore, we performed saturating mutagenesis at position 182 of TEM-1 to determine the influence of this single amino acid substitution on the catalytic properties, thermal stability, and ability for thermoreactivation. Steady-state parameters for penicillin, cephalothin, and ceftazidime are similar for all TEM-1 M182X variants, whereas melting temperature and ability to reactivate after incubation at a higher temperature vary significantly. The effects are multidirectional and depend on the particular amino acid at position 182. The M182E variant of β-lactamase TEM-1 demonstrates the highest residual enzymatic activity, which is 1.5 times higher than for the wild-type enzyme. The 3D structure of the side chain of residue 182 is of particular importance as observed from the comparison of the M182I and M182L variants of TEM-1. Both of these amino acid residues have hydrophobic side chains of similar size, but their residual activity differs by three-fold. Molecular dynamic simulations add a mechanistic explanation for this phenomenon. The important structural element is the V159-R65-E177 triad that exists due to both electrostatic and hydrophobic interactions. Amino acid substitutions that disturb this triad lead to a decrease in the ability of the β-lactamase to be reactivated.
Collapse
Affiliation(s)
- Vitaly G. Grigorenko
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.G.G.); (M.Y.R.); (G.V.P.); (I.P.A.); (A.M.E.)
| | - Alexandra V. Krivitskaya
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Maria G. Khrenova
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.G.G.); (M.Y.R.); (G.V.P.); (I.P.A.); (A.M.E.)
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Maya Yu. Rubtsova
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.G.G.); (M.Y.R.); (G.V.P.); (I.P.A.); (A.M.E.)
| | - Galina V. Presnova
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.G.G.); (M.Y.R.); (G.V.P.); (I.P.A.); (A.M.E.)
| | - Irina P. Andreeva
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.G.G.); (M.Y.R.); (G.V.P.); (I.P.A.); (A.M.E.)
| | - Oxana V. Serova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Alexey M. Egorov
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.G.G.); (M.Y.R.); (G.V.P.); (I.P.A.); (A.M.E.)
| |
Collapse
|
10
|
Gerbino KR, Borin JM, Ardell SM, Lee JJ, Corbett KD, Meyer JR. Bacteriophage Φ21's receptor-binding protein evolves new functions through destabilizing mutations that generate non-genetic phenotypic heterogeneity. Virus Evol 2024; 10:veae049. [PMID: 39170727 PMCID: PMC11336670 DOI: 10.1093/ve/veae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
How viruses evolve to expand their host range is a major question with implications for predicting the next pandemic. Gain-of-function experiments have revealed that host-range expansions can occur through relatively few mutations in viral receptor-binding proteins, and the search for molecular mechanisms that explain such expansions is underway. Previous research on expansions of receptor use in bacteriophage λ has shown that mutations that destabilize λ's receptor-binding protein cause it to fold into new conformations that can utilize novel receptors but have weakened thermostability. These observations led us to hypothesize that other viruses may take similar paths to expand their host range. Here, we find support for our hypothesis by studying another virus, bacteriophage 21 (Φ21), which evolves to use two new host receptors within 2 weeks of laboratory evolution. By measuring the thermodynamic stability of Φ21 and its descendants, we show that as Φ21 evolves to use new receptors and expands its host range, it becomes less stable and produces viral particles that are genetically identical but vary in their thermostabilities. Next, we show that this non-genetic heterogeneity between particles is directly associated with receptor use innovation, as phage particles with more derived receptor-use capabilities are more unstable and decay faster. Lastly, by manipulating the expression of protein chaperones during Φ21 infection, we demonstrate that heterogeneity in receptor use of phage particles arises during protein folding. Altogether, our results provide support for the hypothesis that viruses can evolve new receptor-use tropisms through mutations that destabilize the receptor-binding protein and produce multiple protein conformers.
Collapse
Affiliation(s)
- Krista R Gerbino
- School of Biological Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
| | - Joshua M Borin
- School of Biological Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
| | - Sarah M Ardell
- School of Biological Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
| | - Justin J Lee
- School of Biological Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
| | - Kevin D Corbett
- School of Biological Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
- Department of Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
| | - Justin R Meyer
- School of Biological Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
| |
Collapse
|
11
|
Tandar ST, Aulin LBS, Leemkuil EMJ, Liakopoulos A, van Hasselt JGC. Semi-mechanistic modeling of resistance development to β-lactam and β-lactamase-inhibitor combinations. J Pharmacokinet Pharmacodyn 2024; 51:199-211. [PMID: 38008877 DOI: 10.1007/s10928-023-09895-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/27/2023] [Indexed: 11/28/2023]
Abstract
The use of β-lactam (BL) and β-lactamase inhibitor (BLI) combinations, such as piperacillin-tazobactam (PIP-TAZ) is an effective strategy to combat infections by extended-spectrum β-lactamase-producing bacteria. However, in Gram-negative bacteria, resistance (both mutational and adaptive) to BL-BLI combination can still develop through multiple mechanisms. These mechanisms may include increased β-lactamase activity, reduced drug influx, and increased drug efflux. Understanding the relative contribution of these mechanisms during resistance development helps identify the most impactful mechanism to target in designing a treatment to counter BL-BLI resistance. This study used semi-mechanistic mathematical modeling in combination with antibiotic sensitivity assays to assess the potential impact of different resistance mechanisms during the development of PIP-TAZ resistance in a Klebsiella pneumoniae isolate expressing CTX-M-15 and SHV-1 β-lactamases. The mathematical models were used to evaluate the potential impact of several cellular changes as a sole mediator of PIP-TAZ resistance. Our semi-mechanistic model identified 2 out of the 13 inspected mechanisms as key resistance mechanisms that may independently support the observed magnitude of PIP-TAZ resistance, namely porin loss and efflux pump up-regulation. Simulation using the resulting models also suggested the possible adjustment of PIP-TAZ dose outside its commonly used 8:1 dosing ratio. The current study demonstrated how theory-based mechanistic models informed by experimental data can be used to support hypothesis generation regarding potential resistance mechanisms, which may guide subsequent experimental studies.
Collapse
Affiliation(s)
- Sebastian T Tandar
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | - Linda B S Aulin
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Department Clinical Pharmacy and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Eva M J Leemkuil
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Apostolos Liakopoulos
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - J G Coen van Hasselt
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
12
|
Wakisaka M, Tanaka SI, Takano K. Utilization of low-stability variants in protein evolutionary engineering. Int J Biol Macromol 2024; 272:132946. [PMID: 38848839 DOI: 10.1016/j.ijbiomac.2024.132946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Evolutionary engineering involves repeated mutations and screening and is widely used to modify protein functions. However, it is important to diversify evolutionary pathways to eliminate the bias and limitations of the variants by using traditionally unselected variants. In this study, we focused on low-stability variants that are commonly excluded from evolutionary processes and tested a method that included an additional restabilization step. The esterase from the thermophilic bacterium Alicyclobacillus acidocaldarius was used as a model protein, and its activity at its optimum temperature of 65 °C was improved by evolutionary experiments using random mutations by error-prone PCR. After restabilization using low-stability variants with low-temperature (37 °C) activity, several re-stabilizing variants were obtained from a large number of variant libraries. Some of the restabilized variants achieved by removing the destabilizing mutations showed higher activity than that of the wild-type protein. This implies that low-stability variants with low-temperature activity can be re-evolved for future use. This method will enable further diversification of evolutionary pathways.
Collapse
Affiliation(s)
- Mitsutoshi Wakisaka
- Department of Biomolecular Chemistry, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan
| | - Shun-Ichi Tanaka
- Department of Biomolecular Chemistry, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan
| | - Kazufumi Takano
- Department of Biomolecular Chemistry, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan.
| |
Collapse
|
13
|
Pu Z, Cao J, Wu W, Song Z, Yang L, Wu J, Yu H. Reconstructing dynamics correlation network to simultaneously improve activity and stability of 2,3-butanediol dehydrogenase by design of distal interchain disulfide bonds. Int J Biol Macromol 2024; 267:131415. [PMID: 38582485 DOI: 10.1016/j.ijbiomac.2024.131415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
The complete enzyme catalytic cycle includes substrate binding, chemical reaction and product release, in which different dynamic conformations are adopted. Due to the complex relationship among enzyme activity, stability and dynamics, the directed evolution of enzymes for improved activity or stability commonly leads to a trade-off in stability or activity. It hence remains a challenge to engineer an enzyme to have both enhanced activity and stability. Here, we have attempted to reconstruct the dynamics correlation network involved with active center to improve both activity and stability of a 2,3-butanediol dehydrogenase (2,3-BDH) by introducing inter-chain disulfide bonds. A computational strategy was first applied to evaluate the effect of introducing inter-chain disulfide bond on activity and stability of three 2,3-BDHs, and the N258C mutation of 2,3-BDH from Corynebacterium glutamicum (CgBDH) was proved to be effective in improving both activity and stability. In the results, CgBDH-N258C showed a different unfolding curve from the wild type, with two melting temperatures (Tm) of 68.3 °C and 50.8 °C, 19.7 °C and 2 °C higher than 48.6 °C of the wild type. Its half-life was also improved by 14.8-fold compared to the wild type. Catalytic efficiency (kcat/Km) of the mutant was increased by 7.9-fold toward native substrate diacetyl and 8.8-fold toward non-native substrate 2,5-hexanedione compared to the wild type. Molecular dynamics simulations revealed that an interaction network formed by Cys258, Arg162, Ala144 and the catalytic residues was reconstructed in the mutant and the dynamics change caused by the disulfide bond could be propagated through the interactions network. This improved the enzyme stability and activity by decreasing the flexibility and locking more "reactive" pose, respectively. Further construction of mutations including A144G showing a 44-fold improvement in catalytic efficiency toward meso-2,3-BD confirmed the role of modifying dynamics correlation network in tunning enzyme activity and selectivity. This study provided important insights into the relationship among dynamics, enzyme catalysis and stability, and will be useful in the designing new enzymes with co-evolution of stability, activity and selectivity.
Collapse
Affiliation(s)
- Zhongji Pu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang 311200, China; Xianghu Laboratory, Hangzhou 311231, China
| | - Jiawen Cao
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Wenhui Wu
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang 311200, China
| | - Zhongdi Song
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang 311200, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang 311200, China
| | - Haoran Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang 311200, China.
| |
Collapse
|
14
|
Strobel HM, Labador SD, Basu D, Sane M, Corbett KD, Meyer JR. Viral Receptor-Binding Protein Evolves New Function through Mutations That Cause Trimer Instability and Functional Heterogeneity. Mol Biol Evol 2024; 41:msae056. [PMID: 38586942 PMCID: PMC10999833 DOI: 10.1093/molbev/msae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/07/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
When proteins evolve new activity, a concomitant decrease in stability is often observed because the mutations that confer new activity can destabilize the native fold. In the conventional model of protein evolution, reduced stability is considered a purely deleterious cost of molecular innovation because unstable proteins are prone to aggregation and are sensitive to environmental stressors. However, recent work has revealed that nonnative, often unstable protein conformations play an important role in mediating evolutionary transitions, raising the question of whether instability can itself potentiate the evolution of new activity. We explored this question in a bacteriophage receptor-binding protein during host-range evolution. We studied the properties of the receptor-binding protein of bacteriophage λ before and after host-range evolution and demonstrated that the evolved protein is relatively unstable and may exist in multiple conformations with unique receptor preferences. Through a combination of structural modeling and in vitro oligomeric state analysis, we found that the instability arises from mutations that interfere with trimer formation. This study raises the intriguing possibility that protein instability might play a previously unrecognized role in mediating host-range expansions in viruses.
Collapse
Affiliation(s)
- Hannah M Strobel
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Sweetzel D Labador
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Dwaipayan Basu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mrudula Sane
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kevin D Corbett
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Justin R Meyer
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
15
|
Radojković M, Ubbink M. Positive epistasis drives clavulanic acid resistance in double mutant libraries of BlaC β-lactamase. Commun Biol 2024; 7:197. [PMID: 38368480 PMCID: PMC10874438 DOI: 10.1038/s42003-024-05868-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/26/2024] [Indexed: 02/19/2024] Open
Abstract
Phenotypic effects of mutations are highly dependent on the genetic backgrounds in which they occur, due to epistatic effects. To test how easily the loss of enzyme activity can be compensated for, we screen mutant libraries of BlaC, a β-lactamase from Mycobacterium tuberculosis, for fitness in the presence of carbenicillin and the inhibitor clavulanic acid. Using a semi-rational approach and deep sequencing, we prepare four double-site saturation libraries and determine the relative fitness effect for 1534/1540 (99.6%) of the unique library members at two temperatures. Each library comprises variants of a residue known to be relevant for clavulanic acid resistance as well as residue 105, which regulates access to the active site. Variants with greatly improved fitness were identified within each library, demonstrating that compensatory mutations for loss of activity can be readily found. In most cases, the fittest variants are a result of positive epistasis, indicating strong synergistic effects between the chosen residue pairs. Our study sheds light on a role of epistasis in the evolution of functional residues and underlines the highly adaptive potential of BlaC.
Collapse
Affiliation(s)
- Marko Radojković
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
16
|
Villanueva M, Vostal LE, Cohen DN, Biesbrock D, Kuwaye EP, Driver SG, Hart KM. Differential effects of disulfide bond formation in TEM-1 versus CTX-M-9 β-lactamase. Protein Sci 2024; 33:e4816. [PMID: 37897253 PMCID: PMC10731493 DOI: 10.1002/pro.4816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
To investigate how disulfide bonds can impact protein energy landscapes, we surveyed the effects of adding or removing a disulfide in two β-lactamase enzymes, TEM-1 and CTX-M-9. The homologs share a structure and 38% sequence identity, but only TEM-1 contains a native disulfide bond. They also differ in thermodynamic stability and in the number of states populated at equilibrium: CTX-M-9 is two-state whereas TEM-1 has an additional intermediate state. We hypothesized that the disulfide bond is the major underlying determinant for these observed differences in their energy landscapes. To test this, we removed the disulfide bridge from TEM-1 and introduced a disulfide bridge at the same location in CTX-M-9. This modest change to sequence modulates the stabilities-and therefore populations-of TEM-1's equilibrium states and, more surprisingly, creates a novel third state in CTX-M-9. Unlike TEM-1's partially folded intermediate, this third state is a higher-order oligomer with reduced cysteines that retains the native fold and is fully active. Sub-denaturing concentrations of urea shifts the equilibrium to the monomeric form, allowing the disulfide bond to form. Interestingly, comparing the stability of the oxidized monomer with a variant lacking cysteines reveals the disulfide is neither stabilizing nor destabilizing in CTX-M-9, in contrast with the observed stabilization in TEM-1. Thus, we can conclude that engineering disulfide bonds is not always an effective stabilization strategy even when analogous disulfides exist in more stable structural homologs. This study also illustrates how homo-oligomerization can result from a small number of mutations, suggesting complex formation might be easily accessed during a protein family's evolution.
Collapse
Affiliation(s)
- Miranda Villanueva
- Department of ChemistryWilliams CollegeWilliamstownMassachusettsUSA
- Present address:
Biological Chemistry DepartmentDavid Geffen School of Medicine, UCLALos AngelesCaliforniaUSA
| | - Lauren E. Vostal
- Department of ChemistryWilliams CollegeWilliamstownMassachusettsUSA
- Present address:
Laboratory of Chemistry and Cell BiologyThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Drew N. Cohen
- Department of ChemistryWilliams CollegeWilliamstownMassachusettsUSA
- Present address:
Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Devin Biesbrock
- Department of ChemistryWilliams CollegeWilliamstownMassachusettsUSA
- Present address:
Laboratory of Cellular and Molecular BiologyNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaMarylandUSA
| | - Elise P. Kuwaye
- Department of ChemistryWilliams CollegeWilliamstownMassachusettsUSA
- Present address:
Department of Biological SciencesColumbia UniversityNew YorkNew YorkUSA
| | - Sasha G. Driver
- Department of ChemistryWilliams CollegeWilliamstownMassachusettsUSA
| | - Kathryn M. Hart
- Department of ChemistryWilliams CollegeWilliamstownMassachusettsUSA
| |
Collapse
|
17
|
Eccleston RC, Manko E, Campino S, Clark TG, Furnham N. A computational method for predicting the most likely evolutionary trajectories in the stepwise accumulation of resistance mutations. eLife 2023; 12:e84756. [PMID: 38132182 PMCID: PMC10807863 DOI: 10.7554/elife.84756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
Pathogen evolution of drug resistance often occurs in a stepwise manner via the accumulation of multiple mutations that in combination have a non-additive impact on fitness, a phenomenon known as epistasis. The evolution of resistance via the accumulation of point mutations in the DHFR genes of Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) has been studied extensively and multiple studies have shown epistatic interactions between these mutations determine the accessible evolutionary trajectories to highly resistant multiple mutations. Here, we simulated these evolutionary trajectories using a model of molecular evolution, parameterised using Rosetta Flex ddG predictions, where selection acts to reduce the target-drug binding affinity. We observe strong agreement with pathways determined using experimentally measured IC50 values of pyrimethamine binding, which suggests binding affinity is strongly predictive of resistance and epistasis in binding affinity strongly influences the order of fixation of resistance mutations. We also infer pathways directly from the frequency of mutations found in isolate data, and observe remarkable agreement with the most likely pathways predicted by our mechanistic model, as well as those determined experimentally. This suggests mutation frequency data can be used to intuitively infer evolutionary pathways, provided sufficient sampling of the population.
Collapse
Affiliation(s)
- Ruth Charlotte Eccleston
- Department of Infection Biology, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Emilia Manko
- Department of Infection Biology, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Susana Campino
- Department of Infection Biology, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Taane G Clark
- Department of Infection Biology, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Nicholas Furnham
- Department of Infection Biology, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| |
Collapse
|
18
|
Thomas CA, Cheng Z, Bethel CR, Hujer AM, Sturgill AM, Onuoha K, Page RC, Bonomo RA, Crowder MW. The directed evolution of NDM-1. Antimicrob Agents Chemother 2023; 67:e0071423. [PMID: 37874296 PMCID: PMC10649027 DOI: 10.1128/aac.00714-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/10/2023] [Indexed: 10/25/2023] Open
Abstract
β-Lactam antibiotics are among the most frequently prescribed therapeutic agents. A common mechanism of resistance toward β-lactam antibiotics is the production of β-lactamases. These enzymes are capable of hydrolyzing the β-lactam bond, rendering the drug inactive. Among the four described classes, the metallo- β-lactamases (MBLs, class B) employ one or two zinc ions in the active site for catalysis. One of the three most clinically relevant MBLs is New Delhi Metallo- β-Lactamase (NDM-1). The current study sought to investigate the in vitro protein evolution of NDM-1 β-lactamase using error-prone polymerase chain reaction. Evaluation revealed that variants were not found to confer higher levels of resistance toward meropenem based on amino acid substitutions. Thus, we postulate that increases in transcription or changes in zinc transport may be clinically more relevant to meropenem resistance than amino acid substitutions.
Collapse
Affiliation(s)
- Caitlyn A. Thomas
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Zishuo Cheng
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Christopher R. Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Andrea M. Hujer
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Aidan M. Sturgill
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Kelechi Onuoha
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Richard C. Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Clinician Scientist Investigator, Ohio, Cleveland, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Michael W. Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| |
Collapse
|
19
|
Li X, Chen B, Chen W, Pu Z, Qi X, Yang L, Wu J, Yu H. Customized multiple sequence alignment as an effective strategy to improve performance of Taq DNA polymerase. Appl Microbiol Biotechnol 2023; 107:6507-6525. [PMID: 37658164 DOI: 10.1007/s00253-023-12744-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/06/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Engineering Taq DNA polymerase (TaqPol) for improved activity, stability and sensitivity was critical for its wide applications. Multiple sequence alignment (MSA) has been widely used in engineering enzymes for improved properties. Here, we first designed TaqPol mutations based on MSA of 2756 sequences from both thermophilic and non-thermophilic organisms. Two double mutations were generated including a variant H676F/R677G showing a decrease in both activity and stability, and a variant Y686R/E687K showing an improved activity, but a decreased stability. Mutations targeted on coevolutionary residues of Arg677 and Tyr686 were then applied to rescue stability or activity loss of the double mutants, which achieved a partial success. Sequence analysis revealed that the two mutations are abundant in non-thermophilic sequences but not in thermophilic homologues. Then, a small-scale MSA containing sequences from only thermophilic organisms was applied to predict 13 single variants and two of them, E507Q and E734N showed a simultaneous increase in both stability and activity, even in sensitivity. A customized MSA was hence more effective in engineering a thermophilic enzyme and could be used in engineering other enzymes. Molecular dynamics simulations revealed the impact of mutations on the protein dynamics and interactions between TaqPol and substrates. KEY POINTS: • The pool of sequence for alignment is critical to engineering Taq DNA polymerase. • The variants with low properties can be rescued by mutations in coevolving network. • Improving binding with DNA can improve DNA polymerase stability and activity.
Collapse
Affiliation(s)
- Xinjia Li
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, 311200, Zhejiang, China
| | - Binbin Chen
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, 311200, Zhejiang, China
| | - Wanyi Chen
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, 311200, Zhejiang, China
| | - Zhongji Pu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, 311200, Zhejiang, China
| | - Xin Qi
- Building No.4, Zhongguancun Dongsheng International Science Park, No. 1 North Yongtaizhuang Road, Haidian District, Beijing, 100192, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, 311200, Zhejiang, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, 311200, Zhejiang, China
| | - Haoran Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, 311200, Zhejiang, China.
| |
Collapse
|
20
|
Sun J, Chikunova A, Boyle AL, Voskamp P, Timmer M, Ubbink M. Enhanced activity against a third-generation cephalosporin by destabilization of the active site of a class A beta-lactamase. Int J Biol Macromol 2023; 250:126160. [PMID: 37549761 DOI: 10.1016/j.ijbiomac.2023.126160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/10/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
The β-lactamase BlaC conveys resistance to a broad spectrum of β-lactam antibiotics to its host Mycobacterium tuberculosis but poorly hydrolyzes third-generation cephalosporins, such as ceftazidime. Variants of other β-lactamases have been reported to gain activity against ceftazidime at the cost of the native activity. To understand this trade-off, laboratory evolution was performed, screening for enhanced ceftazidime activity. The variant BlaC Pro167Ser shows faster breakdown of ceftazidime, poor hydrolysis of ampicillin and only moderately reduced activity against nitrocefin. NMR spectroscopy, crystallography and kinetic assays demonstrate that the resting state of BlaC P167S exists in an open and a closed state. The open state is more active in the hydrolysis of ceftazidime. In this state the catalytic residue Glu166, generally believed to be involved in the activation of the water molecule required for deacylation, is rotated away from the active site, suggesting it plays no role in the hydrolysis of ceftazidime. In the closed state, deacylation of the BlaC-ceftazidime adduct is slow, while hydrolysis of nitrocefin, which requires the presence of Glu166 in the active site, is barely affected, providing a structural explanation for the trade-off in activities.
Collapse
Affiliation(s)
- Jing Sun
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Aleksandra Chikunova
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Aimee L Boyle
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Patrick Voskamp
- Biophysical Structural Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Monika Timmer
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Marcellus Ubbink
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands.
| |
Collapse
|
21
|
Ebrahimi Fana S, Fazaeli A, Aminian M. Directed evolution of cholesterol oxidase with improved thermostability using error-prone PCR. Biotechnol Lett 2023; 45:1159-1167. [PMID: 37289346 DOI: 10.1007/s10529-023-03401-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 04/14/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
Cholesterol oxidase is industrially important as it is frequently used as a biosensor in food and agriculture industries and measurement of cholesterol. Although, most natural enzymes show low thermostability, which limits their application. Here, we obtained an improved variant of Chromobacterium sp. DS1 cholesterol oxidase (ChOS) with enhanced thermostability by random mutant library applying two forms of error-prone PCR (serial dilution and single step). Wild-type ChOS indicated an optimal temperature and pH of 70 ºC and pH 7.5, respectively. The best mutant ChOS-M acquired three amino acid substitutions (S112T, I240V and A500S) and enhanced thermostability (at 50 °C for 5 h) by 30%. The optimum temperature and pH in the mutant were not changed. In comparison to wild type, circular dichroism disclosed no significant secondary structural alterations in mutants. These findings show that error-prone PCR is an effective method for enhancing enzyme characteristics and offers a platform for the practical use of ChOS as a thermal-resistance enzyme in industrial fields and clinical diagnosis.
Collapse
Affiliation(s)
- Saeed Ebrahimi Fana
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, P.O. Box: 14155-6447, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Fazaeli
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahdi Aminian
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, P.O. Box: 14155-6447, Tehran, Iran.
| |
Collapse
|
22
|
Derbyshire MC, Raffaele S. Surface frustration re-patterning underlies the structural landscape and evolvability of fungal orphan candidate effectors. Nat Commun 2023; 14:5244. [PMID: 37640704 PMCID: PMC10462633 DOI: 10.1038/s41467-023-40949-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Pathogens secrete effector proteins to subvert host physiology and cause disease. Effectors are engaged in a molecular arms race with the host resulting in conflicting evolutionary constraints to manipulate host cells without triggering immune responses. The molecular mechanisms allowing effectors to be at the same time robust and evolvable remain largely enigmatic. Here, we show that 62 conserved structure-related families encompass the majority of fungal orphan effector candidates in the Pezizomycotina subphylum. These effectors diversified through changes in patterns of thermodynamic frustration at surface residues. The underlying mutations tended to increase the robustness of the overall effector protein structure while switching potential binding interfaces. This mechanism could explain how conserved effector families maintained biological activity over long evolutionary timespans in different host environments and provides a model for the emergence of sequence-unrelated effector families with conserved structures.
Collapse
Affiliation(s)
- Mark C Derbyshire
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes Micro-organismes Environnement (LIPME), INRAE, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France.
| |
Collapse
|
23
|
Jain D, Verma J, Ajith T, Bhattacharjee A, Ghosh AS. Two non-active site residues W165 and L166 prominently influence the beta-lactam hydrolytic ability of OXA-23 beta-lactamase. J Antibiot (Tokyo) 2023; 76:489-498. [PMID: 37095236 DOI: 10.1038/s41429-023-00624-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/26/2023]
Abstract
Dissemination of class D OXA-type carbapenemases is one of the significant causes of beta-lactam resistance in Gram-negative bacteria. The amino acid residues present near the active site are involved in hydrolytic mechanism of class D carbapenemases, though it is not identified in OXA-23. Here, with the help of site-directed mutagenesis, we aimed to explicate the importance of the residues W165, L166 and V167 of the possible omega loop and residue D222 in the short β5-β6 loop on the activity of OXA-23. All the residues were substituted with alanine. The resultant proteins were assayed for the changes in activity in E. coli cells and purified for in vitro activity, and stability assessment. E. coli cells harboring OXA-23_W165A and OXA-23_L166A, individually, exhibited a significant decrease in resistance towards beta-lactam antibiotics as compared to OXA-23. Further, purified OXA-23_W165A and OXA-23_L166A imparted about >4-fold decrease in catalytic efficiency and displayed reduced thermal stability as compared to OXA-23. Bocillin-FL binding assay revealed that W165A substitution results in improper N-carboxylation of K82, leading to deacylation deficient OXA-23. Therefore, we infer that the residue W165 maintains the integrity of N-carboxylated lysine (K82) of OXA-23 and the residue L166 might be responsible for properly orientating the antibiotic molecules.
Collapse
Affiliation(s)
- Diamond Jain
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Jyoti Verma
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Tejavath Ajith
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | | | - Anindya Sundar Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
24
|
Corbella M, Pinto GP, Kamerlin SCL. Loop dynamics and the evolution of enzyme activity. Nat Rev Chem 2023; 7:536-547. [PMID: 37225920 DOI: 10.1038/s41570-023-00495-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 05/26/2023]
Abstract
In the early 2000s, Tawfik presented his 'New View' on enzyme evolution, highlighting the role of conformational plasticity in expanding the functional diversity of limited repertoires of sequences. This view is gaining increasing traction with increasing evidence of the importance of conformational dynamics in both natural and laboratory evolution of enzymes. The past years have seen several elegant examples of harnessing conformational (particularly loop) dynamics to successfully manipulate protein function. This Review revisits flexible loops as critical participants in regulating enzyme activity. We showcase several systems of particular interest: triosephosphate isomerase barrel proteins, protein tyrosine phosphatases and β-lactamases, while briefly discussing other systems in which loop dynamics are important for selectivity and turnover. We then discuss the implications for engineering, presenting examples of successful loop manipulation in either improving catalytic efficiency, or changing selectivity completely. Overall, it is becoming clearer that mimicking nature by manipulating the conformational dynamics of key protein loops is a powerful method of tailoring enzyme activity, without needing to target active-site residues.
Collapse
Affiliation(s)
- Marina Corbella
- Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Gaspar P Pinto
- Department of Chemistry, Uppsala University, Uppsala, Sweden
- Cortex Discovery GmbH, Regensburg, Germany
| | - Shina C L Kamerlin
- Department of Chemistry, Uppsala University, Uppsala, Sweden.
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
25
|
Zhang A, Portugal Barron D, Chen EW, Guo Z. A protein aggregation platform that distinguishes oligomers from amyloid fibrils. Analyst 2023; 148:2283-2294. [PMID: 37129054 PMCID: PMC10266934 DOI: 10.1039/d3an00487b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Deposition of aggregated proteins is a pathological feature in many neurodegenerative disorders such as Alzheimer's and Parkinson's. In addition to insoluble amyloid fibrils, protein aggregation leads to the formation of soluble oligomers, which are more toxic and pathogenic than fibrils. However, it is challenging to screen for inhibitors targeting oligomers due to the overlapping processes of oligomerization and fibrillization. Here we report a protein aggregation platform that uses intact and split TEM-1 β-lactamase proteins as reporters of protein aggregation. The intact β-lactamase fused with an amyloid protein can report the overall protein aggregation, which leads to loss of lactamase activity. On the other hand, reconstitution of active β-lactamase from the split lactamase construct requires the formation of amyloid oligomers, making the split lactamase system sensitive to oligomerization. Using Aβ, a protein that forms amyloid plaques in Alzheimer's disease, we show that the growth curves of bacterial cells expressing either intact or split lactamase-Aβ fusion proteins can report changes in the Aβ aggregation. The cell lysate lactamase activity assays show that the oligomer fraction accounts for 20% of total activity for the split lactamase-Aβ construct, but only 3% of total activity for the intact lactamase-Aβ construct, confirming the sensitivity of the split lactamase to oligomerization. The combination of the intact and split lactamase constructs allows the distinction of aggregation modulators targeting oligomerization from those targeting overall aggregation. These low-cost bacterial cell-based and biochemical assays are suitable for high-throughput screening of aggregation inhibitors targeting oligomers of various amyloid proteins.
Collapse
Affiliation(s)
- Amy Zhang
- Department of Neurology, Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Diana Portugal Barron
- Department of Neurology, Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Erica W Chen
- Department of Neurology, Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Zhefeng Guo
- Department of Neurology, Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Meller A, Ward M, Borowsky J, Kshirsagar M, Lotthammer JM, Oviedo F, Ferres JL, Bowman GR. Predicting locations of cryptic pockets from single protein structures using the PocketMiner graph neural network. Nat Commun 2023; 14:1177. [PMID: 36859488 PMCID: PMC9977097 DOI: 10.1038/s41467-023-36699-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
Cryptic pockets expand the scope of drug discovery by enabling targeting of proteins currently considered undruggable because they lack pockets in their ground state structures. However, identifying cryptic pockets is labor-intensive and slow. The ability to accurately and rapidly predict if and where cryptic pockets are likely to form from a structure would greatly accelerate the search for druggable pockets. Here, we present PocketMiner, a graph neural network trained to predict where pockets are likely to open in molecular dynamics simulations. Applying PocketMiner to single structures from a newly curated dataset of 39 experimentally confirmed cryptic pockets demonstrates that it accurately identifies cryptic pockets (ROC-AUC: 0.87) >1,000-fold faster than existing methods. We apply PocketMiner across the human proteome and show that predicted pockets open in simulations, suggesting that over half of proteins thought to lack pockets based on available structures likely contain cryptic pockets, vastly expanding the potentially druggable proteome.
Collapse
Affiliation(s)
- Artur Meller
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, 660 S. Euclid Ave., Box 8231, St. Louis, MO, 63110, USA
- Medical Scientist Training Program, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Michael Ward
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, 660 S. Euclid Ave., Box 8231, St. Louis, MO, 63110, USA
| | - Jonathan Borowsky
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, 660 S. Euclid Ave., Box 8231, St. Louis, MO, 63110, USA
| | | | - Jeffrey M Lotthammer
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, 660 S. Euclid Ave., Box 8231, St. Louis, MO, 63110, USA
| | - Felipe Oviedo
- AI for Good Research Lab, Microsoft, Redmond, WA, USA
| | | | - Gregory R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, 660 S. Euclid Ave., Box 8231, St. Louis, MO, 63110, USA.
- Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
27
|
Liu HT, Weng CY, Zhou L, Xu HB, Liao ZY, Hong HY, Ye YF, Li SF, Wang YJ, Zheng YG. Coevolving stability and activity of LsCR by a single point mutation and constructing neat substrate bioreaction system. Biotechnol Bioeng 2023; 120:1521-1530. [PMID: 36799475 DOI: 10.1002/bit.28357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/29/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
Carbonyl reductase (CR)-catalyzed bioreduction in the organic phase and the neat substrate reaction system is a lasting challenge, placing higher requirements on the performance of enzymes. Protein engineering is an effective method to enhance the properties of enzymes for industrial applications. In the present work, a single point mutation E145A on our previously constructed CR mutant LsCRM3 , coevolved thermostability, and activity. Compared with LsCRM3 , the catalytic efficiency kcat /KM of LsCRM3 -E145A (LsCRM4 ) was increased from 6.6 to 21.9 s-1 mM-1 . Moreover, E145A prolonged the half-life t1/2 at 40°C from 4.1 to 117 h, T m ${T}_{m}$ was increased by 5°C, T 50 30 ${T}_{50}^{30}$ was increased by 14.6°C, and Topt was increased by 15°C. Only 1 g/L of lyophilized Escherichia coli cells expressing LsCRM4 completely reduced up to 600 g/L 2-chloro-1-(3,4-difluorophenyl)ethanone (CFPO) within 13 h at 45°C, yielding the corresponding (1S)-2-chloro-1-(3,4-difluorophenyl)ethanol ((S)-CFPL) in 99.5% eeP , with a space-time yield of 1.0 kg/L d, the substrate to catalyst ratios (S/C) of 600 g/g. Compared with LsCRM3 , the substrate loading was increased by 50%, with the S/C increased by 14 times. Compared with LsCRWT , the substrate loading was increased by 6.5 times. In contrast, LsCRM4 completely converted 600 g/L CFPO within 12 h in the neat substrate bioreaction system.
Collapse
Affiliation(s)
- Hua-Tao Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Chun-Yue Weng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Lei Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Hao-Bo Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Zhen-Yu Liao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Han-Yue Hong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yuan-Fan Ye
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Shu-Fang Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
28
|
Copley SD, Newton MS, Widney KA. How to Recruit a Promiscuous Enzyme to Serve a New Function. Biochemistry 2023; 62:300-308. [PMID: 35729117 PMCID: PMC9881647 DOI: 10.1021/acs.biochem.2c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Promiscuous enzymes can be recruited to serve new functions when a genetic or environmental change makes catalysis of a novel reaction important for fitness or even survival. Subsequently, gene duplication and divergence can lead to evolution of an efficient and specialized new enzyme. Every organism likely has thousands of promiscuous enzyme activities that provide a vast reservoir of catalytic potential. However, much of this potential may not be accessible. We compiled kinetic parameters for promiscuous reactions catalyzed by 108 enzymes. The median value of kcat/KM is a very modest 31 M-1 s-1. Based upon the fluxes through metabolic pathways in E. coli, we estimate that many, if not most, promiscuous activities are too inefficient to impact fitness. However, mutations can elevate the level of an insufficient promiscuous activity by increasing enzyme expression, improving kcat/KM, or altering concentrations of the promiscuous and native substrates and allosteric regulators. Particularly in large bacterial populations, stochastic mutations may provide a viable pathway for recruitment of even inefficient promiscuous activities.
Collapse
|
29
|
Ó'Fágáin C. Protein Stability: Enhancement and Measurement. Methods Mol Biol 2023; 2699:369-419. [PMID: 37647007 DOI: 10.1007/978-1-0716-3362-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This chapter defines protein stability, emphasizes its importance, and surveys the field of protein stabilization, with summary reference to a selection of 2014-2021 publications. One can enhance stability, particularly by protein engineering strategies but also by chemical modification and by other means. General protocols are set out on how to measure a given protein's (i) kinetic thermal stability and (ii) oxidative stability and (iii) how to undertake chemical modification of a protein in solution.
Collapse
Affiliation(s)
- Ciarán Ó'Fágáin
- School of Biotechnology, Dublin City University, Dublin, Ireland.
| |
Collapse
|
30
|
Han K, Lee H, Kang TG, Lee J, Kim SK. Direct and efficient elimination of ethyl carbamate by engineered Saccharomyces cerevisiae displaying urethanase. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
31
|
Shin J, Kim S, Park W, Jin KC, Kim SK, Kweon DH. Directed Evolution of Soluble α-1,2-Fucosyltransferase Using Kanamycin Resistance Protein as a Phenotypic Reporter for Efficient Production of 2'-Fucosyllactose. J Microbiol Biotechnol 2022; 32:1471-1478. [PMID: 36437520 PMCID: PMC9720067 DOI: 10.4014/jmb.2209.09018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022]
Abstract
2'-Fucosyllactose (2'-FL), the most abundant fucosylated oligosaccharide in human milk, has multiple beneficial effects on human health. However, its biosynthesis by metabolically engineered Escherichia coli is often hampered owing to the insolubility and instability of α-1,2-fucosyltransferase (the rate-limiting enzyme). In this study, we aimed to enhance 2'-FL production by increasing the expression of soluble α-1,2-fucosyltransferase from Helicobacter pylori (FucT2). Because structural information regarding FucT2 has not been unveiled, we decided to improve the expression of soluble FucT2 in E. coli via directed evolution using a protein solubility biosensor that links protein solubility to antimicrobial resistance. For such a system to be viable, the activity of kanamycin resistance protein (KanR) should be dependent on FucT2 solubility. KanR was fused to the C-terminus of mutant libraries of FucT2, which were generated using a combination of error-prone PCR and DNA shuffling. Notably, one round of the directed evolution process, which consisted of mutant library generation and selection based on kanamycin resistance, resulted in a significant increase in the expression level of soluble FucT2. As a result, a batch fermentation with the ΔL M15 pBCGW strain, expressing the FucT2 mutant (F#1-5) isolated from the first round of the directed evolution process, resulted in the production of 0.31 g/l 2'-FL with a yield of 0.22 g 2'-FL/g lactose, showing 1.72- and 1.51-fold increase in the titer and yield, respectively, compared to those of the control strain. The simple and powerful method developed in this study could be applied to enhance the solubility of other unstable enzymes.
Collapse
Affiliation(s)
- Jonghyeok Shin
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Seungjoo Kim
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea
| | - Wonbeom Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea
| | - Kyoung Chan Jin
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Sun-Ki Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea,
S.K. Kim Phone: +82-31-670-3261 Fax: +82-31-675-3108 E-mail:
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea,Corresponding authors D.H. Kweon Phone: +82-31-290-7869 Fax: +82-31-290-7870 E-mail:
| |
Collapse
|
32
|
Norrild RK, Johansson KE, O’Shea C, Morth JP, Lindorff-Larsen K, Winther JR. Increasing protein stability by inferring substitution effects from high-throughput experiments. CELL REPORTS METHODS 2022; 2:100333. [PMID: 36452862 PMCID: PMC9701609 DOI: 10.1016/j.crmeth.2022.100333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/22/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
We apply a computational model, global multi-mutant analysis (GMMA), to inform on effects of most amino acid substitutions from a randomly mutated gene library. Using a high mutation frequency, the method can determine mutations that increase the stability of even very stable proteins for which conventional selection systems have reached their limit. As a demonstration of this, we screened a mutant library of a highly stable and computationally redesigned model protein using an in vivo genetic sensor for folding and assigned a stability effect to 374 of 912 possible single amino acid substitutions. Combining the top 9 substitutions increased the unfolding energy 47 to 69 kJ/mol in a single engineering step. Crystal structures of stabilized variants showed small perturbations in helices 1 and 2, which rendered them closer in structure to the redesign template. This case study illustrates the capability of the method, which is applicable to any screen for protein function.
Collapse
Affiliation(s)
- Rasmus Krogh Norrild
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kristoffer Enøe Johansson
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Charlotte O’Shea
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jens Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jakob Rahr Winther
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
33
|
Wittmund M, Cadet F, Davari MD. Learning Epistasis and Residue Coevolution Patterns: Current Trends and Future Perspectives for Advancing Enzyme Engineering. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marcel Wittmund
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Frederic Cadet
- Laboratory of Excellence LABEX GR, DSIMB, Inserm UMR S1134, University of Paris city & University of Reunion, Paris 75014, France
| | - Mehdi D. Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| |
Collapse
|
34
|
Wagner A. Adaptive evolvability through direct selection instead of indirect, second-order selection. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:395-404. [PMID: 34254439 PMCID: PMC9786751 DOI: 10.1002/jez.b.23071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/11/2021] [Accepted: 06/04/2021] [Indexed: 12/30/2022]
Abstract
Can evolvability itself be the product of adaptive evolution? To answer this question is challenging, because any DNA mutation that alters only evolvability is subject to indirect, "second order" selection on the future effects of this mutation. Such indirect selection is weaker than "first-order" selection on mutations that alter fitness, in the sense that it can operate only under restrictive conditions. Here I discuss a route to adaptive evolvability that overcomes this challenge. Specifically, a recent evolution experiment showed that some mutations can enhance both fitness and evolvability through a combination of direct and indirect selection. Unrelated evidence from gene duplication and the evolution of gene regulation suggests that mutations with such dual effects may not be rare. Through such mutations, evolvability may increase at least in part because it provides an adaptive advantage. These observations suggest a research program on the adaptive evolution of evolvability, which aims to identify such mutations and to disentangle their direct fitness effects from their indirect effects on evolvability. If evolvability is itself adaptive, Darwinian evolution may have created more than life's diversity. It may also have helped create the very conditions that made the success of Darwinian evolution possible.
Collapse
Affiliation(s)
- Andreas Wagner
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland,Swiss Institute of BioinformaticsQuartier Sorge‐Batiment GenopodeLausanneSwitzerland,The Santa Fe InstituteSanta FeNew MexicoUSA,Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch UniversityStellenboschSouth Africa
| |
Collapse
|
35
|
Harman JL, Reardon PN, Costello SM, Warren GD, Phillips SR, Connor PJ, Marqusee S, Harms MJ. Evolution avoids a pathological stabilizing interaction in the immune protein S100A9. Proc Natl Acad Sci U S A 2022; 119:e2208029119. [PMID: 36194634 PMCID: PMC9565474 DOI: 10.1073/pnas.2208029119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/07/2022] [Indexed: 01/03/2023] Open
Abstract
Stability constrains evolution. While much is known about constraints on destabilizing mutations, less is known about the constraints on stabilizing mutations. We recently identified a mutation in the innate immune protein S100A9 that provides insight into such constraints. When introduced into human S100A9, M63F simultaneously increases the stability of the protein and disrupts its natural ability to activate Toll-like receptor 4. Using chemical denaturation, we found that M63F stabilizes a calcium-bound conformation of hS100A9. We then used NMR to solve the structure of the mutant protein, revealing that the mutation distorts the hydrophobic binding surface of hS100A9, explaining its deleterious effect on function. Hydrogen-deuterium exchange (HDX) experiments revealed stabilization of the region around M63F in the structure, notably Phe37. In the structure of the M63F mutant, the Phe37 and Phe63 sidechains are in contact, plausibly forming an edge-face π-stack. Mutating Phe37 to Leu abolished the stabilizing effect of M63F as probed by both chemical denaturation and HDX. It also restored the biological activity of S100A9 disrupted by M63F. These findings reveal that Phe63 creates a molecular staple with Phe37 that stabilizes a nonfunctional conformation of the protein, thus disrupting function. Using a bioinformatic analysis, we found that S100A9 proteins from different organisms rarely have Phe at both positions 37 and 63, suggesting that avoiding a pathological stabilizing interaction indeed constrains S100A9 evolution. This work highlights an important evolutionary constraint on stabilizing mutations, namely, that they must avoid inappropriately stabilizing nonfunctional protein conformations.
Collapse
Affiliation(s)
- Joseph L. Harman
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Patrick N. Reardon
- College of Science, NMR Facility, Oregon State University, Corvallis, OR 97331
| | - Shawn M. Costello
- Biophysics Graduate Program, University of California, Berkeley, Berkeley, CA 94720
| | - Gus D. Warren
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Sophia R. Phillips
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Patrick J. Connor
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720
| | - Michael J. Harms
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| |
Collapse
|
36
|
Azbukina N, Zharikova A, Ramensky V. Intragenic compensation through the lens of deep mutational scanning. Biophys Rev 2022; 14:1161-1182. [PMID: 36345285 PMCID: PMC9636336 DOI: 10.1007/s12551-022-01005-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/26/2022] [Indexed: 12/20/2022] Open
Abstract
A significant fraction of mutations in proteins are deleterious and result in adverse consequences for protein function, stability, or interaction with other molecules. Intragenic compensation is a specific case of positive epistasis when a neutral missense mutation cancels effect of a deleterious mutation in the same protein. Permissive compensatory mutations facilitate protein evolution, since without them all sequences would be extremely conserved. Understanding compensatory mechanisms is an important scientific challenge at the intersection of protein biophysics and evolution. In human genetics, intragenic compensatory interactions are important since they may result in variable penetrance of pathogenic mutations or fixation of pathogenic human alleles in orthologous proteins from related species. The latter phenomenon complicates computational and clinical inference of an allele's pathogenicity. Deep mutational scanning is a relatively new technique that enables experimental studies of functional effects of thousands of mutations in proteins. We review the important aspects of the field and discuss existing limitations of current datasets. We reviewed ten published DMS datasets with quantified functional effects of single and double mutations and described rates and patterns of intragenic compensation in eight of them. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-022-01005-w.
Collapse
Affiliation(s)
- Nadezhda Azbukina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-73, Leninskie Gory, 119991 Moscow, Russia
| | - Anastasia Zharikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-73, Leninskie Gory, 119991 Moscow, Russia
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky per., 10, Bld.3, 101000 Moscow, Russia
| | - Vasily Ramensky
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-73, Leninskie Gory, 119991 Moscow, Russia
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky per., 10, Bld.3, 101000 Moscow, Russia
| |
Collapse
|
37
|
Strobel HM, Stuart EC, Meyer JR. A Trait-Based Approach to Predicting Viral Host-Range Evolvability. Annu Rev Virol 2022; 9:139-156. [PMID: 36173699 DOI: 10.1146/annurev-virology-091919-092003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Predicting the evolution of virus host range has proven to be extremely difficult, in part because of the sheer diversity of viruses, each with unique biology and ecological interactions. We have not solved this problem, but to make the problem more tractable, we narrowed our focus to three traits intrinsic to all viruses that may play a role in host-range evolvability: mutation rate, recombination rate, and phenotypic heterogeneity. Although each trait should increase evolvability, they cannot do so unbounded because fitness trade-offs limit the ability of all three traits to maximize evolvability. By examining these constraints, we can begin to identify groups of viruses with suites of traits that make them especially concerning, as well as ecological and environmental conditions that might push evolution toward accelerating host-range expansion.
Collapse
Affiliation(s)
- Hannah M Strobel
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Elizabeth C Stuart
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Justin R Meyer
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
38
|
Kochnev Y, Durrant JD. FPocketWeb: protein pocket hunting in a web browser. J Cheminform 2022; 14:58. [PMID: 36008829 PMCID: PMC9414105 DOI: 10.1186/s13321-022-00637-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Detecting macromolecular (e.g., protein) cavities where small molecules bind is an early step in computer-aided drug discovery. Multiple pocket-detection algorithms have been developed over the past several decades. Among them, fpocket, created by Schmidtke and Le Guilloux, is particularly popular. Like many programs used in computational-biology research, fpocket requires users to download and install an executable file. That file must also be run via a command-line interface, further complicating use. An existing fpocket server application effectively addresses these challenges, but it requires users to upload their possibly proprietary structures to a third-party server. The FPocketWeb web app builds on this prior work. It runs the fpocket3 executable entirely in a web browser without requiring installation. The pocket-finding calculations occur on the user's computer rather than on a remote server. A working version of the open-source FPocketWeb app can be accessed free of charge from http://durrantlab.com/fpocketweb .
Collapse
Affiliation(s)
- Yuri Kochnev
- Department of Biological Sciences, University of Pittsburgh, 15260, Pittsburgh, PA, USA
| | - Jacob D Durrant
- Department of Biological Sciences, University of Pittsburgh, 15260, Pittsburgh, PA, USA.
| |
Collapse
|
39
|
Natural Evolution Provides Strong Hints about Laboratory Evolution of Designer Enzymes. Proc Natl Acad Sci U S A 2022; 119:e2207904119. [PMID: 35901204 PMCID: PMC9351539 DOI: 10.1073/pnas.2207904119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Laboratory evolution combined with computational enzyme design provides the opportunity to generate novel biocatalysts. Nevertheless, it has been challenging to understand how laboratory evolution optimizes designer enzymes by introducing seemingly random mutations. A typical enzyme optimized with laboratory evolution is the abiological Kemp eliminase, initially designed by grafting active site residues into a natural protein scaffold. Here, we relate the catalytic power of laboratory-evolved Kemp eliminases to the statistical energy ([Formula: see text]) inferred from their natural homologous sequences using the maximum entropy model. The [Formula: see text] of designs generated by directed evolution is correlated with enhanced activity and reduced stability, thus displaying a stability-activity trade-off. In contrast, the [Formula: see text] for mutants in catalytic-active remote regions (in which remote residues are important for catalysis) is strongly anticorrelated with the activity. These findings provide an insight into the role of protein scaffolds in the adaption to new enzymatic functions. It also indicates that the valley in the [Formula: see text] landscape can guide enzyme design for abiological catalysis. Overall, the connection between laboratory and natural evolution contributes to understanding what is optimized in the laboratory and how new enzymatic function emerges in nature, and provides guidance for computational enzyme design.
Collapse
|
40
|
Chattopadhyay G, Bhowmick J, Manjunath K, Ahmed S, Goyal P, Varadarajan R. Mechanistic insights into global suppressors of protein folding defects. PLoS Genet 2022; 18:e1010334. [PMID: 36037221 PMCID: PMC9491731 DOI: 10.1371/journal.pgen.1010334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/09/2022] [Accepted: 07/11/2022] [Indexed: 01/14/2023] Open
Abstract
Most amino acid substitutions in a protein either lead to partial loss-of-function or are near neutral. Several studies have shown the existence of second-site mutations that can rescue defects caused by diverse loss-of-function mutations. Such global suppressor mutations are key drivers of protein evolution. However, the mechanisms responsible for such suppression remain poorly understood. To address this, we characterized multiple suppressor mutations both in isolation and in combination with inactive mutants. We examined six global suppressors of the bacterial toxin CcdB, the known M182T global suppressor of TEM-1 β-lactamase, the N239Y global suppressor of p53-DBD and three suppressors of the SARS-CoV-2 spike Receptor Binding Domain. When coupled to inactive mutants, they promote increased in-vivo solubilities as well as regain-of-function phenotypes. In the case of CcdB, where novel suppressors were isolated, we determined the crystal structures of three such suppressors to obtain insight into the specific molecular interactions responsible for the observed effects. While most individual suppressors result in small stability enhancements relative to wildtype, which can be combined to yield significant stability increments, thermodynamic stabilisation is neither necessary nor sufficient for suppressor action. Instead, in diverse systems, we observe that individual global suppressors greatly enhance the foldability of buried site mutants, primarily through increase in refolding rate parameters measured in vitro. In the crowded intracellular environment, mutations that slow down folding likely facilitate off-pathway aggregation. We suggest that suppressor mutations that accelerate refolding can counteract this, enhancing the yield of properly folded, functional protein in vivo.
Collapse
Affiliation(s)
| | - Jayantika Bhowmick
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore,
India
| | - Kavyashree Manjunath
- Centre for Chemical Biology and Therapeutics, Institute For Stem Cell
Science and Regenerative Medicine, Bangalore, India
| | - Shahbaz Ahmed
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore,
India
| | - Parveen Goyal
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore,
India
| | | |
Collapse
|
41
|
Avery C, Baker L, Jacobs DJ. Functional Dynamics of Substrate Recognition in TEM Beta-Lactamase. ENTROPY 2022; 24:e24050729. [PMID: 35626612 PMCID: PMC9140794 DOI: 10.3390/e24050729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023]
Abstract
The beta-lactamase enzyme provides effective resistance to beta-lactam antibiotics due to substrate recognition controlled by point mutations. Recently, extended-spectrum and inhibitor-resistant mutants have become a global health problem. Here, the functional dynamics that control substrate recognition in TEM beta-lactamase are investigated using all-atom molecular dynamics simulations. Comparisons are made between wild-type TEM-1 and TEM-2 and the extended-spectrum mutants TEM-10 and TEM-52, both in apo form and in complex with four different antibiotics (ampicillin, amoxicillin, cefotaxime and ceftazidime). Dynamic allostery is predicted based on a quasi-harmonic normal mode analysis using a perturbation scan. An allosteric mechanism known to inhibit enzymatic function in TEM beta-lactamase is identified, along with other allosteric binding targets. Mechanisms for substrate recognition are elucidated using multivariate comparative analysis of molecular dynamics trajectories to identify changes in dynamics resulting from point mutations and ligand binding, and the conserved dynamics, which are functionally important, are extracted as well. The results suggest that the H10-H11 loop (residues 214-221) is a secondary anchor for larger extended spectrum ligands, while the H9-H10 loop (residues 194-202) is distal from the active site and stabilizes the protein against structural changes. These secondary non-catalytically-active loops offer attractive targets for novel noncompetitive inhibitors of TEM beta-lactamase.
Collapse
Affiliation(s)
- Chris Avery
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (C.A.); (L.B.)
| | - Lonnie Baker
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (C.A.); (L.B.)
| | - Donald J. Jacobs
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Correspondence:
| |
Collapse
|
42
|
Chikunova A, Ubbink M. The roles of highly conserved, non‐catalytic residues in class A β‐lactamases. Protein Sci 2022; 31:e4328. [PMID: 35634774 PMCID: PMC9112487 DOI: 10.1002/pro.4328] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 11/12/2022]
|
43
|
Genetic and Phenotypic Study of the Pectobacterium versatile Beta-Lactamase, the Enzyme Most Similar to the Plasmid-Encoded TEM-1. Appl Environ Microbiol 2022; 88:e0022022. [PMID: 35575550 DOI: 10.1128/aem.00220-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genus Pectobacterium bacteria include important agricultural pathogens. Pectobacterium versatile isolates contain a chromosome-borne beta-lactamase, PEC-1. This enzyme is the closest relative of TEM-1, a plasmid-borne beta-lactamase widespread in the Enterobacterales. We performed bioinformatics and phenotypic analyses to investigate the genetic and phenotypic features of PEC-1 and its frequency and ability to spread within genus Pectobacterium. We also compared the characteristics of PEC-1 and TEM-1 and evaluated the likelihood of transfer. We found that blaPEC-1 was present principally in a small number of genetic environments in P. versatile. Identical blaPEC-1 genetic environments were present in closely related species, consistent with the high frequency of genetic exchange within the genus Pectobacterium. Despite the similarities between PEC-1 and TEM-1, their genetic environments displayed no significant identity, suggesting an absence of recent transfer. Phenotypic analyses on clonal constructs revealed similar hydrolysis spectra. Our results suggest that P. versatile is the main reservoir of PEC-1, which seems to transfer to closely related species. The genetic distance between PEC-1 and TEM-1, and the lack of conserved elements in their genetic environments, suggest that any transfer that may have occurred must have taken place well before the antibiotic era. IMPORTANCE This study aimed to compare the chromosomal beta-lactamase from Pectobacterium versatile, PEC-1, with the well-known and globally distributed TEM-1 in terms of genetic and functional properties. Despite the similarities between the enzymes, we obtained no definitive proof of gene transfer for the emergence of blaPEC-1 from blaTEM-1. Indeed, given the limited degree of sequence identity and the absence of a common genetic environment, it seems unlikely that any transfer of this gene has occurred recently. However, although blaPEC-1 was found mostly in one specific clade of the P. versatile species, certain isolates from other closely related species, such as Pectobacterium brasiliense and Pectobacterium polaris, may also carry this gene inserted into common genetic environments. This observation suggests that genetic exchanges are frequent, accounting for the diffusion of blaPEC-1 between isolates from different Pectobacterium species and, potentially, to exogenous mobile genetic elements.
Collapse
|
44
|
Teufl M, Zajc CU, Traxlmayr MW. Engineering Strategies to Overcome the Stability-Function Trade-Off in Proteins. ACS Synth Biol 2022; 11:1030-1039. [PMID: 35258287 PMCID: PMC8938945 DOI: 10.1021/acssynbio.1c00512] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
In addition to its
biological function, the stability of a protein
is a major determinant for its applicability. Unfortunately, engineering
proteins for improved functionality usually results in destabilization
of the protein. This so-called stability–function trade-off
can be explained by the simple fact that the generation of a novel
protein function—or the improvement of an existing one—necessitates
the insertion of mutations, i.e., deviations from
the evolutionarily optimized wild-type sequence. In fact, it was demonstrated
that gain-of-function mutations are not more destabilizing than other
random mutations. The stability–function trade-off is a universal
phenomenon during protein evolution that has been observed with completely
different types of proteins, including enzymes, antibodies, and engineered
binding scaffolds. In this review, we discuss three types of strategies
that have been successfully deployed to overcome this omnipresent
obstacle in protein engineering approaches: (i) using highly stable
parental proteins, (ii) minimizing the extent of destabilization during
functional engineering (by library optimization and/or coselection
for stability and function), and (iii) repairing damaged mutants through
stability engineering. The implementation of these strategies in protein
engineering campaigns will facilitate the efficient generation of
protein variants that are not only functional but also stable and
therefore better-suited for subsequent applications.
Collapse
Affiliation(s)
- Magdalena Teufl
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
- CD Laboratory for Next Generation CAR T Cells, 1190 Vienna, Austria
| | - Charlotte U. Zajc
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
- CD Laboratory for Next Generation CAR T Cells, 1190 Vienna, Austria
| | - Michael W. Traxlmayr
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
- CD Laboratory for Next Generation CAR T Cells, 1190 Vienna, Austria
| |
Collapse
|
45
|
Iyengar BR, Wagner A. GroEL/S overexpression helps to purge deleterious mutations and reduce genetic diversity during adaptive protein evolution. Mol Biol Evol 2022; 39:6540901. [PMID: 35234895 PMCID: PMC9188349 DOI: 10.1093/molbev/msac047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chaperones are proteins that help other proteins fold. They also affect the adaptive evolution of their client proteins by buffering the effect of deleterious mutations and increasing the genetic diversity of evolving proteins. We study how the bacterial chaperone GroE (GroEL + GroES) affects the evolution of green fluorescent protein (GFP). To this end we subjected GFP to multiple rounds of mutation and selection for its color phenotype in four replicate E. coli populations, and studied its evolutionary dynamics through high-throughput sequencing and mutant engineering. We evolved GFP both under stabilizing selection for its ancestral (green) phenotype, and to directional selection for a new (cyan) phenotype. We did so both under low and high expression of the chaperone GroE. In contrast to previous work, we observe that GroE does not just buffer but also helps purge deleterious (fluorescence reducing) mutations from evolving populations. In doing so, GroE helps reduce the genetic diversity of evolving populations. In addition, it causes phenotypic heterogeneity in mutants with the same genotype, helping to enhance their fluorescence in some cells, and reducing it in others. Our observations show that chaperones can affect adaptive evolution in more than one way.
Collapse
|
46
|
Lee S, Okoye CN, Biesbrock D, Harris EC, Miyasaki KF, Rilinger RG, Tso M, Hart KM. Natural and Synthetic Suppressor Mutations Defy Stability-Activity Tradeoffs. Biochemistry 2022; 61:398-407. [PMID: 35142509 PMCID: PMC8893143 DOI: 10.1021/acs.biochem.1c00805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thermodynamic stability represents one important constraint on protein evolution, but the molecular basis for how mutations that change stability impact fitness remains unclear. Here, we demonstrate that a prevalent global suppressor mutation in TEM β-lactamase, M182T, increases fitness by reducing proteolysis in vivo. We also show that a synthetic mutation, M182S, can act as a global suppressor and suggest that its absence from natural populations is due to genetic inaccessibility rather than fundamental differences in the protein's stability or activity.
Collapse
Affiliation(s)
- Sonya Lee
- Department
of Chemistry, Williams College, 880 Main Street, Williamstown, Massachusetts 01267, United States
| | - Cynthia N. Okoye
- Department
of Chemistry, Williams College, 880 Main Street, Williamstown, Massachusetts 01267, United States
| | - Devin Biesbrock
- Department
of Chemistry, Williams College, 880 Main Street, Williamstown, Massachusetts 01267, United States
| | - Emily C. Harris
- Department
of Chemistry, Williams College, 880 Main Street, Williamstown, Massachusetts 01267, United States
| | - Katelyn F. Miyasaki
- Department
of Biochemistry & Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Ryan G. Rilinger
- Department
of Chemistry, Williams College, 880 Main Street, Williamstown, Massachusetts 01267, United States
| | - Megalan Tso
- Department
of Chemistry, Williams College, 880 Main Street, Williamstown, Massachusetts 01267, United States
| | - Kathryn M. Hart
- Department
of Chemistry, Williams College, 880 Main Street, Williamstown, Massachusetts 01267, United States,
| |
Collapse
|
47
|
Youssef N, Susko E, Roger AJ, Bielawski JP. Evolution of amino acid propensities under stability-mediated epistasis. Mol Biol Evol 2022; 39:6522130. [PMID: 35134997 PMCID: PMC8896634 DOI: 10.1093/molbev/msac030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Site-specific amino acid preferences are influenced by the genetic background of the protein. The preferences for resident amino acids are expected to, on average, increase over time because of replacements at other sites - a nonadaptive phenomenon referred to as the 'evolutionary Stokes shift'. Alternatively, decreases in resident amino acid propensity have recently been viewed as evidence of adaptations to external environmental changes. Using population genetics theory and thermodynamic stability-constraints, we show that nonadaptive evolution can lead to both positive and negative shifts in propensities following the fixation of an amino acid, emphasizing that the detection of negative shifts is not conclusive evidence of adaptation. Considering shifts in propensities over windows between substitutions at a focal site, we find that following ≈ 50% of substitutions the propensity for the new resident amino acid decreases over time, and both positive and negative shifts were comparable in magnitude. Preferences were often conserved via a significant negative autocorrelation in propensity changes-increases in propensities often followed by decreases, and vice versa. Lastly, we explore the underlying mechanisms that lead propensities to fluctuate. We observe that stabilizing replacements increase the mutational tolerance at a site and in doing so decrease the propensity for the resident amino acid. In contrast, destabilizing substitutions result in more rugged fitness landscapes that tend to favor the resident amino acid. In summary, our results characterize propensity trajectories under nonadaptive stability-constrained evolution against which evidence of adaptations should be calibrated.
Collapse
Affiliation(s)
- Noor Youssef
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Edward Susko
- Department of Mathematics and Statistics, Dalhousie University, Halifax, NS, Canada
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Joseph P Bielawski
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
48
|
López C, Delmonti J, Bonomo RA, Vila AJ. Deciphering the evolution of metallo-β-lactamases: a journey from the test tube to the bacterial periplasm. J Biol Chem 2022; 298:101665. [PMID: 35120928 DOI: 10.1016/j.jbc.2022.101665] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/20/2022] Open
Abstract
Understanding the evolution of metallo-β-lactamases (MBLs) is fundamental to deciphering the mechanistic basis of resistance to carbapenems in pathogenic and opportunistic bacteria. Presently, these MBL producing pathogens are linked to high rates of morbidity and mortality worldwide. However, the study of the biochemical and biophysical features of MBLs in vitro provides an incomplete picture of their evolutionary potential, since this limited and artificial environment disregards the physiological context where evolution and selection take place. Herein, we describe recent efforts aimed to address the evolutionary traits acquired by different clinical variants of MBLs in conditions mimicking their native environment (the bacterial periplasm) and considering whether they are soluble or membrane-bound proteins. This includes addressing the metal content of MBLs within the cell under zinc starvation conditions, and the context provided by different bacterial hosts that result in particular resistance phenotypes. Our analysis highlights recent progress bridging the gap between in vitro and in-cell studies.
Collapse
Affiliation(s)
- Carolina López
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
| | - Juliana Delmonti
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
| | - Robert A Bonomo
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA; Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Medical Service and GRECC, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA; Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina.
| |
Collapse
|
49
|
Conformational dynamics promotes disordered regions from function-dispensable to essential in evolved site-specific DNA recombinases. Comput Struct Biotechnol J 2022; 20:989-1001. [PMID: 35242289 PMCID: PMC8860914 DOI: 10.1016/j.csbj.2022.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
New functional regions emerging in evolution of DNA site-specific recombinase tails. Transient structural nucleation promotes function-dispensable regions to essential. Molecular dynamics reveals conformational diversity and its functional implications. Evolved disordered molecular mechanisms of N-term tails for protein stability. Structural disorder-based link between protein evolution, stability and function.
Protein intrinsically disordered regions (IDRs) play pivotal roles in molecular recognition and regulatory processes through structural disorder-to-order transitions. To understand and exploit the distinctive functional implications of IDRs and to unravel the underlying molecular mechanisms, structural disorder-to-function relationships need to be deciphered. The DNA site-specific recombinase system Cre/loxP represents an attractive model to investigate functional molecular mechanisms of IDRs. Cre contains a functionally dispensable disordered N-terminal tail, which becomes indispensable in the evolved Tre/loxLTR recombinase system. The difficulty to experimentally obtain structural information about this tail has so far precluded any mechanistic study on its involvement in DNA recombination. Here, we use in vitro and in silico evolution data, conformational dynamics, AI-based folding simulations, thermodynamic stability calculations, mutagenesis and DNA recombination assays to investigate how evolution and the dynamic behavior of this IDR may determine distinct functional properties. Our studies suggest that partial conformational order in the N-terminal tail of Tre recombinase and its packing to a conserved hydrophobic surface on the protein provide thermodynamic stability. Based on our results, we propose a link between protein stability and function, offering new plausible atom-detailed mechanistic insights into disorder-function relationships. Our work highlights the potential of N-terminal tails to be exploited for regulation of the activity of Cre-like tyrosine-type SSRs, which merits future investigations and could be of relevance in future rational engineering for their use in biotechnology and genomic medicine.
Collapse
|
50
|
Schneider S, Kozuch J, Boxer SG. The Interplay of Electrostatics and Chemical Positioning in the Evolution of Antibiotic Resistance in TEM β-Lactamases. ACS CENTRAL SCIENCE 2021; 7:1996-2008. [PMID: 34963893 PMCID: PMC8704030 DOI: 10.1021/acscentsci.1c00880] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 05/25/2023]
Abstract
The interplay of enzyme active site electrostatics and chemical positioning is important for understanding the origin(s) of enzyme catalysis and the design of novel catalysts. We reconstruct the evolutionary trajectory of TEM-1 β-lactamase to TEM-52 toward extended-spectrum activity to better understand the emergence of antibiotic resistance and to provide insights into the structure-function paradigm and noncovalent interactions involved in catalysis. Utilizing a detailed kinetic analysis and the vibrational Stark effect, we quantify the changes in rates and electric fields in the Michaelis and acyl-enzyme complexes for penicillin G and cefotaxime to ascertain the evolutionary role of electric fields to modulate function. These data are combined with MD simulations to interpret and quantify the substrate-dependent structural changes during evolution. We observe that this evolutionary trajectory utilizes a large preorganized electric field and substrate-dependent chemical positioning to facilitate catalysis. This governs the evolvability, substrate promiscuity, and protein fitness landscape in TEM β-lactamase antibiotic resistance.
Collapse
Affiliation(s)
| | | | - Steven G. Boxer
- Chemistry Department, Stanford University, Stanford, California 94305, United States
| |
Collapse
|