1
|
Harle J, Slater C, Cafiero M. Investigating Paracetamol's Role as a Potential Treatment for Parkinson's Disease: Ab Initio Analysis of Dopamine, l-DOPA, Paracetamol, and NAPQI Interactions with Enzymes Involved in Dopamine Metabolism. ACS OMEGA 2023; 8:38053-38063. [PMID: 37867718 PMCID: PMC10586264 DOI: 10.1021/acsomega.3c03888] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
Recently, it was found that paracetamol can extend the therapeutic window of l-DOPA treatment for Parkinson's disease [Golding (2019) BJPharm, 4(2), Article 619]. It has been posited that the effect could be due to paracetamol and its metabolite, NAPQI, inhibiting pain signals in the spinal column. In this work, we examine the possibility that the therapeutic effect of the paracetamol for the Parkinson's disease patient may be due to an inhibition of the enzymes that metabolize dopamine and/or l-DOPA, thus effectively extending the lifetime of the l-DOPA treatment. In this work, we use the M062X/6-311+G* level of theory to calculate the electronic binding energies (including explicit desolvation) of several ligands (paracetamol, NAPQI, dopamine, and l-DOPA) with a series of enzymes important to the production and metabolism of dopamine and compare them to calculated binding energy values for the natural substrates for those enzymes in order to predict possible inhibition. Benchmark interaction energies for a subset of the systems studied are calculated using the more accurate second-order Møller-Plesset perturbation (MP2) method in order to calibrate the accuracy of the M062X method. If we assume that the interaction energies calculated here can serve as a proxy for in vivo inhibition, then we can predict that paracetamol and NAPQI should not inhibit the natural production of dopamine and may in fact inhibit the metabolism of l-DOPA and dopamine, thus extending the length of l-DOPA treatments.
Collapse
Affiliation(s)
- Joshua Harle
- School
of Chemistry Food and Pharmacy, University
of Reading, Reading RG6 6AD, U.K.
| | - Catherine Slater
- School
of Sciences, University of Wolverhampton, Wolverhampton WV1 1LY, U.K.
| | - Mauricio Cafiero
- School
of Chemistry Food and Pharmacy, University
of Reading, Reading RG6 6AD, U.K.
| |
Collapse
|
2
|
Senra MVX, Fonseca AL. Toxicological impacts and likely protein targets of bisphenol a in Paramecium caudatum. Eur J Protistol 2023; 88:125958. [PMID: 36857848 DOI: 10.1016/j.ejop.2023.125958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Bisphenol A (BPA) is a widely used plasticizer agent and a well-known ubiquitous endocrine disruptor, which is frequently associated with a series of reproductive, developmental, and transgenerational effects over wildlife, livestocks, and humans. Although extensive toxicological data is available for metazoans, the impact of BPA over unicellular eukaryotes, which represents a considerable proportion of eukaryotic diversity, remains largely overlooked. Here, we used acute end-point toxicological assay and an inverted virtual-screening (IVS) approach to evaluate cellular impairments infringed by BPA over the cosmopolitan ciliated protist, Paramecium caudatum. Our data indicate a clear time-dependent effect over P. caudatum survival, which seems to be a consequence of disruptions to multiple core cellular functions, such as DNA and cell replication, transcription, translation and signaling pathways. Finally, the use of this ciliate as a biosensor to monitor BPA within environments and the relevance of bioinformatic methods to leverage our current knowledge on the impacts of emerging contaminants to biological systems are discussed.
Collapse
Affiliation(s)
- Marcus V X Senra
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580, Santo André, São Paulo, Brazil; Instituto de Recursos Naturais, Universidade Federal de Itajubá, 37500-903, Itajubá, Minas Gerais, Brazil.
| | - Ana Lúcia Fonseca
- Instituto de Recursos Naturais, Universidade Federal de Itajubá, 37500-903, Itajubá, Minas Gerais, Brazil
| |
Collapse
|
3
|
Fitzpatrick PF. The aromatic amino acid hydroxylases: Structures, catalysis, and regulation of phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase. Arch Biochem Biophys 2023; 735:109518. [PMID: 36639008 DOI: 10.1016/j.abb.2023.109518] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
The aromatic amino acid hydroxylases phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase are non-heme iron enzymes that catalyze key physiological reactions. This review discusses the present understanding of the common catalytic mechanism of these enzymes and recent advances in understanding the relationship between their structures and their regulation.
Collapse
Affiliation(s)
- Paul F Fitzpatrick
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
| |
Collapse
|
4
|
Wang Y, Wang C, Liu M, Xu W, Wang S, Yuan F, Luo X, Xu Q, Yin R, Wang A, Guo M, Lin L, Wang C, Cheng H, Liu Z, Zhang Y, Zeng F, Yan J, Chen Y. Segawa syndrome caused by TH gene mutation and its mechanism. Front Genet 2022; 13:1004307. [PMID: 36568392 PMCID: PMC9772685 DOI: 10.3389/fgene.2022.1004307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Dopa-responsive dystonia (DRD), also known as Segawa syndrome, is a rare neurotransmitter disease. The decrease in dopamine caused by tyrosine hydroxylase (TH) gene mutation may lead to dystonia, tremor and severe encephalopathy in children. Although the disease caused by recessive genetic mutation of the tyrosine hydroxylase (TH) gene is rare, we found that the clinical manifestations of seven children with tyrosine hydroxylase gene mutations are similar to dopa-responsive dystonia. To explore the clinical manifestations and possible pathogenesis of the disease, we analyzed the clinical data of seven patients. Next-generation sequencing showed that the TH gene mutation in three children was a reported homozygous mutation (c.698G>A). At the same time, two new mutations of the TH gene were found in other children: c.316_317insCGT, and c.832G>A (p.Ala278Thr). We collected venous blood from four patients with Segawa syndrome and their parents for real-time quantitative polymerase chain reaction analysis of TH gene expression. We predicted the structure and function of proteins on the missense mutation iterative thread assembly refinement (I-TASSER) server and studied the conservation of protein mutation sites. Combined with molecular biology experiments and related literature analysis, the qPCR results of two patients showed that the expression of the TH gene was lower than that in 10 normal controls, and the expression of the TH gene of one mother was lower than the average expression level. We speculated that mutation in the TH gene may clinically manifest by affecting the production of dopamine and catecholamine downstream, which enriches the gene pool of Segawa syndrome. At the same time, the application of levodopa is helpful to the study, diagnosis and treatment of Segawa syndrome.
Collapse
Affiliation(s)
- Yilin Wang
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Chunmei Wang
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Meiyan Liu
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Wuhen Xu
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Simei Wang
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Fang Yuan
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Xiaona Luo
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Quanmei Xu
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Rongrong Yin
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Anqi Wang
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Miao Guo
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Longlong Lin
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Chao Wang
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Hongyi Cheng
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Zhiping Liu
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yuanfeng Zhang
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Fanyi Zeng
- Shanghai Key Laboratory of Embryo and Reproduction Engineering, Key Laboratory of Embryo Molecular Biology of National Health Commission, Shanghai Institute of Medical Genetics, Shanghai Chlidren’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Jingbin Yan
- Shanghai Key Laboratory of Embryo and Reproduction Engineering, Key Laboratory of Embryo Molecular Biology of National Health Commission, Shanghai Institute of Medical Genetics, Shanghai Chlidren’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yucai Chen
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China,*Correspondence: Yucai Chen,
| |
Collapse
|
5
|
Park J, Hong J, Seok J, Hong H, Seo H, Kim KJ. Structural studies of a novel auxiliary-domain-containing phenylalanine hydroxylase from Bacillus cereus ATCC 14579. Acta Crystallogr D Struct Biol 2022; 78:586-598. [DOI: 10.1107/s2059798322002674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/08/2022] [Indexed: 11/11/2022] Open
Abstract
Phenylalanine hydroxylase (PAH), which belongs to the aromatic amino-acid hydroxylase family, is involved in protein synthesis and pyomelanine production through the hydroxylation of phenylalanine to tyrosine. In this study, the crystal structure of PAH from Bacillus cereus ATCC 14579 (BcPAH) with an additional 280 amino acids in the C-terminal region was determined. The structure of BcPAH consists of three distinct domains: a core domain with two additional inserted α-helices and two novel auxiliary domains: BcPAH-AD1 and BcPAH-AD2. Structural homologues of BcPAH-AD1 and BcPAH-AD2 are known to be involved in mRNA regulation and protein–protein interactions, and thus it was speculated that BcPAH might utilize the auxiliary domains for interaction with its partner proteins. Furthermore, phylogenetic tree analysis revealed that the three-domain PAHs, including BcPAH, are completely distinctive from both conventional prokaryotic PAHs and eukaryotic PAHs. Finally, biochemical studies of BcPAH showed that BcPAH-AD1 might be important for the structural integrity of the enzyme and that BcPAH-AD2 is related to enzyme stability and/or activity. Investigations into the intracellular functions of the two auxiliary domains and the relationship between these functions and the activity of PAH are required.
Collapse
|
6
|
Bueno-Carrasco MT, Cuéllar J, Flydal MI, Santiago C, Kråkenes TA, Kleppe R, López-Blanco JR, Marcilla M, Teigen K, Alvira S, Chacón P, Martinez A, Valpuesta JM. Structural mechanism for tyrosine hydroxylase inhibition by dopamine and reactivation by Ser40 phosphorylation. Nat Commun 2022; 13:74. [PMID: 35013193 PMCID: PMC8748767 DOI: 10.1038/s41467-021-27657-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/03/2021] [Indexed: 12/15/2022] Open
Abstract
Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the biosynthesis of dopamine (DA) and other catecholamines, and its dysfunction leads to DA deficiency and parkinsonisms. Inhibition by catecholamines and reactivation by S40 phosphorylation are key regulatory mechanisms of TH activity and conformational stability. We used Cryo-EM to determine the structures of full-length human TH without and with DA, and the structure of S40 phosphorylated TH, complemented with biophysical and biochemical characterizations and molecular dynamics simulations. TH presents a tetrameric structure with dimerized regulatory domains that are separated 15 Å from the catalytic domains. Upon DA binding, a 20-residue α-helix in the flexible N-terminal tail of the regulatory domain is fixed in the active site, blocking it, while S40-phosphorylation forces its egress. The structures reveal the molecular basis of the inhibitory and stabilizing effects of DA and its counteraction by S40-phosphorylation, key regulatory mechanisms for homeostasis of DA and TH. Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the synthesis of the catecholamine neurotransmitters and hormones dopamine (DA), adrenaline and noradrenaline. Here, the authors present the cryo-EM structures of full-length human TH in the apo form and bound with DA, as well as the structure of Ser40 phosphorylated TH, and discuss the inhibitory and stabilizing effects of DA on TH and its counteraction by Ser40-phosphorylation.
Collapse
Affiliation(s)
| | - Jorge Cuéllar
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| | - Marte I Flydal
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - César Santiago
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | - Rune Kleppe
- Norwegian Centre for Maritime and Diving Medicine, Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | | | | | - Knut Teigen
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Sara Alvira
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Pablo Chacón
- Instituto de Química Física Rocasolano (IQFR-CSIC), Madrid, Spain
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | | |
Collapse
|
7
|
Ko CW, Huh J, Park JW. Deep learning program to predict protein functions based on sequence information. MethodsX 2022; 9:101622. [PMID: 35111575 PMCID: PMC8790617 DOI: 10.1016/j.mex.2022.101622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/11/2022] [Indexed: 01/11/2023] Open
Abstract
A new deep learning program to predict protein functions in silico. Requirement of nothing more than the protein sequence information. A sequence segmentation to improve the efficiency of prediction. Prediction of the clinical impact of mutations or polymorphisms.
Deep learning technologies have been adopted to predict the functions of newly identified proteins in silico. However, most current models are not suitable for poorly characterized proteins because they require diverse information on target proteins. We designed a binary classification deep learning program requiring only sequence information. This program was named ‘FUTUSA’ (function teller using sequence alone). It applied sequence segmentation during the sequence feature extraction process, by a convolution neural network, to train the regional sequence patterns and their relationship. This segmentation process improved the predictive performance by 49% than the full-length process. Compared with a baseline method, our approach achieved higher performance in predicting oxidoreductase activity. In addition, FUTUSA also showed dramatic performance in predicting acetyltransferase and demethylase activities. Next, we tested the possibility that FUTUSA can predict the functional consequence of point mutation. After trained for monooxygenase activity, FUTUSA successfully predicted the impact of point mutations on phenylalanine hydroxylase, which is responsible for an inherited metabolic disease PKU. This deep-learning program can be used as the first-step tool for characterizing newly identified or poorly studied proteins.We proposed new deep learning program to predict protein functions in silico that requires nothing more than the protein sequence information. Due to application of sequence segmentation, the efficiency of prediction is improved. This method makes prediction of the clinical impact of mutations or polymorphisms possible.
Collapse
Affiliation(s)
- Chang Woo Ko
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - June Huh
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Jong-Wan Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Corresponding author at: Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Vela-Amieva M, Alcántara-Ortigoza MA, Ibarra-González I, González-del Angel A, Fernández-Hernández L, Guillén-López S, López-Mejía L, Carrillo-Nieto RI, Belmont-Martínez L, Fernández-Lainez C. An Updated PAH Mutational Spectrum of Phenylketonuria in Mexican Patients Attending a Single Center: Biochemical, Clinical-Genotyping Correlations. Genes (Basel) 2021; 12:genes12111676. [PMID: 34828281 PMCID: PMC8620669 DOI: 10.3390/genes12111676] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/21/2022] Open
Abstract
Establishing the genotypes of patients with hyperphenylalaninemia (HPA)/phenylketonuria (PKU, MIM#261600) has been considered a cornerstone for rational medical management. However, knowledge of the phenylalanine hydroxylase gene (PAH) mutational spectrum in Latin American populations is still limited. Herein, we aim to update the mutational PAH spectrum in the largest cohort of HPA/PKU Mexican patients (N = 124) reported to date. The biallelic PAH genotype was investigated by Sanger automated sequencing, and genotypes were correlated with documented biochemical phenotypes and theoretical tetrahydrobiopterin (BH4) responsiveness. Patients were biochemically classified as having classic PKU (50%, 62/124), mild PKU (20.2%, 25/124) and mild HPA (29.8%, 37/124). Furthermore, 78.2% of the included patients (97/124) were identified by newborn screening. A total of 60 different pathogenic variants were identified, including three novel ones (c. 23del, c. 625_626insC and c. 1315 + 5_1315 + 6insGTGTAACAG), the main categories being missense changes (58%, 35/60) and those affecting the catalytic domain (56.6%, 34/60), and c. 60 + 5G > T was the most frequent variant (14.5%, 36/248) mainly restricted (69.2%) to patients from the central and western parts of Mexico. These 60 types of variants constituted 100 different biallelic PAH genotypes, with the predominance of compound-heterozygous ones (96/124, 77%). The expected BH4 responsiveness based on the PAH genotype was estimated in 52% of patients (65/124), mainly due to the p. (Val388Met) (rs62516101) allele. Instead, our study identified 27 null variants with an allelic phenotype value of zero, with a predominance of c. 60 + 5G > T, which predicts the absence of BH4 responsiveness. An identical genotype reported in BIOPKUdb was found in 92/124 (74%) of our patients, leading to a genotype–phenotype concordance in 80/92 (86.9%) of them. The high number of variants found confirms the heterogeneous and complex mutational landscape of HPA/PKU in Mexico.
Collapse
Affiliation(s)
- Marcela Vela-Amieva
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de Mexico 04530, Mexico; (M.V.-A.); (S.G.-L.); (L.L.-M.); (R.I.C.-N.); (L.B.-M.)
| | - Miguel Angel Alcántara-Ortigoza
- Laboratorio de Biología Molecular, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de Mexico 04530, Mexico; (M.A.A.-O.); (A.G.-d.A.); (L.F.-H.)
| | - Isabel Ibarra-González
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Pediatría, Ciudad de Mexico 04530, Mexico;
| | - Ariadna González-del Angel
- Laboratorio de Biología Molecular, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de Mexico 04530, Mexico; (M.A.A.-O.); (A.G.-d.A.); (L.F.-H.)
| | - Liliana Fernández-Hernández
- Laboratorio de Biología Molecular, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de Mexico 04530, Mexico; (M.A.A.-O.); (A.G.-d.A.); (L.F.-H.)
| | - Sara Guillén-López
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de Mexico 04530, Mexico; (M.V.-A.); (S.G.-L.); (L.L.-M.); (R.I.C.-N.); (L.B.-M.)
| | - Lizbeth López-Mejía
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de Mexico 04530, Mexico; (M.V.-A.); (S.G.-L.); (L.L.-M.); (R.I.C.-N.); (L.B.-M.)
| | - Rosa Itzel Carrillo-Nieto
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de Mexico 04530, Mexico; (M.V.-A.); (S.G.-L.); (L.L.-M.); (R.I.C.-N.); (L.B.-M.)
| | - Leticia Belmont-Martínez
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de Mexico 04530, Mexico; (M.V.-A.); (S.G.-L.); (L.L.-M.); (R.I.C.-N.); (L.B.-M.)
| | - Cynthia Fernández-Lainez
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de Mexico 04530, Mexico; (M.V.-A.); (S.G.-L.); (L.L.-M.); (R.I.C.-N.); (L.B.-M.)
- Correspondence: ; Tel.: +52-1-55-10840900 (ext. 1332)
| |
Collapse
|
9
|
Direct coordination of pterin to Fe II enables neurotransmitter biosynthesis in the pterin-dependent hydroxylases. Proc Natl Acad Sci U S A 2021; 118:2022379118. [PMID: 33876764 PMCID: PMC8053929 DOI: 10.1073/pnas.2022379118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The pterin-dependent nonheme iron enzymes hydroxylate aromatic amino acids to perform the biosynthesis of neurotransmitters to maintain proper brain function. These enzymes activate oxygen using a pterin cofactor and an aromatic amino acid substrate bound to the FeII active site to form a highly reactive FeIV = O species that initiates substrate oxidation. In this study, using tryptophan hydroxylase, we have kinetically generated a pre-FeIV = O intermediate and characterized its structure as a FeII-peroxy-pterin species using absorption, Mössbauer, resonance Raman, and nuclear resonance vibrational spectroscopies. From parallel characterization of the pterin cofactor and tryptophan substrate-bound ternary FeII active site before the O2 reaction (including magnetic circular dichroism spectroscopy), these studies both experimentally define the mechanism of FeIV = O formation and demonstrate that the carbonyl functional group on the pterin is directly coordinated to the FeII site in both the ternary complex and the peroxo intermediate. Reaction coordinate calculations predict a 14 kcal/mol reduction in the oxygen activation barrier due to the direct binding of the pterin carbonyl to the FeII site, as this interaction provides an orbital pathway for efficient electron transfer from the pterin cofactor to the iron center. This direct coordination of the pterin cofactor enables the biological function of the pterin-dependent hydroxylases and demonstrates a unified mechanism for oxygen activation by the cofactor-dependent nonheme iron enzymes.
Collapse
|
10
|
Fanet H, Capuron L, Castanon N, Calon F, Vancassel S. Tetrahydrobioterin (BH4) Pathway: From Metabolism to Neuropsychiatry. Curr Neuropharmacol 2021; 19:591-609. [PMID: 32744952 PMCID: PMC8573752 DOI: 10.2174/1570159x18666200729103529] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/03/2020] [Accepted: 07/23/2020] [Indexed: 11/22/2022] Open
Abstract
Tetrahydrobipterin (BH4) is a pivotal enzymatic cofactor required for the synthesis of serotonin, dopamine and nitric oxide. BH4 is essential for numerous physiological processes at periphery and central levels, such as vascularization, inflammation, glucose homeostasis, regulation of oxidative stress and neurotransmission. BH4 de novo synthesis involves the sequential activation of three enzymes, the major controlling point being GTP cyclohydrolase I (GCH1). Complementary salvage and recycling pathways ensure that BH4 levels are tightly kept within a physiological range in the body. Even if the way of transport of BH4 and its ability to enter the brain after peripheral administration is still controversial, data showed increased levels in the brain after BH4 treatment. Available evidence shows that GCH1 expression and BH4 synthesis are stimulated by immunological factors, notably pro-inflammatory cytokines. Once produced, BH4 can act as an anti- inflammatory molecule and scavenger of free radicals protecting against oxidative stress. At the same time, BH4 is prone to autoxidation, leading to the release of superoxide radicals contributing to inflammatory processes, and to the production of BH2, an inactive form of BH4, reducing its bioavailability. Alterations in BH4 levels have been documented in many pathological situations, including Alzheimer's disease, Parkinson's disease and depression, in which increased oxidative stress, inflammation and alterations in monoaminergic function are described. This review aims at providing an update of the knowledge about metabolism and the role of BH4 in brain function, from preclinical to clinical studies, addressing some therapeutic implications.
Collapse
Affiliation(s)
- H. Fanet
- INRAe, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Neurosciences Axis, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
- OptiNutriBrain International Associated Laboratory (NurtriNeuro France-INAF Canada), Quebec City, Canada
| | - L. Capuron
- INRAe, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- OptiNutriBrain International Associated Laboratory (NurtriNeuro France-INAF Canada), Quebec City, Canada
| | - N. Castanon
- INRAe, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- OptiNutriBrain International Associated Laboratory (NurtriNeuro France-INAF Canada), Quebec City, Canada
| | - F. Calon
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Neurosciences Axis, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
- OptiNutriBrain International Associated Laboratory (NurtriNeuro France-INAF Canada), Quebec City, Canada
| | - S. Vancassel
- INRAe, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- OptiNutriBrain International Associated Laboratory (NurtriNeuro France-INAF Canada), Quebec City, Canada
| |
Collapse
|
11
|
Dunham NP, Arnold FH. Nature's Machinery, Repurposed: Expanding the Repertoire of Iron-Dependent Oxygenases. ACS Catal 2020; 10:12239-12255. [PMID: 33282461 PMCID: PMC7710332 DOI: 10.1021/acscatal.0c03606] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Iron is an especially important redox-active cofactor in biology because of its ability to mediate reactions with atmospheric O2. Iron-dependent oxygenases exploit this earth-abundant transition metal for the insertion of oxygen atoms into organic compounds. Throughout the astounding diversity of transformations catalyzed by these enzymes, the protein framework directs reactive intermediates toward the precise formation of products, which, in many cases, necessitates the cleavage of strong C-H bonds. In recent years, members of several iron-dependent oxygenase families have been engineered for new-to-nature transformations that offer advantages over conventional synthetic methods. In this Perspective, we first explore what is known about the reactivity of heme-dependent cytochrome P450 oxygenases and nonheme iron-dependent oxygenases bearing the 2-His-1-carboxylate facial triad by reviewing mechanistic studies with an emphasis on how the protein scaffold maximizes the catalytic potential of the iron-heme and iron cofactors. We then review how these cofactors have been repurposed for abiological transformations by engineering the protein frameworks of these enzymes. Finally, we discuss contemporary challenges associated with engineering these platforms and comment on their roles in biocatalysis moving forward.
Collapse
Affiliation(s)
- Noah P. Dunham
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| |
Collapse
|
12
|
Tran ML, Génisson Y, Ballereau S, Dehoux C. Second-Generation Pharmacological Chaperones: Beyond Inhibitors. Molecules 2020; 25:molecules25143145. [PMID: 32660097 PMCID: PMC7397201 DOI: 10.3390/molecules25143145] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 02/06/2023] Open
Abstract
Protein misfolding induced by missense mutations is the source of hundreds of conformational diseases. The cell quality control may eliminate nascent misfolded proteins, such as enzymes, and a pathological loss-of-function may result from their early degradation. Since the proof of concept in the 2000s, the bioinspired pharmacological chaperone therapy became a relevant low-molecular-weight compound strategy against conformational diseases. The first-generation pharmacological chaperones were competitive inhibitors of mutant enzymes. Counterintuitively, in binding to the active site, these inhibitors stabilize the proper folding of the mutated protein and partially rescue its cellular function. The main limitation of the first-generation pharmacological chaperones lies in the balance between enzyme activity enhancement and inhibition. Recent research efforts were directed towards the development of promising second-generation pharmacological chaperones. These non-inhibitory ligands, targeting previously unknown binding pockets, limit the risk of adverse enzymatic inhibition. Their pharmacophore identification is however challenging and likely requires a massive screening-based approach. This review focuses on second-generation chaperones designed to restore the cellular activity of misfolded enzymes. It intends to highlight, for a selected set of rare inherited metabolic disorders, the strategies implemented to identify and develop these pharmacologically relevant small organic molecules as potential drug candidates.
Collapse
Affiliation(s)
| | | | | | - Cécile Dehoux
- Correspondence: (S.B.); (C.D.); Tel.: +33-5-6155-6127 (C.D.)
| |
Collapse
|
13
|
Tomé CS, Lopes RR, Sousa PMF, Amaro MP, Leandro J, Mertens HDT, Leandro P, Vicente JB. Structure of full-length wild-type human phenylalanine hydroxylase by small angle X-ray scattering reveals substrate-induced conformational stability. Sci Rep 2019; 9:13615. [PMID: 31541188 PMCID: PMC6754429 DOI: 10.1038/s41598-019-49944-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/03/2019] [Indexed: 01/30/2023] Open
Abstract
Human phenylalanine hydroxylase (hPAH) hydroxylates L-phenylalanine (L-Phe) to L-tyrosine, a precursor for neurotransmitter biosynthesis. Phenylketonuria (PKU), caused by mutations in PAH that impair PAH function, leads to neurological impairment when untreated. Understanding the hPAH structural and regulatory properties is essential to outline PKU pathophysiological mechanisms. Each hPAH monomer comprises an N-terminal regulatory, a central catalytic and a C-terminal oligomerisation domain. To maintain physiological L-Phe levels, hPAH employs complex regulatory mechanisms. Resting PAH adopts an auto-inhibited conformation where regulatory domains block access to the active site. L-Phe-mediated allosteric activation induces a repositioning of the regulatory domains. Since a structure of activated wild-type hPAH is lacking, we addressed hPAH L-Phe-mediated conformational changes and report the first solution structure of the allosterically activated state. Our solution structures obtained by small-angle X-ray scattering support a tetramer with distorted P222 symmetry, where catalytic and oligomerisation domains form a core from which regulatory domains protrude, positioning themselves close to the active site entrance in the absence of L-Phe. Binding of L-Phe induces a large movement and dimerisation of regulatory domains, exposing the active site. Activated hPAH is more resistant to proteolytic cleavage and thermal denaturation, suggesting that the association of regulatory domains stabilises hPAH.
Collapse
Affiliation(s)
- Catarina S Tomé
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Raquel R Lopes
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro M F Sousa
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Mariana P Amaro
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - João Leandro
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Paula Leandro
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
14
|
Flydal MI, Alcorlo-Pagés M, Johannessen FG, Martínez-Caballero S, Skjærven L, Fernandez-Leiro R, Martinez A, Hermoso JA. Structure of full-length human phenylalanine hydroxylase in complex with tetrahydrobiopterin. Proc Natl Acad Sci U S A 2019; 116:11229-11234. [PMID: 31118288 PMCID: PMC6561269 DOI: 10.1073/pnas.1902639116] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phenylalanine hydroxylase (PAH) is a key enzyme in the catabolism of phenylalanine, and mutations in this enzyme cause phenylketonuria (PKU), a genetic disorder that leads to brain damage and mental retardation if untreated. Some patients benefit from supplementation with a synthetic formulation of the cofactor tetrahydrobiopterin (BH4) that partly acts as a pharmacological chaperone. Here we present structures of full-length human PAH (hPAH) both unbound and complexed with BH4 in the precatalytic state. Crystal structures, solved at 3.18-Å resolution, show the interactions between the cofactor and PAH, explaining the negative regulation exerted by BH4 BH4 forms several H-bonds with the N-terminal autoregulatory tail but is far from the catalytic FeII Upon BH4 binding a polar and salt-bridge interaction network links the three PAH domains, explaining the stability conferred by BH4 Importantly, BH4 binding modulates the interaction between subunits, providing information about PAH allostery. Moreover, we also show that the cryo-EM structure of hPAH in absence of BH4 reveals a highly dynamic conformation for the tetramers. Structural analyses of the hPAH:BH4 subunits revealed that the substrate-induced movement of Tyr138 into the active site could be coupled to the displacement of BH4 from the precatalytic toward the active conformation, a molecular mechanism that was supported by site-directed mutagenesis and targeted molecular dynamics simulations. Finally, comparison of the rat and human PAH structures show that hPAH is more dynamic, which is related to amino acid substitutions that enhance the flexibility of hPAH and may increase the susceptibility to PKU-associated mutations.
Collapse
Affiliation(s)
| | - Martín Alcorlo-Pagés
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Rocasolano," Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | | | | | - Lars Skjærven
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Rafael Fernandez-Leiro
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway;
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Rocasolano," Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain;
| |
Collapse
|
15
|
Reilley DJ, Popov KI, Dokholyan NV, Alexandrova AN. Uncovered Dynamic Coupling Resolves the Ambiguous Mechanism of Phenylalanine Hydroxylase Oxygen Binding. J Phys Chem B 2019; 123:4534-4539. [PMID: 31038957 DOI: 10.1021/acs.jpcb.9b02893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Phenylalanine hydroxylase (PAH) is an iron enzyme catalyzing the oxidation of l-Phe to l-Tyr during phenylalanine catabolism. Dysfunction of PAH leads to the debilitating condition phenylketonuria (PKU), which prompted research into the structure and function of PAH over the last 50 years. Despite intensive study, there is no consensus on the atomistic details of the mechanism of O2 binding and splitting by wild-type (WT) PAH and how it varies with PKU-inducing mutations, Arg158Gln and Glu280Lys. We studied structures involved in a proposed mechanism for the WT and mutants using extensive mixed quantum-classical molecular dynamics simulations. Simulations reveal a previously unobserved dynamic coupling between the active site and the mutation sites, suggesting how they can affect the catalytic performance of PAH. Furthermore, the effect of the coupling on the PAH structure agrees with and expands our understanding of the experimentally observed differences in activity between the WT and mutants.
Collapse
Affiliation(s)
- David J Reilley
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095-1569 , United States
| | - Konstantin I Popov
- Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States.,Department of Pharmacology, Department of Biochemistry & Molecular Biology , Penn State University College of Medicine , Hershey , Pennsylvania 17033 , United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095-1569 , United States.,California NanoSystems Institute, Los Angeles , California 90095-1569 , United States
| |
Collapse
|
16
|
Perchik MC, Peterson LW, Cafiero M. The effects of ligand deprotonation on the binding selectivity of the phenylalanine hydroxylase active site. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Xu J, Li Y, Lv Y, Bian C, You X, Endoh D, Teraoka H, Shi Q. Molecular Evolution of Tryptophan Hydroxylases in Vertebrates: A Comparative Genomic Survey. Genes (Basel) 2019; 10:E203. [PMID: 30857219 PMCID: PMC6470480 DOI: 10.3390/genes10030203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/19/2019] [Accepted: 03/04/2019] [Indexed: 02/02/2023] Open
Abstract
Serotonin is a neurotransmitter involved in various physiological processes in the central and peripheral nervous systems. Serotonin is also a precursor for melatonin biosynthesis, which mainly occurs in the pineal gland of vertebrates. Tryptophan hydroxylase (TPH) acts as the rate-limiting enzyme in serotonin biosynthesis and is the initial enzyme involved in the synthesis of melatonin. Recently, two enzymes-TPH1 and TPH2-were reported to form the TPH family in vertebrates and to play divergent roles in serotonergic systems. Here, we examined the evolution of the TPH family from 70 vertebrate genomes. Based on the sequence similarity, we extracted 184 predicted tph homologs in the examined vertebrates. A phylogenetic tree, constructed on the basis of these protein sequences, indicated that tph genes could be divided into two main clades (tph1 and tph2), and that the two clades were further split into two subgroups of tetrapods and Actinopterygii. In tetrapods, and some basal non-teleost ray-finned fishes, only two tph isotypes exist. Notably, tph1 in most teleosts that had undergone the teleost-specific genome duplication could be further divided into tph1a and tph1b. Moreover, protein sequence comparisons indicated that TPH protein changes among vertebrates were concentrated at the NH₂-terminal. The tertiary structures of TPH1 and TPH2 revealed obvious differences in the structural elements. Five positively selected sites were characterized in TPH2 compared with TPH1; these sites may reflect the functional divergence in enzyme activity and substrate specificity. In summary, our current work provides novel insights into the evolution of tph genes in vertebrates from a comprehensive genomic perspective.
Collapse
Affiliation(s)
- Junmin Xu
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan.
| | - Yanping Li
- BGI-Shenzhen, Shenzhen 518083, China.
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Yunyun Lv
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
| | - Daiji Endoh
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan.
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan.
| | - Qiong Shi
- BGI-Shenzhen, Shenzhen 518083, China.
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
| |
Collapse
|
18
|
Arbesman J, Ravichandran S, Funchain P, Thompson CL. Melanoma cases demonstrate increased carrier frequency of phenylketonuria/hyperphenylalanemia mutations. Pigment Cell Melanoma Res 2018; 31:529-533. [PMID: 29473999 DOI: 10.1111/pcmr.12695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/09/2018] [Indexed: 11/30/2022]
Abstract
Identifying novel melanoma genetic risk factors informs screening and prevention efforts. Mutations in the phenylalanine hydroxylase gene (the causative gene in phenylketonuria) lead to reduced pigmentation in untreated phenylketonuria patients, and reduced pigmentation is associated with greater melanoma risk. Therefore, we sought to characterize the relationship between phenylketonuria carrier status and melanoma risk. Using National Newborn Screening Reports, we determined the United States phenylketonuria/hyperphenylalanemia carrier frequency in Caucasians to be 1.76%. We examined three publically available melanoma datasets for germline mutations in the phenylalanine hydroxylase gene associated with classic phenylketonuria and/or hyperphenylalanemia. Mutations were identified in 29/814 melanoma patients, with a carrier frequency of 3.56%. There was a twofold enrichment (p-value = 3.4 × 10-5 ) compared to the Caucasian frequency of hyperphenylalanemia/phenylketonuria carriers. These data demonstrate a novel association between phenylalanine hydroxylase carrier status and melanoma risk. Further, functional investigation is warranted to determine the link between phenylalanine hydroxylase mutations and melanomagenesis.
Collapse
Affiliation(s)
- Joshua Arbesman
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Pauline Funchain
- Department of Hematology/Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Cheryl L Thompson
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
19
|
Tidemand KD, Peters GH, Harris P, Stensgaard E, Christensen HEM. Isoform-Specific Substrate Inhibition Mechanism of Human Tryptophan Hydroxylase. Biochemistry 2017; 56:6155-6164. [PMID: 29035515 DOI: 10.1021/acs.biochem.7b00763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tryptophan hydroxylase (TPH) catalyzes the initial and rate-limiting step in the biosynthesis of serotonin, which is associated with a variety of disorders such as depression and irritable bowel syndrome. TPH exists in two isoforms: TPH1 and TPH2. TPH1 catalyzes the initial step in the synthesis of serotonin in the peripheral tissues, while TPH2 catalyzes this step in the brain. In this study, the steady-state kinetic mechanism for the catalytic domain of human TPH1 has been determined. Varying substrate tryptophan (Trp) and tetrahydrobiopterin (BH4) results in a hybrid Ping Pong-ordered mechanism in which the reaction can either occur through a Ping Pong or a sequential mechanism depending on the concentration of tryptophan. The catalytic domain of TPH1 shares a sequence identity of 81% with TPH2. Despite the high sequence identity, differences in the kinetic parameters of the isoforms have been identified; i.e., only TPH1 displays substrate tryptophan inhibition. This study demonstrates that the difference can be traced to an active site loop which displays different properties in the TPH isoforms. Steady-state kinetic results of the isoforms, and variants with point mutations in a loop lining the active site, show that the kinetic parameters of only TPH1 are significantly changed upon mutations. Mutations in the active site loop of TPH1 result in an increase in the substrate inhibition constant, Ki, and therefore turnover rate. Molecular dynamics simulations reveal that this substrate inhibition mechanism occurs through a closure of the cosubstrate, BH4, binding pocket, which is induced by Trp binding.
Collapse
Affiliation(s)
- Kasper D Tidemand
- Department of Chemistry, Technical University of Denmark , Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| | - Günther H Peters
- Department of Chemistry, Technical University of Denmark , Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| | - Pernille Harris
- Department of Chemistry, Technical University of Denmark , Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| | - Eva Stensgaard
- Department of Chemistry, Technical University of Denmark , Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| | - Hans E M Christensen
- Department of Chemistry, Technical University of Denmark , Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
20
|
Hayakawa D, Yamaotsu N, Nakagome I, Ozawa SI, Yoshida T, Hirono S. In silico analyses of the effects of a point mutation and a pharmacological chaperone on the thermal fluctuation of phenylalanine hydroxylase. Biophys Chem 2017; 228:47-54. [DOI: 10.1016/j.bpc.2017.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
|
21
|
Leandro J, Stokka AJ, Teigen K, Andersen OA, Flatmark T. Substituting Tyr 138 in the active site loop of human phenylalanine hydroxylase affects catalysis and substrate activation. FEBS Open Bio 2017; 7:1026-1036. [PMID: 28680815 PMCID: PMC5494296 DOI: 10.1002/2211-5463.12243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/27/2017] [Accepted: 05/10/2017] [Indexed: 11/22/2022] Open
Abstract
Mammalian phenylalanine hydroxylase (PAH) is a key enzyme in l‐phenylalanine (l‐Phe) metabolism and is active as a homotetramer. Biochemical and biophysical work has demonstrated that it cycles between two states with a variably low and a high activity, and that the substrate l‐Phe is the key player in this transition. X‐ray structures of the catalytic domain have shown mobility of a partially intrinsically disordered Tyr138‐loop to the active site in the presence of l‐Phe. The mechanism by which the loop dynamics are coupled to substrate binding at the active site in tetrameric PAH is not fully understood. We have here conducted functional studies of four Tyr138 point mutants. A high linear correlation (r2 = 0.99) was observed between their effects on the catalytic efficiency of the catalytic domain dimers and the corresponding effect on the catalytic efficiency of substrate‐activated full‐length tetramers. In the tetramers, a correlation (r2 = 0.96) was also observed between the increase in catalytic efficiency (activation) and the global conformational change (surface plasmon resonance signal response) at the same l‐Phe concentration. The new data support a similar functional importance of the Tyr138‐loop in the catalytic domain and the full‐length enzyme homotetramer.
Collapse
Affiliation(s)
- João Leandro
- Department of Biomedicine University of Bergen Norway.,Metabolism and Genetics Group Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy University of Lisbon Portugal.,Present address: Department of Genetics and Genomic Sciences Icahn School of Medicine at Mount Sinai 1425 Madison Avenue, Box 1498 New York NY 10029 USA
| | - Anne J Stokka
- Department of Biomedicine University of Bergen Norway.,The Biotechnology Centre of Oslo University of Oslo Norway
| | - Knut Teigen
- Department of Biomedicine University of Bergen Norway
| | - Ole A Andersen
- Department of Biomedicine University of Bergen Norway.,Evotec (UK) Ltd .Abingdon UK
| | | |
Collapse
|
22
|
Kal S, Que L. Dioxygen activation by nonheme iron enzymes with the 2-His-1-carboxylate facial triad that generate high-valent oxoiron oxidants. J Biol Inorg Chem 2017; 22:339-365. [PMID: 28074299 DOI: 10.1007/s00775-016-1431-2] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/13/2016] [Indexed: 11/24/2022]
Abstract
The 2-His-1-carboxylate facial triad is a widely used scaffold to bind the iron center in mononuclear nonheme iron enzymes for activating dioxygen in a variety of oxidative transformations of metabolic significance. Since the 1990s, over a hundred different iron enzymes have been identified to use this platform. This structural motif consists of two histidines and the side chain carboxylate of an aspartate or a glutamate arranged in a facial array that binds iron(II) at the active site. This triad occupies one face of an iron-centered octahedron and makes the opposite face available for the coordination of O2 and, in many cases, substrate, allowing the tailoring of the iron-dioxygen chemistry to carry out a plethora of diverse reactions. Activated dioxygen-derived species involved in the enzyme mechanisms include iron(III)-superoxo, iron(III)-peroxo, and high-valent iron(IV)-oxo intermediates. In this article, we highlight the major crystallographic, spectroscopic, and mechanistic advances of the past 20 years that have significantly enhanced our understanding of the mechanisms of O2 activation and the key roles played by iron-based oxidants.
Collapse
Affiliation(s)
- Subhasree Kal
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lawrence Que
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
23
|
Photoassisted Oxidation of Sulfides Catalyzed by Artificial Metalloenzymes Using Water as an Oxygen Source. Catalysts 2016. [DOI: 10.3390/catal6120202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
24
|
Meisburger SP, Taylor AB, Khan CA, Zhang S, Fitzpatrick PF, Ando N. Domain Movements upon Activation of Phenylalanine Hydroxylase Characterized by Crystallography and Chromatography-Coupled Small-Angle X-ray Scattering. J Am Chem Soc 2016; 138:6506-16. [PMID: 27145334 PMCID: PMC4896396 DOI: 10.1021/jacs.6b01563] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mammalian phenylalanine hydroxylase (PheH) is an allosteric enzyme that catalyzes the first step in the catabolism of the amino acid phenylalanine. Following allosteric activation by high phenylalanine levels, the enzyme catalyzes the pterin-dependent conversion of phenylalanine to tyrosine. Inability to control elevated phenylalanine levels in the blood leads to increased risk of mental disabilities commonly associated with the inherited metabolic disorder, phenylketonuria. Although extensively studied, structural changes associated with allosteric activation in mammalian PheH have been elusive. Here, we examine the complex allosteric mechanisms of rat PheH using X-ray crystallography, isothermal titration calorimetry (ITC), and small-angle X-ray scattering (SAXS). We describe crystal structures of the preactivated state of the PheH tetramer depicting the regulatory domains docked against the catalytic domains and preventing substrate binding. Using SAXS, we further describe the domain movements involved in allosteric activation of PheH in solution and present the first demonstration of chromatography-coupled SAXS with Evolving Factor Analysis (EFA), a powerful method for separating scattering components in a model-independent way. Together, these results support a model for allostery in PheH in which phenylalanine stabilizes the dimerization of the regulatory domains and exposes the active site for substrate binding and other structural changes needed for activity.
Collapse
Affiliation(s)
- Steve P. Meisburger
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Alexander B. Taylor
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | - Crystal A. Khan
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | - Shengnan Zhang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | - Paul F. Fitzpatrick
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | - Nozomi Ando
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
25
|
McCracken J, Cappillino PJ, McNally JS, Krzyaniak MD, Howart M, Tarves PC, Caradonna JP. Characterization of Water Coordination to Ferrous Nitrosyl Complexes with fac-N2O, cis-N2O2, and N2O3 Donor Ligands. Inorg Chem 2015; 54:6486-97. [DOI: 10.1021/acs.inorgchem.5b00788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John McCracken
- Department of Chemistry, Michigan State University, East
Lansing, Michigan 48824, United States
| | - Patrick J. Cappillino
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department of Chemistry and Biochemistry, University of Massachusetts at Dartmouth, North Dartmouth, Massachusetts 02347, United States
| | - Joshua S. McNally
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Matthew D. Krzyaniak
- Department of Chemistry, Michigan State University, East
Lansing, Michigan 48824, United States
| | - Michael Howart
- Department of Chemistry, Michigan State University, East
Lansing, Michigan 48824, United States
| | - Paul C. Tarves
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - John P. Caradonna
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
26
|
Ronau J, Paul LN, Fuchs JE, Liedl K, Abu-Omar MM, Das C. A conserved acidic residue in phenylalanine hydroxylase contributes to cofactor affinity and catalysis. Biochemistry 2014; 53:6834-48. [PMID: 25295853 PMCID: PMC4222540 DOI: 10.1021/bi500734h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/22/2014] [Indexed: 01/19/2023]
Abstract
The catalytic domains of aromatic amino acid hydroxylases (AAAHs) contain a non-heme iron coordinated to a 2-His-1-carboxylate facial triad and two water molecules. Asp139 from Chromobacterium violaceum PAH (cPAH) resides within the second coordination sphere and contributes key hydrogen bonds with three active site waters that mediate its interaction with an oxidized form of the cofactor, 7,8-dihydro-l-biopterin, in crystal structures. To determine the catalytic role of this residue, various point mutants were prepared and characterized. Our isothermal titration calorimetry (ITC) analysis of iron binding implies that polarity at position 139 is not the sole criterion for metal affinity, as binding studies with D139E suggest that the size of the amino acid side chain also appears to be important. High-resolution crystal structures of the mutants reveal that Asp139 may not be essential for holding the bridging water molecules together, because many of these waters are retained even in the Ala mutant. However, interactions via the bridging waters contribute to cofactor binding at the active site, interactions for which charge of the residue is important, as the D139N mutant shows a 5-fold decrease in its affinity for pterin as revealed by ITC (compared to a 16-fold loss of affinity in the case of the Ala mutant). The Asn and Ala mutants show a much more pronounced defect in their kcat values, with nearly 16- and 100-fold changes relative to that of the wild type, respectively, indicating a substantial role of this residue in stabilization of the transition state by aligning the cofactor in a productive orientation, most likely through direct binding with the cofactor, supported by data from molecular dynamics simulations of the complexes. Our results indicate that the intervening water structure between the cofactor and the acidic residue masks direct interaction between the two, possibly to prevent uncoupled hydroxylation of the cofactor before the arrival of phenylalanine. It thus appears that the second-coordination sphere Asp residue in cPAH, and, by extrapolation, the equivalent residue in other AAAHs, plays a role in fine-tuning pterin affinity in the ground state via deformable interactions with bridging waters and assumes a more significant role in the transition state by aligning the cofactor through direct hydrogen bonding.
Collapse
Affiliation(s)
- Judith
A. Ronau
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
- Department
of Molecular Biophysics and Biochemistry, Yale University, 266
Whitney Avenue, New Haven, Connecticut 06520, United States
| | - Lake N. Paul
- Bindley
Biosciences Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julian E. Fuchs
- Institute
of General, Inorganic and Theoretical Chemistry and Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, Innrain
80/82, 6020 Innsbruck, Austria
- Centre
for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Klaus
R. Liedl
- Institute
of General, Inorganic and Theoretical Chemistry and Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, Innrain
80/82, 6020 Innsbruck, Austria
| | - Mahdi M. Abu-Omar
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Chittaranjan Das
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
27
|
Fossbakk A, Kleppe R, Knappskog PM, Martinez A, Haavik J. Functional studies of tyrosine hydroxylase missense variants reveal distinct patterns of molecular defects in Dopa-responsive dystonia. Hum Mutat 2014; 35:880-90. [PMID: 24753243 PMCID: PMC4312968 DOI: 10.1002/humu.22565] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 04/10/2014] [Indexed: 11/23/2022]
Abstract
Congenital tyrosine hydroxylase deficiency (THD) is found in autosomal-recessive Dopa-responsive dystonia and related neurological syndromes. The clinical manifestations of THD are variable, ranging from early-onset lethal disease to mild Parkinson disease-like symptoms appearing in adolescence. Until 2014, approximately 70 THD patients with a total of 40 different disease-related missense mutations, five nonsense mutations, and three mutations in the promoter region of the tyrosine hydroxylase (TH) gene have been reported. We collected clinical and biochemical data in the literature for all variants, and also generated mutant forms of TH variants previously not studied (N = 23). We compared the in vitro solubility, thermal stability, and kinetic properties of the TH variants to determine the cause(s) of their impaired enzyme activity, and found great heterogeneity in all these properties among the mutated forms. Some TH variants had specific kinetic anomalies and phenylalanine hydroxylase, and Dopa oxidase activities were measured for variants that showed signs of altered substrate binding. p.Arg233His, p.Gly247Ser, and p.Phe375Leu had shifted substrate specificity from tyrosine to phenylalanine and Dopa, whereas p.Cys359Phe had an impaired activity toward these substrates. The new data about pathogenic mechanisms presented are expected to contribute to develop individualized therapy for THD patients.
Collapse
Affiliation(s)
- Agnete Fossbakk
- Department of Biomedicine, University of Bergen, Bergen, Norway; K. G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | | | | | | | | |
Collapse
|
28
|
Montalbano F, Leandro J, Farias GDVF, Lino PR, Guedes RC, Vicente JB, Leandro P, Gois PMP. Phenylalanine iminoboronates as new phenylalanine hydroxylase modulators. RSC Adv 2014. [DOI: 10.1039/c4ra10306h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Herein we report the discovery of new modulators of human phenylalanine hydroxylase (hPAH) inspired by the structure of its substrate and regulator l-phenylalanine.
Collapse
Affiliation(s)
- Francesco Montalbano
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisboa, Portugal
| | - João Leandro
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisboa, Portugal
| | - Gonçalo D. V. F. Farias
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisboa, Portugal
| | - Paulo R. Lino
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisboa, Portugal
| | - Rita C. Guedes
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisboa, Portugal
| | - João B. Vicente
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisboa, Portugal
| | - Paula Leandro
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisboa, Portugal
| | - Pedro M. P. Gois
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisboa, Portugal
| |
Collapse
|
29
|
Ronau JA, Paul LN, Fuchs JE, Corn IR, Wagner KT, Liedl KR, Abu-Omar MM, Das C. An additional substrate binding site in a bacterial phenylalanine hydroxylase. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2013; 42:691-708. [PMID: 23860686 PMCID: PMC3972754 DOI: 10.1007/s00249-013-0919-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/20/2013] [Accepted: 06/26/2013] [Indexed: 01/07/2023]
Abstract
Phenylalanine hydroxylase (PAH) is a non-heme iron enzyme that catalyzes oxidation of phenylalanine to tyrosine, a reaction that must be kept under tight regulatory control. Mammalian PAH has a regulatory domain in which binding of the substrate leads to allosteric activation of the enzyme. However, the existence of PAH regulation in evolutionarily distant organisms, for example some bacteria in which it occurs, has so far been underappreciated. In an attempt to crystallographically characterize substrate binding by PAH from Chromobacterium violaceum, a single-domain monomeric enzyme, electron density for phenylalanine was observed at a distal site 15.7 Å from the active site. Isothermal titration calorimetry (ITC) experiments revealed a dissociation constant of 24 ± 1.1 μM for phenylalanine. Under the same conditions, ITC revealed no detectable binding for alanine, tyrosine, or isoleucine, indicating the distal site may be selective for phenylalanine. Point mutations of amino acid residues in the distal site that contact phenylalanine (F258A, Y155A, T254A) led to impaired binding, consistent with the presence of distal site binding in solution. Although kinetic analysis revealed that the distal site mutants suffer discernible loss of their catalytic activity, X-ray crystallographic analysis of Y155A and F258A, the two mutants with the most noticeable decrease in activity, revealed no discernible change in the structure of their active sites, suggesting that the effect of distal binding may result from protein dynamics in solution.
Collapse
Affiliation(s)
- Judith A. Ronau
- Brown Laboratory of Chemistry, Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN-47907, USA
| | - Lake N. Paul
- Bindley Biosciences Center, Purdue University, West Lafayette, IN 47907, USA
| | - Julian E. Fuchs
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Isaac R. Corn
- Brown Laboratory of Chemistry, Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN-47907, USA
| | - Kyle T. Wagner
- Brown Laboratory of Chemistry, Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN-47907, USA
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Mahdi M. Abu-Omar
- Brown Laboratory of Chemistry, Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN-47907, USA
| | - Chittaranjan Das
- Brown Laboratory of Chemistry, Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN-47907, USA,To whom correspondence should be addressed: Chittaranjan Das, Brown Laboratory of Chemistry, 560 Oval Drive, West Lafayette, IN, 47907, (765)-494-5478, Fax: (765)-494-0239,
| |
Collapse
|
30
|
Wang H, Chen H, Hao G, Yang B, Feng Y, Wang Y, Feng L, Zhao J, Song Y, Zhang H, Chen YQ, Wang L, Chen W. Role of the phenylalanine-hydroxylating system in aromatic substance degradation and lipid metabolism in the oleaginous fungus Mortierella alpina. Appl Environ Microbiol 2013; 79:3225-33. [PMID: 23503309 PMCID: PMC3685260 DOI: 10.1128/aem.00238-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/05/2013] [Indexed: 11/20/2022] Open
Abstract
Mortierella alpina is a filamentous fungus commonly found in soil that is able to produce lipids in the form of triacylglycerols that account for up to 50% of its dry weight. Analysis of the M. alpina genome suggests that there is a phenylalanine-hydroxylating system for the catabolism of phenylalanine, which has never been found in fungi before. We characterized the phenylalanine-hydroxylating system in M. alpina to explore its role in phenylalanine metabolism and its relationship to lipid biosynthesis. Significant changes were found in the profile of fatty acids in M. alpina grown on medium containing an inhibitor of the phenylalanine-hydroxylating system compared to M. alpina grown on medium without inhibitor. Genes encoding enzymes involved in the phenylalanine-hydroxylating system (phenylalanine hydroxylase [PAH], pterin-4α-carbinolamine dehydratase, and dihydropteridine reductase) were expressed heterologously in Escherichia coli, and the resulting proteins were purified to homogeneity. Their enzymatic activity was investigated by high-performance liquid chromatography (HPLC) or visible (Vis)-UV spectroscopy. Two functional PAH enzymes were observed, encoded by distinct gene copies. A novel role for tetrahydrobiopterin in fungi as a cofactor for PAH, which is similar to its function in higher life forms, is suggested. This study establishes a novel scheme for the fungal degradation of an aromatic substance (phenylalanine) and suggests that the phenylalanine-hydroxylating system is functionally significant in lipid metabolism.
Collapse
Affiliation(s)
- Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Haiqin Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Guangfei Hao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Yun Feng
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, People's Republic of China
| | - Yu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Lu Feng
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, People's Republic of China
| | - Jianxin Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Yuanda Song
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Yong Q. Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, People's Republic of China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
31
|
Flydal MI, Martinez A. Phenylalanine hydroxylase: function, structure, and regulation. IUBMB Life 2013; 65:341-9. [PMID: 23457044 DOI: 10.1002/iub.1150] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/09/2013] [Indexed: 11/08/2022]
Abstract
Mammalian phenylalanine hydroxylase (PAH) catalyzes the rate-limiting step in the phenylalanine catabolism, consuming about 75% of the phenylalanine input from the diet and protein catabolism under physiological conditions. In humans, mutations in the PAH gene lead to phenylketonuria (PKU), and most mutations are mainly associated with PAH misfolding and instability. The established treatment for PKU is a phenylalanine-restricted diet and, recently, supplementation with preparations of the natural tetrahydrobiopterin cofactor also shows effectiveness for some patients. Since 1997 there has been a significant increase in the understanding of the structure, catalytic mechanism, and regulation of PAH by its substrate and cofactor, in addition to improved correlations between genotype and phenotype in PKU. Importantly, there has also been an increased number of studies on the structure and function of PAH from bacteria and lower eukaryote organisms, revealing an additional anabolic role of the enzyme in the synthesis of melanin-like pigments. In this review, we discuss these recent studies, which contribute to define the evolutionary adaptation of the PAH structure and function leading to sophisticated regulation for effective catabolic processing of phenylalanine in mammalian organisms.
Collapse
Affiliation(s)
- Marte I Flydal
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Jonas Lies vei 91, 5009-Bergen, Norway
| | | |
Collapse
|
32
|
Daubner SC, Avila A, Bailey JO, Barrera D, Bermudez JY, Giles DH, Khan CA, Shaheen N, Thompson JW, Vasquez J, Oxley SP, Fitzpatrick PF. Mutagenesis of a specificity-determining residue in tyrosine hydroxylase establishes that the enzyme is a robust phenylalanine hydroxylase but a fragile tyrosine hydroxylase. Biochemistry 2013; 52:1446-55. [PMID: 23368961 PMCID: PMC3584195 DOI: 10.1021/bi400031n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The aromatic amino acid hydroxylases tyrosine hydroxylase (TyrH) and phenylalanine hydroxylase (PheH) have essentially identical active sites; however, PheH is nearly incapable of hydroxylating tyrosine, while TyrH can readily hydroxylate both tyrosine and phenylalanine. Previous studies have indicated that Asp425 of TyrH is important in determining the substrate specificity of that enzyme [Daubner, S. C., Melendez, J., and Fitzpatrick, P. F. (2000) Biochemistry 39, 9652-9661]. Alanine-scanning mutagenesis of amino acids 423-427, a mobile loop containing Asp425, shows that only mutagenesis of Asp425 alters the activity of the enzyme significantly. Saturation mutagenesis of Asp425 results in large (up to 10(4)) decreases in the V(max) and V(max)/K(tyr) values for tyrosine hydroxylation, but only small decreases or even increases in the V(max) and V(max)/K(phe) values for phenylalanine hydroxylation. The decrease in the tyrosine hydroxylation activity of the mutant proteins is due to an uncoupling of tetrahydropterin oxidation from amino acid hydroxylation with tyrosine as the amino acid substrate. In contrast, with the exception of the D425W mutant, the extent of coupling of tetrahydropterin oxidation and amino acid hydroxylation is unaffected or increases with phenylalanine as the amino acid substrate. The decrease in the V(max) value with tyrosine as the substrate shows a negative correlation with the hydrophobicity of the amino acid residue at position 425. The results are consistent with a critical role of Asp425 being to prevent a hydrophobic interaction that results in a restricted active site in which hydroxylation of tyrosine does not occur.
Collapse
Affiliation(s)
- S. Colette Daubner
- Department of Biological Sciences, St. Mary’s University, San Antonio TX 78228
| | - Audrey Avila
- Department of Biological Sciences, St. Mary’s University, San Antonio TX 78228
| | - Johnathan O. Bailey
- Department of Biochemistry and Biophysics, Texas A&M University, College Station TX 77840
| | - Dimitrios Barrera
- Department of Chemistry and Biochemistry, St. Mary’s University, San Antonio TX 78228
| | - Jaclyn Y. Bermudez
- Department of Biological Sciences, St. Mary’s University, San Antonio TX 78228
| | - David H. Giles
- Department of Biochemistry, University of Texas Health Science Center San Antonio, San Antonio TX 78229
| | - Crystal A. Khan
- Department of Biochemistry, University of Texas Health Science Center San Antonio, San Antonio TX 78229
| | - Noel Shaheen
- Department of Biological Sciences, St. Mary’s University, San Antonio TX 78228
| | - Janie Womac Thompson
- Department of Biochemistry and Biophysics, Texas A&M University, College Station TX 77840
| | - Jessica Vasquez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station TX 77840
| | - Susan P. Oxley
- Department of Chemistry and Biochemistry, St. Mary’s University, San Antonio TX 78228
| | - Paul F. Fitzpatrick
- Department of Biochemistry, University of Texas Health Science Center San Antonio, San Antonio TX 78229
| |
Collapse
|
33
|
Fuchs JE, Huber RG, von Grafenstein S, Wallnoefer HG, Spitzer GM, Fuchs D, Liedl KR. Dynamic regulation of phenylalanine hydroxylase by simulated redox manipulation. PLoS One 2012; 7:e53005. [PMID: 23300845 PMCID: PMC3534100 DOI: 10.1371/journal.pone.0053005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 11/26/2012] [Indexed: 01/06/2023] Open
Abstract
Recent clinical studies revealed increased phenylalanine levels and phenylalanine to tyrosine ratios in patients suffering from infection, inflammation and general immune activity. These data implicated down-regulation of activity of phenylalanine hydroxylase by oxidative stress upon in vivo immune activation. Though the structural damage of oxidative stress is expected to be comparably small, a structural rationale for this experimental finding was lacking. Hence, we investigated the impact of side chain oxidation at two vicinal cysteine residues on local conformational flexibility in the protein by comparative molecular dynamics simulations. Analysis of backbone dynamics revealed a highly flexible loop region (Tyr138-loop) in proximity to the active center of phenylalanine hydroxylase. We observed elevated loop dynamics in connection with a loop movement towards the active site in the oxidized state, thereby partially blocking access for the substrate phenylalanine. These findings were confirmed by extensive replica exchange molecular dynamics simulations and serve as a first structural explanation for decreased enzyme turnover in situations of oxidative stress.
Collapse
Affiliation(s)
- Julian E. Fuchs
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Roland G. Huber
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Susanne von Grafenstein
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Hannes G. Wallnoefer
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Gudrun M. Spitzer
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
- * E-mail:
| |
Collapse
|
34
|
Watschinger K, Fuchs J, Yarov-Yarovoy V, Keller M, Golderer G, Hermetter A, Werner-Felmayer G, Hulo N, Werner E. Catalytic residues and a predicted structure of tetrahydrobiopterin-dependent alkylglycerol mono-oxygenase. Biochem J 2012; 443:279-86. [PMID: 22220568 PMCID: PMC3304488 DOI: 10.1042/bj20111509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 12/22/2011] [Accepted: 01/06/2012] [Indexed: 11/17/2022]
Abstract
Alkylglycerol mono-oxygenase (EC 1.14.16.5) forms a third, distinct, class among tetrahydrobiopterin-dependent enzymes in addition to aromatic amino acid hydroxylases and nitric oxide synthases. Its protein sequence contains the fatty acid hydroxylase motif, a signature indicative of a di-iron centre, which contains eight conserved histidine residues. Membrane enzymes containing this motif, including alkylglycerol mono-oxygenase, are especially labile and so far have not been purified to homogeneity in active form. To obtain a first insight into structure-function relationships of this enzyme, we performed site-directed mutagenesis of 26 selected amino acid residues and expressed wild-type and mutant proteins containing a C-terminal Myc tag together with fatty aldehyde dehydrogenase in Chinese-hamster ovary cells. Among all of the acidic residues within the eight-histidine motif, only mutation of Glu137 to alanine led to an 18-fold increase in the Michaelis-Menten constant for tetrahydrobiopterin, suggesting a role in tetrahydrobiopterin interaction. A ninth additional histidine residue essential for activity was also identified. Nine membrane domains were predicted by four programs: ESKW, TMHMM, MEMSAT and Phobius. Prediction of a part of the structure using the Rosetta membrane ab initio method led to a plausible suggestion for a structure of the catalytic site of alkylglycerol mono-oxygenase.
Collapse
Affiliation(s)
- Katrin Watschinger
- *Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3/VI, A-6020 Innsbruck, Austria
| | - Julian E. Fuchs
- †Institute of General, Inorganic and Theoretical Chemistry, Innrain 52a, Leopold Franzens University Innsbruck, A-6020 Innsbruck, Austria
| | - Vladimir Yarov-Yarovoy
- ‡Department of Physiology and Membrane Biology, School of Medicine, Room 4131, Tupper Hall, University of California, Davis, One Shields Avenue, Davis, CA 95616, U.S.A
| | - Markus A. Keller
- *Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3/VI, A-6020 Innsbruck, Austria
| | - Georg Golderer
- *Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3/VI, A-6020 Innsbruck, Austria
| | - Albin Hermetter
- §Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, A-8010 Graz, Austria
| | - Gabriele Werner-Felmayer
- *Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3/VI, A-6020 Innsbruck, Austria
| | - Nicolas Hulo
- ∥Swiss Institute for Bioinformatics, Centre Medical Universitaire, 1 rue Michel Servet, CH-1211 Geneva, Switzerland
| | - Ernst R. Werner
- *Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3/VI, A-6020 Innsbruck, Austria
| |
Collapse
|
35
|
Fitzpatrick PF. Allosteric regulation of phenylalanine hydroxylase. Arch Biochem Biophys 2012; 519:194-201. [PMID: 22005392 PMCID: PMC3271142 DOI: 10.1016/j.abb.2011.09.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 10/16/2022]
Abstract
The liver enzyme phenylalanine hydroxylase is responsible for conversion of excess phenylalanine in the diet to tyrosine. Phenylalanine hydroxylase is activated by phenylalanine; this activation is inhibited by the physiological reducing substrate tetrahydrobiopterin. Phosphorylation of Ser16 lowers the concentration of phenylalanine for activation. This review discusses the present understanding of the molecular details of the allosteric regulation of the enzyme.
Collapse
Affiliation(s)
- Paul F Fitzpatrick
- Department of Biochemistry and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, TX 78229-3900, USA.
| |
Collapse
|
36
|
Du L, Gao J, Liu Y, Zhang D, Liu C. The reaction mechanism of hydroxyethylphosphonate dioxygenase: a QM/MM study. Org Biomol Chem 2012; 10:1014-24. [DOI: 10.1039/c1ob06221b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Abstract
BH4 (6R-L-erythro-5,6,7,8-tetrahydrobiopterin) is an essential cofactor of a set of enzymes that are of central metabolic importance, including four aromatic amino acid hydroxylases, alkylglycerol mono-oxygenase and three NOS (NO synthase) isoenzymes. Consequently, BH4 is present in probably every cell or tissue of higher organisms and plays a key role in a number of biological processes and pathological states associated with monoamine neurotransmitter formation, cardiovascular and endothelial dysfunction, the immune response and pain sensitivity. BH4 is formed de novo from GTP via a sequence of three enzymatic steps carried out by GTP cyclohydrolase I, 6-pyruvoyltetrahydropterin synthase and sepiapterin reductase. An alternative or salvage pathway involves dihydrofolate reductase and may play an essential role in peripheral tissues. Cofactor regeneration requires pterin-4a-carbinolamine dehydratase and dihydropteridine reductase, except for NOSs, in which the BH4 cofactor undergoes a one-electron redox cycle without the need for additional regeneration enzymes. With regard to the regulation of cofactor biosynthesis, the major controlling point is GTP cyclohydrolase I. BH4 biosynthesis is controlled in mammals by hormones and cytokines. BH4 deficiency due to autosomal recessive mutations in all enzymes, except for sepiapterin reductase, has been described as a cause of hyperphenylalaninaemia. A major contributor to vascular dysfunction associated with hypertension, ischaemic reperfusion injury, diabetes and others, appears to be an effect of oxidized BH4, which leads to an increased formation of oxygen-derived radicals instead of NO by decoupled NOS. Furthermore, several neurological diseases have been suggested to be a consequence of restricted cofactor availability, and oral cofactor replacement therapy to stabilize mutant phenylalanine hydroxylase in the BH4-responsive type of hyperphenylalaninaemia has an advantageous effect on pathological phenylalanine levels in patients.
Collapse
Affiliation(s)
- Ernst R Werner
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck A-6020, Austria
| | | | | |
Collapse
|
38
|
Zhang W, Ames BD, Walsh CT. Identification of phenylalanine 3-hydroxylase for meta-tyrosine biosynthesis. Biochemistry 2011; 50:5401-3. [PMID: 21615132 DOI: 10.1021/bi200733c] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phenylalanine hydroxylase (PheH) is an iron(II)-dependent enzyme that catalyzes the hydroxylation of aromatic amino acid l-phenylalanine (L-Phe) to l-tyrosine (L-Tyr). The enzymatic modification has been demonstrated to be highly regiospecific, forming proteinogenic para-Tyr (p-Tyr) exclusively. Here we biochemically characterized the first example of a phenylalanine 3-hydroxylase (Phe3H) that catalyzes the synthesis of meta-Tyr (m-Tyr) from Phe. Subsequent mutagenesis studies revealed that two residues in the active site of Phe3H (Cys187 and Thr202) contribute to C-3 rather than C-4 hydroxylation of the phenyl ring. This work sets the stage for the mechanistic and structural study of regiospecific control of the substrate hydroxylation by PheH.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
39
|
Olsson E, Martinez A, Teigen K, Jensen VR. Substrate Hydroxylation by the Oxido-Iron Intermediate in Aromatic Amino Acid Hydroxylases: A DFT Mechanistic Study. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201001218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Panay AJ, Lee M, Krebs C, Bollinger JM, Fitzpatrick PF. Evidence for a high-spin Fe(IV) species in the catalytic cycle of a bacterial phenylalanine hydroxylase. Biochemistry 2011; 50:1928-33. [PMID: 21261288 PMCID: PMC3059337 DOI: 10.1021/bi1019868] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phenylalanine hydroxylase is a mononuclear non-heme iron protein that uses tetrahydropterin as the source of the two electrons needed to activate dioxygen for the hydroxylation of phenylalanine to tyrosine. Rapid-quench methods have been used to analyze the mechanism of a bacterial phenylalanine hydroxylase from Chromobacterium violaceum. Mössbauer spectra of samples prepared by freeze-quenching the reaction of the enzyme-(57)Fe(II)-phenylalanine-6-methyltetrahydropterin complex with O(2) reveal the accumulation of an intermediate at short reaction times (20-100 ms). The Mössbauer parameters of the intermediate (δ = 0.28 mm/s, and |ΔE(Q)| = 1.26 mm/s) suggest that it is a high-spin Fe(IV) complex similar to those that have previously been detected in the reactions of other mononuclear Fe(II) hydroxylases, including a tetrahydropterin-dependent tyrosine hydroxylase. Analysis of the tyrosine content of acid-quenched samples from similar reactions establishes that the Fe(IV) intermediate is kinetically competent to be the hydroxylating intermediate. Similar chemical-quench analysis of a reaction allowed to proceed for several turnovers shows a burst of tyrosine formation, consistent with rate-limiting product release. All three data sets can be modeled with a mechanism in which the enzyme-substrate complex reacts with oxygen to form an Fe(IV)═O intermediate with a rate constant of 19 mM(-1) s(-1), the Fe(IV)═O intermediate hydroxylates phenylalanine with a rate constant of 42 s(-1), and rate-limiting product release occurs with a rate constant of 6 s(-1) at 5 °C.
Collapse
Affiliation(s)
- Aram Joel Panay
- Department of Biochemistry and Biophysics, Texas A&M University, College Station TX 77843
| | - Michael Lee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Carsten Krebs
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
| | - J. Martin Bollinger
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
| | - Paul F. Fitzpatrick
- Department of Biochemistry and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; and Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249
| |
Collapse
|
41
|
Olsson E, Martinez A, Teigen K, Jensen VR. Formation of the iron-oxo hydroxylating species in the catalytic cycle of aromatic amino acid hydroxylases. Chemistry 2011; 17:3746-58. [PMID: 21351297 DOI: 10.1002/chem.201002910] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Indexed: 12/20/2022]
Abstract
The first part of the catalytic cycle of the pterin-dependent, dioxygen-using nonheme-iron aromatic amino acid hydroxylases, leading to the Fe(IV)=O hydroxylating intermediate, has been investigated by means of density functional theory. The starting structure in the present investigation is the water-free Fe-O(2) complex cluster model that represents the catalytically competent form of the enzymes. A model for this structure was obtained in a previous study of water-ligand dissociation from the hexacoordinate model complex of the X-ray crystal structure of the catalytic domain of phenylalanine hydroxylase in complex with the cofactor (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH(4)) (PAH-Fe(II)-BH(4)). The O-O bond rupture and two-electron oxidation of the cofactor are found to take place via a Fe-O-O-BH(4) bridge structure that is formed in consecutive radical reactions involving a superoxide ion, O(2)(-). The overall effective free-energy barrier to formation of the Fe(IV)=O species is calculated to be 13.9 kcal mol(-1), less than 2 kcal mol(-1) lower than that derived from experiment. The rate-limiting step is associated with a one-electron transfer from the cofactor to dioxygen, whereas the spin inversion needed to arrive at the quintet state in which the O-O bond cleavage is finalized, essentially proceeds without activation.
Collapse
Affiliation(s)
- Elaine Olsson
- Department of Chemistry, University of Bergen, Allégaten 41, 5007 Bergen, Norway
| | | | | | | |
Collapse
|
42
|
Daubner SC, Le T, Wang S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys 2010; 508:1-12. [PMID: 21176768 DOI: 10.1016/j.abb.2010.12.017] [Citation(s) in RCA: 638] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 12/13/2010] [Accepted: 12/15/2010] [Indexed: 01/22/2023]
Abstract
Tyrosine hydroxylase is the rate-limiting enzyme of catecholamine biosynthesis; it uses tetrahydrobiopterin and molecular oxygen to convert tyrosine to DOPA. Its amino terminal 150 amino acids comprise a domain whose structure is involved in regulating the enzyme's activity. Modes of regulation include phosphorylation by multiple kinases at four different serine residues, and dephosphorylation by two phosphatases. The enzyme is inhibited in feedback fashion by the catecholamine neurotransmitters. Dopamine binds to TyrH competitively with tetrahydrobiopterin, and interacts with the R domain. TyrH activity is modulated by protein-protein interactions with enzymes in the same pathway or the tetrahydrobiopterin pathway, structural proteins considered to be chaperones that mediate the neuron's oxidative state, and the protein that transfers dopamine into secretory vesicles. TyrH is modified in the presence of NO, resulting in nitration of tyrosine residues and the glutathionylation of cysteine residues.
Collapse
Affiliation(s)
- S Colette Daubner
- Department of Biological Sciences, St. Mary's University, San Antonio, TX 78228, USA.
| | | | | |
Collapse
|
43
|
Pavon JA, Eser B, Huynh MT, Fitzpatrick PF. Single turnover kinetics of tryptophan hydroxylase: evidence for a new intermediate in the reaction of the aromatic amino acid hydroxylases. Biochemistry 2010; 49:7563-71. [PMID: 20687613 DOI: 10.1021/bi100744r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tryptophan hydroxylase (TrpH) uses a non-heme mononuclear iron center to catalyze the tetrahydropterin-dependent hydroxylation of tryptophan to 5-hydroxytryptophan. The reactions of the TrpH.Fe(II), TrpH.Fe(II).tryptophan, TrpH.Fe(II).6MePH(4).tryptophan, and TrpH.Fe(II).6MePH(4).phenylalanine complexes with O(2) were monitored by stopped-flow absorbance spectroscopy and rapid quench methods. The second-order rate constant for the oxidation of TrpH.Fe(II) has a value of 104 M(-1) s(-1) irrespective of the presence of tryptophan. Stopped-flow absorbance analyses of the reaction of the TrpH.Fe(II).6MePH(4).tryptophan complex with oxygen are consistent with the initial step being reversible binding of oxygen, followed by the formation with a rate constant of 65 s(-1) of an intermediate I that has maximal absorbance at 420 nm. The rate constant for decay of I, 4.4 s(-1), matches that for formation of the 4a-hydroxypterin product monitored at 248 nm. Chemical-quench analyses show that 5-hydroxytryptophan forms with a rate constant of 1.3 s(-1) and that overall turnover is limited by a subsequent slow step, presumably product release, with a rate constant of 0.2 s(-1). All of the data with tryptophan as substrate can be described by a five-step mechanism. In contrast, with phenylalanine as substrate, the reaction can be described by three steps: a second-order reaction with oxygen to form I, decay of I as tyrosine forms, and slow product release.
Collapse
Affiliation(s)
- Jorge Alex Pavon
- Department of Biochemistry and Biophysics, Texas A&M University, College Station,Texas 77843-2128, USA
| | | | | | | |
Collapse
|
44
|
Gersting SW, Staudigl M, Truger MS, Messing DD, Danecka MK, Sommerhoff CP, Kemter KF, Muntau AC. Activation of phenylalanine hydroxylase induces positive cooperativity toward the natural cofactor. J Biol Chem 2010; 285:30686-97. [PMID: 20667834 PMCID: PMC2945563 DOI: 10.1074/jbc.m110.124016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/29/2010] [Indexed: 11/06/2022] Open
Abstract
Protein misfolding with loss-of-function of the enzyme phenylalanine hydroxylase (PAH) is the molecular basis of phenylketonuria in many individuals carrying missense mutations in the PAH gene. PAH is complexly regulated by its substrate L-Phenylalanine and its natural cofactor 6R-L-erythro-5,6,7,8-tetrahydrobiopterin (BH(4)). Sapropterin dihydrochloride, the synthetic form of BH(4), was recently approved as the first pharmacological chaperone to correct the loss-of-function phenotype. However, current knowledge about enzyme function and regulation in the therapeutic setting is scarce. This illustrates the need for comprehensive analyses of steady state kinetics and allostery beyond single residual enzyme activity determinations to retrace the structural impact of missense mutations on the phenylalanine hydroxylating system. Current standard PAH activity assays are either indirect (NADH) or discontinuous due to substrate and product separation before detection. We developed an automated fluorescence-based continuous real-time PAH activity assay that proved to be faster and more efficient but as precise and accurate as standard methods. Wild-type PAH kinetic analyses using the new assay revealed cooperativity of activated PAH toward BH(4), a previously unknown finding. Analyses of structurally preactivated variants substantiated BH(4)-dependent cooperativity of the activated enzyme that does not rely on the presence of l-Phenylalanine but is determined by activating conformational rearrangements. These findings may have implications for an individualized therapy, as they support the hypothesis that the patient's metabolic state has a more significant effect on the interplay of the drug and the conformation and function of the target protein than currently appreciated.
Collapse
Affiliation(s)
- Søren W. Gersting
- From the Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Munich 80337 and
| | - Michael Staudigl
- From the Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Munich 80337 and
| | - Marietta S. Truger
- From the Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Munich 80337 and
| | - Dunja D. Messing
- From the Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Munich 80337 and
| | - Marta K. Danecka
- From the Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Munich 80337 and
| | - Christian P. Sommerhoff
- the Department of Clinical Chemistry and Clinical Biochemistry, Surgical Clinic, Ludwig-Maximilians-University, Munich 80336, Germany
| | - Kristina F. Kemter
- From the Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Munich 80337 and
| | - Ania C. Muntau
- From the Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Munich 80337 and
| |
Collapse
|
45
|
Li J, Dangott LJ, Fitzpatrick PF. Regulation of phenylalanine hydroxylase: conformational changes upon phenylalanine binding detected by hydrogen/deuterium exchange and mass spectrometry. Biochemistry 2010; 49:3327-35. [PMID: 20307070 DOI: 10.1021/bi1001294] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phenylalanine acts as an allosteric activator of the tetrahydropterin-dependent enzyme phenylalanine hydroxylase. Hydrogen/deuterium exchange monitored by mass spectrometry has been used to gain insight into local conformational changes accompanying activation of rat phenylalanine hydroxylase by phenylalanine. Peptides in the regulatory and catalytic domains that lie in the interface between these two domains show large increases in the extent of deuterium incorporation from solvent in the presence of phenylalanine. In contrast, the effects of phenylalanine on the exchange kinetics of a mutant enzyme lacking the regulatory domain are limited to peptides surrounding the binding site for the amino acid substrate. These results support a model in which the N-terminus of the protein acts as an inhibitory peptide, with phenylalanine binding causing a conformational change in the regulatory domain that alters the interaction between the catalytic and regulatory domains.
Collapse
Affiliation(s)
- Jun Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station,Texas 77843-2128, USA
| | | | | |
Collapse
|
46
|
Cianchetta G, Stouch T, Yu W, Shi ZC, Tari LW, Swanson RV, Hunter MJ, Hoffman ID, Liu Q. Mechanism of Inhibition of Novel Tryptophan Hydroxylase Inhibitors Revealed by Co-crystal Structures and Kinetic Analysis. CURRENT CHEMICAL GENOMICS 2010; 4:19-26. [PMID: 20556201 PMCID: PMC2885594 DOI: 10.2174/1875397301004010019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 02/26/2010] [Accepted: 02/26/2010] [Indexed: 11/22/2022]
Abstract
Trytophan Hydroxylase Type I (TPH1), most abundantly expressed in the gastrointestinal tract, initiates the synthesis of serotonin by catalyzing hydroxylation of tryptophan in the presence of biopterin and oxygen. We have previously described three series of novel, periphery-specific TPH1 inhibitors that selectively deplete serotonin in the gastrointestinal tract. We have now determined co-crystal structures of TPH1 with three of these inhibitors at high resolution. Analysis of the structural data showed that each of the three inhibitors fills the tryptophan binding pocket of TPH1 without reaching into the binding site of the cofactor pterin, and induces major conformational changes of the enzyme. The enzyme-inhibitor complexes assume a compact conformation that is similar to the one in tryptophan complex. Kinetic analysis showed that all three inhibitors are competitive versus the substrate tryptophan, consistent with the structural data that the compounds occupy the tryptophan binding site. On the other hand, all three inhibitors appear to be uncompetitive versus the cofactor 6-methyltetrahydropterin, which is not only consistent with the structural data but also indicate that the hydroxylation reaction follows an ordered binding mechanism in which a productive complex is formed only if tryptophan binds only after pterin, similar to the kinetic mechanisms of tyrosine and phenylalanine hydroxylase.
Collapse
Affiliation(s)
- Giovanni Cianchetta
- Department of Medicinal Chemistry, Lexicon Pharmaceuticals, Inc., 350 Carter Rd., Princeton, New Jersey, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
The Aromatic Amino Acid Hydroxylase Mechanism: A Perspective From Computational Chemistry. ADVANCES IN INORGANIC CHEMISTRY 2010. [DOI: 10.1016/s0898-8838(10)62011-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Olsson E, Martinez A, Teigen K, Jensen VR. Water Dissociation and Dioxygen Binding in Phenylalanine Hydroxylase. Eur J Inorg Chem 2010. [DOI: 10.1002/ejic.200900489] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Miyazaki S, Kojima T, Mayer JM, Fukuzumi S. Proton-coupled electron transfer of ruthenium(III)-pterin complexes: a mechanistic insight. J Am Chem Soc 2009; 131:11615-24. [PMID: 19722655 DOI: 10.1021/ja904386r] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ruthenium(II) complexes having pterins of redox-active heteroaromatic coenzymes as ligands were demonstrated to perform multistep proton transfer (PT), electron transfer (ET), and proton-coupled electron transfer (PCET) processes. Thermodynamic parameters including pK(a) and bond dissociation energy (BDE) of multistep PCET processes in acetonitrile (MeCN) were determined for ruthenium-pterin complexes, [Ru(II)(Hdmp)(TPA)](ClO(4))(2) (1), [Ru(II)(Hdmdmp)(TPA)](ClO(4))(2) (2), [Ru(II)(dmp(-))(TPA)]ClO(4) (3), and [Ru(II)(dmdmp(-))(TPA)]ClO(4) (4) (Hdmp = 6,7-dimethylpterin, Hdmdmp = N,N-dimethyl-6,7-dimethylpterin, TPA = tris(2-pyridylmethyl)amine), all of which had been isolated and characterized before. The BDE difference between 1 and one-electron oxidized species, [Ru(III)(dmp(-))(TPA)](2+), was determined to be 89 kcal mol(-1), which was large enough to achieve hydrogen atom transfer (HAT) from phenol derivatives. In the HAT reactions from phenol derivatives to [Ru(III)(dmp(-))(TPA)](2+), the second-order rate constants (k) were determined to exhibit a linear relationship with BDE values of phenol derivatives with a slope (-0.4), suggesting that this HAT is simultaneous proton and electron transfer. As for HAT reaction from 2,4,6-tri-tert-buthylphenol (TBP; BDE = 79.15 kcal mol(-1)) to [Ru(III)(dmp(-))(TPA)](2+), the activation parameters were determined to be DeltaH(double dagger) = 1.6 +/- 0.2 kcal mol(-1) and DeltaS(double dagger) = -36 +/- 2 cal K(-1) mol(-1). This small activation enthalpy suggests a hydrogen-bonded adduct formation prior to HAT. Actually, in the reaction of 4-nitrophenol with [Ru(III)(dmp(-))(TPA)](2+), the second-order rate constants exhibited saturation behavior at higher concentrations of the substrate, and low-temperature ESI-MS allowed us to detect the hydrogen-bonding adduct. This also lends credence to an associative mechanism of the HAT involving intermolecular hydrogen bonding between the deprotonated dmp ligand and the phenolic O-H to facilitate the reaction. In particular, a two-point hydrogen bonding between the complex and the substrate involving the 2-amino group of the deprotonated pterin ligand effectively facilitates the HAT reaction from the substrate to the Ru(III)-pterin complex.
Collapse
Affiliation(s)
- Soushi Miyazaki
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
50
|
Nascimento C, Leandro J, Lino PR, Ramos L, Almeida AJ, de Almeida IT, Leandro P. Polyol additives modulate the in vitro stability and activity of recombinant human phenylalanine hydroxylase. Appl Biochem Biotechnol 2009; 162:192-207. [PMID: 19937396 DOI: 10.1007/s12010-009-8862-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 11/06/2009] [Indexed: 11/26/2022]
Abstract
Phenylketonuria (PKU; OMIM 261600), the most common disorder of amino acid metabolism, is caused by a deficient activity of human phenylalanine hydroxylase (hPAH). Although the dietetic treatment has proven to be effective in preventing the psycho-motor impairment, much effort has been made to develop new therapeutic approaches. Enzyme replacement therapy with hPAH could be regarded as a potential form of PKU treatment if the reported in vitro hPAH instability could be overcome. In this study, we investigated the effect of different polyol compounds, e.g. glycerol, mannitol and PEG-6000 on the in vitro stability of purified hPAH produced in a heterologous prokaryotic expression system. The recombinant human enzyme was stored in the presence of the studied stabilizing agents at different temperatures (4 and -20 degrees C) during a 1-month period. Protein content, degradation products, specific activity, oligomeric profile and conformational characteristics were assessed during storage. The obtained results showed that the use of 50% glycerol or 10% mannitol, at -20 degrees C, protected the enzyme from loss of its enzymatic activity. The determined DeltaG(0) and quenching parameters indicate the occurrence of conformational changes, which may be responsible for the observed increase in catalytic efficiency.
Collapse
Affiliation(s)
- Cátia Nascimento
- Metabolism and Genetics Group, iMed.UL, Faculdade Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | | | | | | | | | | | | |
Collapse
|