1
|
Fersht AR. From covalent transition states in chemistry to noncovalent in biology: from β- to Φ-value analysis of protein folding. Q Rev Biophys 2024; 57:e4. [PMID: 38597675 DOI: 10.1017/s0033583523000045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Solving the mechanism of a chemical reaction requires determining the structures of all the ground states on the pathway and the elusive transition states linking them. 2024 is the centenary of Brønsted's landmark paper that introduced the β-value and structure-activity studies as the only experimental means to infer the structures of transition states. It involves making systematic small changes in the covalent structure of the reactants and analysing changes in activation and equilibrium-free energies. Protein engineering was introduced for an analogous procedure, Φ-value analysis, to analyse the noncovalent interactions in proteins central to biological chemistry. The methodology was developed first by analysing noncovalent interactions in transition states in enzyme catalysis. The mature procedure was then applied to study transition states in the pathway of protein folding - 'part (b) of the protein folding problem'. This review describes the development of Φ-value analysis of transition states and compares and contrasts the interpretation of β- and Φ-values and their limitations. Φ-analysis afforded the first description of transition states in protein folding at the level of individual residues. It revealed the nucleation-condensation folding mechanism of protein domains with the transition state as an expanded, distorted native structure, containing little fully formed secondary structure but many weak tertiary interactions. A spectrum of transition states with various degrees of structural polarisation was then uncovered that spanned from nucleation-condensation to the framework mechanism of fully formed secondary structure. Φ-analysis revealed how movement of the expanded transition state on an energy landscape accommodates the transition from framework to nucleation-condensation mechanisms with a malleability of structure as a unifying feature of folding mechanisms. Such movement follows the rubric of analysis of classical covalent chemical mechanisms that began with Brønsted. Φ-values are used to benchmark computer simulation, and Φ and simulation combine to describe folding pathways at atomic resolution.
Collapse
Affiliation(s)
- Alan R Fersht
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Gonville and Caius College, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Peng CX, Liang F, Xia YH, Zhao KL, Hou MH, Zhang GJ. Recent Advances and Challenges in Protein Structure Prediction. J Chem Inf Model 2024; 64:76-95. [PMID: 38109487 DOI: 10.1021/acs.jcim.3c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Artificial intelligence has made significant advances in the field of protein structure prediction in recent years. In particular, DeepMind's end-to-end model, AlphaFold2, has demonstrated the capability to predict three-dimensional structures of numerous unknown proteins with accuracy levels comparable to those of experimental methods. This breakthrough has opened up new possibilities for understanding protein structure and function as well as accelerating drug discovery and other applications in the field of biology and medicine. Despite the remarkable achievements of artificial intelligence in the field, there are still some challenges and limitations. In this Review, we discuss the recent progress and some of the challenges in protein structure prediction. These challenges include predicting multidomain protein structures, protein complex structures, multiple conformational states of proteins, and protein folding pathways. Furthermore, we highlight directions in which further improvements can be conducted.
Collapse
Affiliation(s)
- Chun-Xiang Peng
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Fang Liang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yu-Hao Xia
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Kai-Long Zhao
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Ming-Hua Hou
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Gui-Jun Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
3
|
Halder R, Jana B. Exploring the role of hydrophilic amino acids in unfolding of protein in aqueous ethanol solution. Proteins 2020; 89:116-125. [PMID: 32860277 DOI: 10.1002/prot.25999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 08/07/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
Hydrophobic association is the key contributor behind the formation of well packed core of a protein which is often believed to be an important step for folding from an unfolded chain to its compact functional form. While most of the protein folding/unfolding studies have evaluated the changes in the hydrophobic interactions during chemical denaturation, the role of hydrophilic amino acids in such processes are not discussed in detail. Here we report the role of the hydrophilic amino acids behind ethanol induced unfolding of protein. Using free energy simulations, we show that chicken villin head piece (HP-36) protein unfolds gradually in presence of water-ethanol binary mixture with increasing composition of ethanol. However, upon mutation of hydrophilic amino acids by glycine while keeping the hydrophobic amino acids intact, the compact state of the protein is found to be stable at all compositions with gradual flattening of the free energy landscape upon increasing compositions. The local environment around the protein in terms of ethanol/water number significantly differs in wild type protein compared to the mutated protein. The calculated Wyman-Tanford preferential binding coefficient of ethanol for wild type protein reveals that a greater number of cosolutes (here ethanol) bind to the unfolded state compared to its folded state. However, no significant increase in binding coefficient of ethanol at the unfolded state is found for mutated protein. Local-bulk partition coefficient calculation also suggests similar scenarios. Our results reveal that the weakening of hydrophobic interactions in aqueous ethanol solution along with larger preferential binding of ethanol to the unfolded state mediated by hydrophilic amino acids combinedly helps unfolding of protein in aqueous ethanol solution.
Collapse
Affiliation(s)
- Ritaban Halder
- School of Chemical Sciences, Indian Association for the cultivation of Science, Jadavpur, Kolkata, West Bengal, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the cultivation of Science, Jadavpur, Kolkata, West Bengal, India
| |
Collapse
|
4
|
Kuwajima K. The Molten Globule, and Two-State vs. Non-Two-State Folding of Globular Proteins. Biomolecules 2020; 10:biom10030407. [PMID: 32155758 PMCID: PMC7175247 DOI: 10.3390/biom10030407] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 11/16/2022] Open
Abstract
From experimental studies of protein folding, it is now clear that there are two types of folding behavior, i.e., two-state folding and non-two-state folding, and understanding the relationships between these apparently different folding behaviors is essential for fully elucidating the molecular mechanisms of protein folding. This article describes how the presence of the two types of folding behavior has been confirmed experimentally, and discusses the relationships between the two-state and the non-two-state folding reactions, on the basis of available data on the correlations of the folding rate constant with various structure-based properties, which are determined primarily by the backbone topology of proteins. Finally, a two-stage hierarchical model is proposed as a general mechanism of protein folding. In this model, protein folding occurs in a hierarchical manner, reflecting the hierarchy of the native three-dimensional structure, as embodied in the case of non-two-state folding with an accumulation of the molten globule state as a folding intermediate. The two-state folding is thus merely a simplified version of the hierarchical folding caused either by an alteration in the rate-limiting step of folding or by destabilization of the intermediate.
Collapse
Affiliation(s)
- Kunihiro Kuwajima
- Department of Physics, School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; ; Tel.: +81-90-5435-6540
- School of Computational Sciences, Korea Institute for Advanced Study (KIAS), Seoul 02455, Korea
| |
Collapse
|
5
|
Wako H, Abe H. Characterization of protein folding by a Φ-value calculation with a statistical-mechanical model. Biophys Physicobiol 2016; 13:263-279. [PMID: 28409079 PMCID: PMC5221509 DOI: 10.2142/biophysico.13.0_263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/20/2016] [Indexed: 12/01/2022] Open
Abstract
The Φ-value analysis approach provides information about transition-state structures along the folding pathway of a protein by measuring the effects of an amino acid mutation on folding kinetics. Here we compared the theoretically calculated Φ values of 27 proteins with their experimentally observed Φ values; the theoretical values were calculated using a simple statistical-mechanical model of protein folding. The theoretically calculated Φ values reflected the corresponding experimentally observed Φ values with reasonable accuracy for many of the proteins, but not for all. The correlation between the theoretically calculated and experimentally observed Φ values strongly depends on whether the protein-folding mechanism assumed in the model holds true in real proteins. In other words, the correlation coefficient can be expected to illuminate the folding mechanisms of proteins, providing the answer to the question of which model more accurately describes protein folding: the framework model or the nucleation-condensation model. In addition, we tried to characterize protein folding with respect to various properties of each protein apart from the size and fold class, such as the free-energy profile, contact-order profile, and sensitivity to the parameters used in the Φ-value calculation. The results showed that any one of these properties alone was not enough to explain protein folding, although each one played a significant role in it. We have confirmed the importance of characterizing protein folding from various perspectives. Our findings have also highlighted that protein folding is highly variable and unique across different proteins, and this should be considered while pursuing a unified theory of protein folding.
Collapse
Affiliation(s)
- Hiroshi Wako
- School of Social Sciences, Waseda University, Shinjuku, Tokyo 169-8050, Japan
| | - Haruo Abe
- Department of Electrical Engineering, Nishinippon Institute of Technology, Miyako, Fukuoka 800-0394, Japan
| |
Collapse
|
6
|
Subbian E, Williamson DM, Shinde U. Protein Folding Mediated by an Intramolecular Chaperone: Energy Landscape for Unimolecular Pro-Subtilisin E Maturation. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/abb.2015.62008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Statistical analyses of protein folding rates from the view of quantum transition. SCIENCE CHINA-LIFE SCIENCES 2014; 57:1197-212. [PMID: 25266151 DOI: 10.1007/s11427-014-4728-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 07/19/2014] [Indexed: 10/24/2022]
Abstract
Understanding protein folding rate is the primary key to unlock the fundamental physics underlying protein structure and its folding mechanism. Especially, the temperature dependence of the folding rate remains unsolved in the literature. Starting from the assumption that protein folding is an event of quantum transition between molecular conformations, we calculated the folding rate for all two-state proteins in a database and studied their temperature dependencies. The non-Arrhenius temperature relation for 16 proteins, whose experimental data had previously been available, was successfully interpreted by comparing the Arrhenius plot with the first-principle calculation. A statistical formula for the prediction of two-state protein folding rate was proposed based on quantum folding theory. The statistical comparisons of the folding rates for 65 two-state proteins were carried out, and the theoretical vs. experimental correlation coefficient was 0.73. Moreover, the maximum and the minimum folding rates given by the theory were consistent with the experimental results.
Collapse
|
8
|
Rollins GC, Dill KA. General mechanism of two-state protein folding kinetics. J Am Chem Soc 2014; 136:11420-7. [PMID: 25056406 DOI: 10.1021/ja5049434] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We describe here a general model of the kinetic mechanism of protein folding. In the Foldon Funnel Model, proteins fold in units of secondary structures, which form sequentially along the folding pathway, stabilized by tertiary interactions. The model predicts that the free energy landscape has a volcano shape, rather than a simple funnel, that folding is two-state (single-exponential) when secondary structures are intrinsically unstable, and that each structure along the folding path is a transition state for the previous structure. It shows how sequential pathways are consistent with multiple stochastic routes on funnel landscapes, and it gives good agreement with the 9 order of magnitude dependence of folding rates on protein size for a set of 93 proteins, at the same time it is consistent with the near independence of folding equilibrium constant on size. This model gives estimates of folding rates of proteomes, leading to a median folding time in Escherichia coli of about 5 s.
Collapse
Affiliation(s)
- Geoffrey C Rollins
- Department of Biochemistry and Biophysics, University of California , San Francisco, California 94143, United States
| | | |
Collapse
|
9
|
Native contacts determine protein folding mechanisms in atomistic simulations. Proc Natl Acad Sci U S A 2013; 110:17874-9. [PMID: 24128758 DOI: 10.1073/pnas.1311599110] [Citation(s) in RCA: 425] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recent availability of long equilibrium simulations of protein folding in atomistic detail for more than 10 proteins allows us to identify the key interactions driving folding. We find that the collective fraction of native amino acid contacts, Q, captures remarkably well the transition states for all the proteins with a folding free energy barrier. Going beyond this global picture, we devise two different measures to quantify the importance of individual interresidue contacts in the folding mechanism: (i) the log-ratio of lifetimes of contacts during folding transition paths and in the unfolded state and (ii) a Bayesian measure of how predictive the formation of each contact is for being on a transition path. Both of these measures indicate that native, or near-native, contacts are important for determining mechanism, as might be expected. More remarkably, however, we found that for almost all the proteins, with the designed protein α3D being a notable exception, nonnative contacts play no significant part in determining folding mechanisms.
Collapse
|
10
|
Lammert H, Noel JK, Onuchic JN. The dominant folding route minimizes backbone distortion in SH3. PLoS Comput Biol 2012; 8:e1002776. [PMID: 23166485 PMCID: PMC3499259 DOI: 10.1371/journal.pcbi.1002776] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/26/2012] [Indexed: 11/18/2022] Open
Abstract
Energetic frustration in protein folding is minimized by evolution to create a smooth and robust energy landscape. As a result the geometry of the native structure provides key constraints that shape protein folding mechanisms. Chain connectivity in particular has been identified as an essential component for realistic behavior of protein folding models. We study the quantitative balance of energetic and geometrical influences on the folding of SH3 in a structure-based model with minimal energetic frustration. A decomposition of the two-dimensional free energy landscape for the folding reaction into relevant energy and entropy contributions reveals that the entropy of the chain is not responsible for the folding mechanism. Instead the preferred folding route through the transition state arises from a cooperative energetic effect. Off-pathway structures are penalized by excess distortion in local backbone configurations and contact pair distances. This energy cost is a new ingredient in the malleable balance of interactions that controls the choice of routes during protein folding.
Collapse
Affiliation(s)
| | | | - José N. Onuchic
- Center for Theoretical Biological Physics and Department of Physics, Rice University, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
11
|
Galzitskaya OV, Glyakina AV. Nucleation-based prediction of the protein folding rate and its correlation with the folding nucleus size. Proteins 2012; 80:2711-27. [DOI: 10.1002/prot.24156] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 07/19/2012] [Accepted: 07/21/2012] [Indexed: 11/08/2022]
|
12
|
Huang L, Shakhnovich EI. Is there an en route folding intermediate for Cold shock proteins? Protein Sci 2012; 21:677-85. [PMID: 22467601 DOI: 10.1002/pro.2053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/30/2012] [Accepted: 02/08/2012] [Indexed: 11/12/2022]
Abstract
Cold shock proteins (Csps) play an important role in cold shock response of a diverse number of organisms ranging from bacteria to humans. Numerous studies of the Csp from various species showed that a two-state folding mechanism is conserved and the transition state (TS) appears to be very compact. However, the atomic details of the folding mechanism of Csp remain unclear. This study presents the folding mechanism of Csp in atomic detail using an all-atom Go model-based simulations. Our simulations predict that there may exist an en route intermediate, in which β strands 1-2-3 are well ordered and the contacts between β1 and β4 are almost developed. Such an intermediate might be too unstable to be detected in the previous fluorescence energy transfer experiments. The transition state ensemble has been determined from the P(fold) analysis and the TS appears even more compact than the intermediate state.
Collapse
Affiliation(s)
- Lei Huang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
13
|
Sijenyi F, Saro P, Ouyang Z, Damm-Ganamet K, Wood M, Jiang J, SantaLucia J. The RNA Folding Problems: Different Levels of sRNA Structure Prediction. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 2012. [DOI: 10.1007/978-3-642-25740-7_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Suzuki Y, Noel JK, Onuchic JN. A semi-analytical description of protein folding that incorporates detailed geometrical information. J Chem Phys 2011; 134:245101. [PMID: 21721664 PMCID: PMC3188602 DOI: 10.1063/1.3599473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/20/2011] [Indexed: 11/15/2022] Open
Abstract
Much has been done to study the interplay between geometric and energetic effects on the protein folding energy landscape. Numerical techniques such as molecular dynamics simulations are able to maintain a precise geometrical representation of the protein. Analytical approaches, however, often focus on the energetic aspects of folding, including geometrical information only in an average way. Here, we investigate a semi-analytical expression of folding that explicitly includes geometrical effects. We consider a Hamiltonian corresponding to a Gaussian filament with structure-based interactions. The model captures local features of protein folding often averaged over by mean-field theories, for example, loop contact formation and excluded volume. We explore the thermodynamics and folding mechanisms of beta-hairpin and alpha-helical structures as functions of temperature and Q, the fraction of native contacts formed. Excluded volume is shown to be an important component of a protein Hamiltonian, since it both dominates the cooperativity of the folding transition and alters folding mechanisms. Understanding geometrical effects in analytical formulae will help illuminate the consequences of the approximations required for the study of larger proteins.
Collapse
Affiliation(s)
- Yoko Suzuki
- Department of Physics, School of Sciences and Engineering, Meisei University, Tokyo, Japan.
| | | | | |
Collapse
|
15
|
Ivankov DN, Finkelstein AV. Protein folding as flow across a network of folding-unfolding pathways. 1. The mid-transition case. J Phys Chem B 2010; 114:7920-9. [PMID: 20443590 DOI: 10.1021/jp912186z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prediction of protein folding rates and folding nuclei is an important problem of protein science. Most of the previously proposed models for protein folding in vitro are based on the nucleation mechanism of this process. Our model considering protein folding as a flow arising in a network of folding-unfolding pathways at a coarse-grained free-energy landscape was described a few years ago, along with an algorithm for calculation of protein folding rates. Here we extend our approach and describe in detail a mathematically strict algorithm for calculating the "folding nuclei", arising as bottlenecks of the flow. Although the proposed physical theory uses no adjustable parameters, its results are in good agreement with experiment. This paper presents (i) the general theory and (ii) the results for the simplest case, i.e., folding/unfolding at the midpoint of thermodynamic equilibrium between the native and unfolded states of a protein; results for "in-water" conditions, i.e., for the case when no denaturant is added and the native state of a protein is much more stable than the unfolded one, will be described in the next paper of the series.
Collapse
Affiliation(s)
- Dmitry N Ivankov
- Laboratory of Protein Physics, Institute of Protein Research of the Russian Academy of Sciences, 4 Institutskaya str., Pushchino, Moscow Region, 142290, Russia
| | | |
Collapse
|
16
|
Galzitskaya OV. Is protein folding rate dependent on number of folding stages? Modeling of protein folding with ferredoxin-like fold. BIOCHEMISTRY. BIOKHIMIIA 2010; 75:717-727. [PMID: 20636263 DOI: 10.1134/s0006297910060064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Statistical analysis of protein folding rates has been done for 84 proteins with available experimental data. A surprising result is that the proteins with multi-state kinetics from the size range of 50-100 amino acid residues (a.a.) fold as fast as proteins with two-state kinetics from the same size range. At the same time, the proteins with two-state kinetics from the size range 101-151 a.a. fold faster than those from the size range 50-100 a.a. Moreover, it turns out unexpectedly that usually in the group of structural homologs from the size range 50-100 a.a., proteins with multi-state kinetics fold faster than those with two-state kinetics. The protein folding for six proteins with a ferredoxin-like fold and with a similar size has been modeled using Monte Carlo simulations and dynamic programming. Good correlation between experimental folding rates, some structural parameters, and the number of Monte Carlo steps has been obtained. It is shown that a protein with multi-state kinetics actually folds three times faster than its structural homologs.
Collapse
Affiliation(s)
- O V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| |
Collapse
|
17
|
Ivankov DN, Finkelstein AV. Protein Folding as Flow across a Network of Folding−Unfolding Pathways. 2. The “In-Water” Case. J Phys Chem B 2010; 114:7930-4. [DOI: 10.1021/jp912187w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dmitry N. Ivankov
- Laboratory of Protein Physics, Institute of Protein Research of the Russian Academy of Sciences, 4 Institutskaya str., Pushchino, Moscow Region 142290, Russia
| | - Alexei V. Finkelstein
- Laboratory of Protein Physics, Institute of Protein Research of the Russian Academy of Sciences, 4 Institutskaya str., Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
18
|
Abstract
Some of the rate theories that are most useful for modeling biological processes are reviewed. By delving into some of the details and subtleties in the development of the theories, the review will hopefully help the reader gain a more than superficial perspective. Examples are presented to illustrate how rate theories can be used to generate insight at the microscopic level into biomolecular behaviors. An attempt is made to clear up a number of misconceptions in the literature regarding popular rate theories, including the appearance of Planck's constant in the transition-state theory and the Smoluchowski result as an upper limit for protein-protein and protein-DNA association rate constants. Future work in combining the implementation of rate theories through computer simulations with experimental probes of rate processes, and in modeling effects of intracellular environments so that theories can be used for generating rate constants for systems biology studies is particularly exciting.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
19
|
Zhang J, Li W, Wang J, Qin M, Wu L, Yan Z, Xu W, Zuo G, Wang W. Protein folding simulations: From coarse-grained model to all-atom model. IUBMB Life 2009; 61:627-43. [DOI: 10.1002/iub.223] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Reich L, Becker M, Seckler R, Weikl TR. Invivo folding efficiencies for mutants of the P22 tailspike beta-helix protein correlate with predicted stability changes. Biophys Chem 2009; 141:186-92. [PMID: 19254821 DOI: 10.1016/j.bpc.2009.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 01/29/2009] [Accepted: 01/29/2009] [Indexed: 01/04/2023]
Abstract
Parallel beta-helices are among the simplest repetitive structural elements in proteins. The folding behavior of beta-helix proteins has been studied intensively, also to gain insight on the formation of amyloid fibrils, which share the parallel beta-helix as a central structural motif. An important system for investigating beta-helix folding is the tailspike protein from the Salmonella bacteriophage P22. The central domain of this protein is a right-handed parallel beta-helix with 13 windings. Extensive mutational analyses of the P22 tailspike protein have revealed two main phenotypes: temperature-sensitive-folding (tsf) mutations that reduce the folding efficiency at elevated temperatures, and global suppressor (su) mutations that increase the tailspike folding efficiency. A central question is whether these phenotypes can be understood from changes in the protein stability induced by the mutations. Experimental determination of the protein stability is complicated by the nearly irreversible trimerization of the folded tailspike protein. Here, we present calculations of stability changes with the program FoldX, focusing on a recently published extensive data set of 145 singe-residue alanine mutants. We find that the calculated stability changes are correlated with the experimentally measured invivo folding efficiencies. In addition, we determine the free-energy landscape of the P22 tailspike protein in a nucleation-propagation model to explore the folding mechanism of this protein, and obtain a processive folding route on which the protein nucleates in the N-terminal region of the helix.
Collapse
Affiliation(s)
- Lothar Reich
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Science Park Golm, 14424 Potsdam, Germany
| | | | | | | |
Collapse
|
21
|
Barrick D. What have we learned from the studies of two-state folders, and what are the unanswered questions about two-state protein folding? Phys Biol 2009; 6:015001. [PMID: 19208936 DOI: 10.1088/1478-3975/6/1/015001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Small proteins with globular structures often fold by simple all-or-none mechanisms, both in an equilibrium and a kinetic sense, despite the very large number of partly folded conformations available. This type of 'two-state' folding will be discussed in terms of experimental tests, underlying molecular mechanisms, and limits to two-state behavior. Factors that appear to be important for two-state folding include topology (sequence distance of contacts in the native structure), molecular cooperativity and local energy distribution. Because their local stability distributions and cooperativities can be dissected and analyzed separately from topological features, recent studies of the folding of symmetric proteins will be discussed as a means to better understand the origins of two-state folding.
Collapse
Affiliation(s)
- Doug Barrick
- T C Department of Biophysics, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA.
| |
Collapse
|
22
|
Hoque T, Chetty M, Sattar A. Extended HP model for protein structure prediction. J Comput Biol 2009; 16:85-103. [PMID: 19119994 DOI: 10.1089/cmb.2008.0082] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This paper describes a detailed investigation of a lattice-based HP (hydrophobic-hydrophilic) model for ab initio protein structure prediction (PSP). The outcome of the simplified HP lattice model has high degeneracy, which could mislead the prediction. The HPNX model was proposed to address the degeneracy problem as well as to avoid the conformational deformity with the hydrophilic (P) residues. We have experimentally shown that it is necessary to further improve the existing HPNX model. We have found and solved the critical error of another existing YhHX model. By extracting the significant features from the YhHX for the HPNX model, we have proposed a novel hHPNX model. Hybrid Genetic Algorithm (HGA) has been used to compare the predictability of these models and hHPNX outperformed other models. We preferred 3D face-centered-cube (FCC) lattice configuration to have closest resemblance to the real folded 3D protein.
Collapse
Affiliation(s)
- Tamjidul Hoque
- Institute for Integrated and Intelligent Systems (IIIS), Griffith University, Nathan, QLD, Australia
| | - Madhu Chetty
- Gippsland School of Information Technology (GSIT), Monash University, Churchill, VIC, Australia
| | - Abdul Sattar
- Institute for Integrated and Intelligent Systems (IIIS), Griffith University, Nathan, QLD, Australia
| |
Collapse
|
23
|
Chemical, physical, and theoretical kinetics of an ultrafast folding protein. Proc Natl Acad Sci U S A 2008; 105:18655-62. [PMID: 19033473 DOI: 10.1073/pnas.0808600105] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An extensive set of equilibrium and kinetic data is presented and analyzed for an ultrafast folding protein--the villin subdomain. The equilibrium data consist of the excess heat capacity, tryptophan fluorescence quantum yield, and natural circular-dichroism spectrum as a function of temperature, and the kinetic data consist of time courses of the quantum yield from nanosecond-laser temperature-jump experiments. The data are well fit with three kinds of models--a three-state chemical-kinetics model, a physical-kinetics model, and an Ising-like theoretical model that considers 10(5) possible conformations (microstates). In both the physical-kinetics and theoretical models, folding is described as diffusion on a one-dimensional free-energy surface. In the physical-kinetics model the reaction coordinate is unspecified, whereas in the theoretical model, order parameters, either the fraction of native contacts or the number of native residues, are used as reaction coordinates. The validity of these two reaction coordinates is demonstrated from calculation of the splitting probability from the rate matrix of the master equation for all 10(5) microstates. The analysis of the data on site-directed mutants using the chemical-kinetics model provides information on the structure of the transition-state ensemble; the physical-kinetics model allows an estimate of the height of the free-energy barrier separating the folded and unfolded states; and the theoretical model provides a detailed picture of the free-energy surface and a residue-by-residue description of the evolution of the folded structure, yet contains many fewer adjustable parameters than either the chemical- or physical-kinetics models.
Collapse
|
24
|
Bogatyreva NS, Osypov AA, Ivankov DN. KineticDB: a database of protein folding kinetics. Nucleic Acids Res 2008; 37:D342-6. [PMID: 18842631 PMCID: PMC2686587 DOI: 10.1093/nar/gkn696] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
We propose here KineticDB, a systematically compiled database of protein folding kinetics, which contains about 90 unique proteins. The main goal of the KineticDB is to provide users with a diverse set of protein folding rates determined experimentally. The search for determinants of protein folding is still in progress, aimed at obtaining a new understanding of the folding process. Comparison with experimental protein folding rates has been the main tool for validation of both theoretical models and empirical relationships during the last 10 years. It is, therefore, necessary to provide a researcher with as much data as possible in a simple and easy-to-use way. At present, the KineticDB contains the results of folding kinetics measurements of single-domain proteins and separate protein domains as well as short peptides without disulfide bonds. It includes data on about 90 unique proteins and many mutants that have been systematically accumulated over the last 10 years and is the largest collection of protein folding kinetic data presented as a database. The KineticDB is available at http://kineticdb.protres.ru/db/index.pl.
Collapse
Affiliation(s)
- Natalya S Bogatyreva
- Institute of Protein Research and Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | | |
Collapse
|
25
|
Dukka BKC, Livesay DR. Improving position-specific predictions of protein functional sites using phylogenetic motifs. ACTA ACUST UNITED AC 2008; 24:2308-16. [PMID: 18723520 DOI: 10.1093/bioinformatics/btn454] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION Accurate computational prediction of protein functional sites is critical to maximizing the utility of recent high-throughput sequencing efforts. Among the available approaches, position-specific conservation scores remain among the most popular due to their accuracy and ease of computation. Unfortunately, high false positive rates remain a limiting factor. Using phylogenetic motifs (PMs), we have developed two combined (conservation + PMs) prediction schemes that significantly improve prediction accuracy. RESULTS Our first approach, called position-specific MINER (psMINER), rank orders alignment columns by conservation. Subsequently, positions that are also not identified as PMs are excluded from the prediction set. This approach improves prediction accuracy, in a statistically significant way, compared to the underlying conservation scores. Increased accuracy is a general result, meaning improvement is observed over several different conservation scores that span a continuum of complexity. In addition, a hybrid MINER (hMINER) that quantitatively considers both scoring regimes provides further improvement. More importantly, it provides critical insight into the relative importance of phylogeny versus alignment conservation. Both methods outperform other common prediction algorithms that also utilize phylogenetic concepts. Finally, we demonstrate that the presented results are critically sensitive to functional site definition, thus highlighting the need for more complete benchmarks within the prediction community.
Collapse
Affiliation(s)
- Bahadur K C Dukka
- Department of Computer Science and Bioinformatics Research Center, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | |
Collapse
|
26
|
Abstract
A full structural description of transition state ensembles in protein folding includes the specificity of the ordered residues composing the folding nucleus as well as spatial density. To our knowledge, the spatial properties of the folding nucleus and interface of specific nuclei have yet to receive significant attention. We analyze folding routes predicted by a variational model in terms of a generalized formalism of the capillarity scaling theory that assumes the volume of the folded core of the nucleus grows with chain length as V(f) approximately N(3nu). For 27 two-state proteins studied, the scaling exponent nu ranges from 0.2 to 0.45 with an average of 0.33. This average value corresponds to packing of rigid objects, although generally the effective monomer size in the folded core is larger than the corresponding volume per particle in the native-state ensemble. That is, on average, the folded core of the nucleus is found to be relatively diffuse. We also study the growth of the folding nucleus and interface along the folding route in terms of the density or packing fraction. The evolution of the folded core and interface regions can be classified into three patterns of growth depending on how the growth of the folded core is balanced by changes in density of the interface. Finally, we quantify the diffuse versus polarized structure of the critical nucleus through direct calculation of the packing fraction of the folded core and interface regions. Our results support the general picture of describing protein folding as the capillarity-like growth of folding nuclei.
Collapse
|
27
|
Zhou HX. A minimum-reaction-flux solution to master-equation models of protein folding. J Chem Phys 2008; 128:195104. [PMID: 18500902 DOI: 10.1063/1.2929824] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Master equations are widely used for modeling protein folding. Here an approximate solution to such master equations is presented. The approach used may be viewed as a discrete variational transition-state theory. The folding rate constant kf is approximated by the outgoing reaction flux J, when the unfolded set of macrostates assumes an equilibrium distribution. Correspondingly the unfolding rate constant ku is calculated as Jpu(1-pu), where pu is the equilibrium fraction of the unfolded state. The dividing surface between the unfolded and folded states is chosen to minimize the reaction flux J. This minimum-reaction-flux surface plays the role of the transition-state ensemble and identifies rate-limiting steps. Test against exact results of master-equation models of Zwanzig [Proc. Natl. Acad. Sci. USA 92, 9801 (1995)] and Munoz et al. [Proc. Natl. Acad. Sci. USA 95, 5872 (1998)] shows that the minimum-reaction-flux solution works well. Macrostates separated by the minimum-reaction-flux surface show a gap in p(fold) values. The approach presented here significantly simplifies the solution of master-equation models and, at the same time, directly yields insight into folding mechanisms.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics and School of Computational Science, Florida State University, Tallahassee, Florida 32306, USA.
| |
Collapse
|
28
|
Garbuzynskiy S, Kondratova M. Structural features of protein folding nuclei. FEBS Lett 2008; 582:768-72. [DOI: 10.1016/j.febslet.2008.01.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 12/10/2007] [Accepted: 01/29/2008] [Indexed: 10/22/2022]
|
29
|
Visual Analysis of Biomolecular Surfaces. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/978-3-540-72630-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
30
|
Weikl TR. Loop-closure principles in protein folding. Arch Biochem Biophys 2008; 469:67-75. [PMID: 17662688 DOI: 10.1016/j.abb.2007.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 06/20/2007] [Accepted: 06/22/2007] [Indexed: 10/23/2022]
Abstract
Simple theoretical concepts and models have been helpful to understand the folding rates and routes of single-domain proteins. As reviewed in this article, a physical principle that appears to underly these models is loop closure.
Collapse
Affiliation(s)
- Thomas R Weikl
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, 14424 Potsdam, Germany.
| |
Collapse
|
31
|
Weikl TR. Transition states in protein folding kinetics: modeling phi-values of small beta-sheet proteins. Biophys J 2007; 94:929-37. [PMID: 17905840 PMCID: PMC2186242 DOI: 10.1529/biophysj.107.109868] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small single-domain proteins often exhibit only a single free-energy barrier, or transition state, between the denatured and the native state. The folding kinetics of these proteins is usually explored via mutational analysis. A central question is which structural information on the transition state can be derived from the mutational data. In this article, we model and structurally interpret mutational Phi-values for two small beta-sheet proteins, the PIN and the FBP WW domains. The native structure of these WW domains comprises two beta-hairpins that form a three-stranded beta-sheet. In our model, we assume that the transition state consists of two conformations in which either one of the hairpins is formed. Such a transition state has been recently observed in molecular dynamics folding-unfolding simulations of a small designed three-stranded beta-sheet protein. We obtain good agreement with the experimental data 1), by splitting up the mutation-induced free-energy changes into terms for the two hairpins and for the small hydrophobic core of the proteins; and 2), by fitting a single parameter, the relative degree to which hairpins 1 and 2 are formed in the transition state. The model helps us to understand how mutations affect the folding kinetics of WW domains, and captures also negative Phi-values that have been difficult to interpret.
Collapse
Affiliation(s)
- Thomas R Weikl
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Potsdam, Germany.
| |
Collapse
|
32
|
Qi X, Portman JJ. Excluded volume, local structural cooperativity, and the polymer physics of protein folding rates. Proc Natl Acad Sci U S A 2007; 104:10841-6. [PMID: 17569785 PMCID: PMC1891811 DOI: 10.1073/pnas.0609321104] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Indexed: 11/18/2022] Open
Abstract
A coarse-grained variational model is used to investigate the polymer dynamics of barrier crossing for a diverse set of two-state folding proteins. The model gives reliable folding rate predictions provided excluded volume terms that induce minor structural cooperativity are included in the interaction potential. In general, the cooperative folding routes have sharper interfaces between folded and unfolded regions of the folding nucleus and higher free energy barriers. The calculated free energy barriers are strongly correlated with native topology as characterized by contact order. Increasing the rigidity of the folding nucleus changes the local structure of the transition state ensemble nonuniformly across the set of proteins studied. Nevertheless, the calculated prefactors k(0) are found to be relatively uniform across the protein set, with variation in 1/k(0) less than a factor of 5. This direct calculation justifies the common assumption that the prefactor is roughly the same for all small two-state folding proteins. Using the barrier heights obtained from the model and the best-fit monomer relaxation time 30 ns, we find that 1/k(0) approximately 1-5 mus (with average 1/k(0) approximately 4 micros). This model can be extended to study subtle aspects of folding such as the variation of the folding rate with stability or solvent viscosity and the onset of downhill folding.
Collapse
Affiliation(s)
- Xianghong Qi
- Department of Physics, Kent State University, Kent, OH 44240
| | - John J. Portman
- Department of Physics, Kent State University, Kent, OH 44240
| |
Collapse
|
33
|
Nazari K, Mahmoudi A, Esmaeili N, Sadeghian L, Moosavi-Movahedi AA, Khodafarin R. Denaturation of jack-bean urease by sodium n-dodecyl sulphate: A kinetic study below the critical micelle concentration. Colloids Surf B Biointerfaces 2006; 53:139-48. [PMID: 17010576 DOI: 10.1016/j.colsurfb.2006.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 08/03/2006] [Accepted: 08/03/2006] [Indexed: 10/24/2022]
Abstract
Kinetics of urease denaturation by anionic surfactant (sodium n-dodecyl sulphate, SDS) at concentrations below the critical micelle concentration (CMC) is investigated spectrophotometrically at neutral pH and the corresponding two-phase kinetic parameters of the process are estimated from a three-state reversible process using a binomial exponential relation based on the relaxation time method as: Using a prepared computer program, the experimental data are properly fitted into a binomial exponential relation, considering a two-phase denaturation pathway including a kinetically stable folded intermediate formed at SDS concentration of 1.1 mM. Forward and backward rate constants are estimated as: k(1)=0.2141+/-4.5 x 10(-3), k(2)=5.173 x 10(-3)+/-8.3 x 10(-5), k(-1)=0.09432+/-3.6 x 10(-4) and k(-2)=2.079 x 10(-3)+/-5.6 x 10(-5)s(-1) for the proposed mechanism. The rate-limiting step as well as the reaction coordinates in the denaturation mechanism are established. The mechanism involves formation of a kinetically stable folded native like intermediate through the electrostatic interactions. The intermediate was found to be more stable even than the native form (by about 9 kJmol(-1)) and still hexamer, because no loss of amplitude was observed. Electrophoresis experiments on the native and surfactant/urease complexes indicated a higher mobility for the kinetically folded native like intermediate.
Collapse
Affiliation(s)
- K Nazari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
34
|
Weikl TR, Dill KA. Transition-states in protein folding kinetics: the structural interpretation of Phi values. J Mol Biol 2006; 365:1578-86. [PMID: 17141267 DOI: 10.1016/j.jmb.2006.10.082] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2006] [Revised: 10/07/2006] [Accepted: 10/25/2006] [Indexed: 10/24/2022]
Abstract
Phi values are experimental measures of the effects of mutations on the folding kinetics of a protein. A central question is what structural information Phi values give about the transition-state of folding. Traditionally, a Phi value is interpreted as representing the "nativeness" of a mutated residue in the transition-state. However, this interpretation is often problematic. We present here a better structural interpretation of Phi values for mutations within a given helix. Our interpretation is based on a simple physical model that distinguishes between secondary and tertiary free energy contributions of helical residues. From a linear fit of the model to experimental data, we obtain two structural parameters: the extent of helix formation in the transition-state, and the nativeness of tertiary interactions in the transition-state. We apply the model to all proteins with well-characterized helices for which more than 10 Phi values are available: protein A, CI2, and protein L. The model is simple to apply to experimental data, captures nonclassical Phi values <0 or >1 in these helices, and explains how different mutations at a given site can lead to different Phi values.
Collapse
Affiliation(s)
- Thomas R Weikl
- Max Planck Institute of Colloids and Interfaces, Theory Department, 14424 Potsdam, Germany.
| | | |
Collapse
|
35
|
Huang X, Zhou HX. Similarity and difference in the unfolding of thermophilic and mesophilic cold shock proteins studied by molecular dynamics simulations. Biophys J 2006; 91:2451-63. [PMID: 16844745 PMCID: PMC1562390 DOI: 10.1529/biophysj.106.082891] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular dynamics simulations were performed to unfold a homologous pair of thermophilic and mesophilic cold shock proteins at high temperatures. The two proteins differ in just 11 of 66 residues and have very similar structures with a closed five-stranded antiparallel beta-barrel. A long flexible loop connects the N-terminal side of the barrel, formed by three strands (beta1-beta3), with the C-terminal side, formed by two strands (beta4-beta5). The two proteins were found to follow the same unfolding pathway, but with the thermophilic protein showing much slower unfolding. Unfolding started with the melting of C-terminal strands, leading to exposure of the hydrophobic core. Subsequent melting of beta3 and the beta-hairpin formed by the first two strands then resulted in unfolding of the whole protein. The slower unfolding of the thermophilic protein could be attributed to ion pair formation of Arg-3 with Glu-46, Glu-21, and the C-terminal. These ion pairs were also found to be important for the difference in folding stability between the pair of proteins. Thus electrostatic interactions appear to play similar roles in the difference in folding stability and kinetics between the pair of proteins.
Collapse
Affiliation(s)
- Xiaoqin Huang
- Institute of Molecular Biophysics and School of Computational Science, Florida State University, Tallahassee, Florida 32306, USA
| | | |
Collapse
|
36
|
Sosnick TR, Krantz BA, Dothager RS, Baxa M. Characterizing the Protein Folding Transition State Using ψ Analysis. Chem Rev 2006; 106:1862-76. [PMID: 16683758 DOI: 10.1021/cr040431q] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tobin R Sosnick
- Department of Biochemistry, Institute for Biophysical Dynamics, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA.
| | | | | | | |
Collapse
|
37
|
Dixit PD, Weikl TR. A simple measure of native‐state topology and chain connectivity predicts the folding rates of two‐state proteins with and without crosslinks. Proteins 2006; 64:193-7. [PMID: 16596570 DOI: 10.1002/prot.20976] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The folding rates of two-state proteins have been found to correlate with simple measures of native-state topology. The most prominent among these measures is the relative contact order (CO), which is the average CO, or localness, of all contacts in the native protein structure, divided by the chain length. Here, we test whether such measures can be generalized to capture the effect of chain crosslinks on the folding rate. Crosslinks change the chain connectivity and therefore also the localness of some of the native contacts. These changes in localness can be taken into account by the graph-theoretical concept of effective contact order (ECO). The relative ECO, however, the natural extension of the relative CO for proteins with crosslinks, overestimates the changes in the folding rates caused by crosslinks. We suggest here a novel measure of native-state topology, the relative logCO, and its natural extension, the relative logECO. The relative logCO is the average value for the logarithm of the CO of all contacts, divided by the logarithm of the chain length. The relative log(E)CO reproduces the folding rates of a set of 26 two-state proteins without crosslinks with essentially the same high correlation coefficient as the relative CO. In addition, it also captures the folding rates of eight two-state proteins with crosslinks.
Collapse
Affiliation(s)
- Purushottam D Dixit
- Max Planck Institute of Colloids and Interfaces, Theory Department, Potsdam, Germany
| | | |
Collapse
|
38
|
de los Rios MA, Muralidhara BK, Wildes D, Sosnick TR, Marqusee S, Wittung-Stafshede P, Plaxco KW, Ruczinski I. On the precision of experimentally determined protein folding rates and phi-values. Protein Sci 2006; 15:553-63. [PMID: 16501226 PMCID: PMC2249776 DOI: 10.1110/ps.051870506] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Phi-values, a relatively direct probe of transition-state structure, are an important benchmark in both experimental and theoretical studies of protein folding. Recently, however, significant controversy has emerged regarding the reliability with which phi-values can be determined experimentally: Because phi is a ratio of differences between experimental observables it is extremely sensitive to errors in those observations when the differences are small. Here we address this issue directly by performing blind, replicate measurements in three laboratories. By monitoring within- and between-laboratory variability, we have determined the precision with which folding rates and phi-values are measured using generally accepted laboratory practices and under conditions typical of our laboratories. We find that, unless the change in free energy associated with the probing mutation is quite large, the precision of phi-values is relatively poor when determined using rates extrapolated to the absence of denaturant. In contrast, when we employ rates estimated at nonzero denaturant concentrations or assume that the slopes of the chevron arms (mf and mu) are invariant upon mutation, the precision of our estimates of phi is significantly improved. Nevertheless, the reproducibility we thus obtain still compares poorly with the confidence intervals typically reported in the literature. This discrepancy appears to arise due to differences in how precision is calculated, the dependence of precision on the number of data points employed in defining a chevron, and interlaboratory sources of variability that may have been largely ignored in the prior literature.
Collapse
Affiliation(s)
- Miguel A de los Rios
- Department of Chemistry and Biochemistry, University of California, Santa Barbara 93106, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Weikl TR. Loop-closure events during protein folding: rationalizing the shape of Phi-value distributions. Proteins 2006; 60:701-11. [PMID: 16021610 DOI: 10.1002/prot.20504] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the past years, the folding kinetics of many small single-domain proteins has been characterized by mutational Phi-value analysis. In this article, a simple, essentially parameter-free model is introduced which derives folding routes from native structures by minimizing the entropic loop-closure cost during folding. The model predicts characteristic folding sequences of structural elements such as helices and beta-strand pairings. Based on few simple rules, the kinetic impact of these structural elements is estimated from the routes and compared to average experimental Phi-values for the helices and strands of 15 small, well-characterized proteins. The comparison leads on average to a correlation coefficient of 0.62 for all proteins with polarized Phi-value distributions, and 0.74 if distributions with negative average Phi-values are excluded. The diffuse Phi-value distributions of the remaining proteins are reproduced correctly. The model shows that Phi-value distributions, averaged over secondary structural elements, can often be traced back to entropic loop-closure events, but also indicates energetic preferences in the case of a few proteins governed by parallel folding processes.
Collapse
Affiliation(s)
- Thomas R Weikl
- Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam, Germany.
| |
Collapse
|
40
|
Best RB, Chen YG, Hummer G. Slow protein conformational dynamics from multiple experimental structures: the helix/sheet transition of arc repressor. Structure 2006; 13:1755-63. [PMID: 16338404 DOI: 10.1016/j.str.2005.08.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 08/02/2005] [Accepted: 08/10/2005] [Indexed: 10/25/2022]
Abstract
Conformational transitions underlie the function of many biomolecular systems. Resolving intermediate structural changes, however, is challenging for both experiments and all-atom simulations because the duration of transitions is short relative to the lifetime of the stable species. Simplified descriptions based on a single experimental structure, such as elastic network models or Gō models, are not immediately applicable. Here, we develop a general method that combines multiple coarse-grained models to capture slow conformational transitions. Individually, each model describes one of the experimental structures; together, they approximate the complete energy surface. We demonstrate the method for the helix-to-sheet transition in Arc repressor N11L. We find that the transition involves the partial unfolding of the switch region, and rapid refolding into the alternate structure. Transient local unfolding is consistent with the low hydrogen exchange protection factors of the switch region. Also in agreement with experiment, the isomerization occurs independently of the global folding/dimerization transition.
Collapse
Affiliation(s)
- Robert B Best
- Laboratory of Chemical Physics, Building 5, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
41
|
Abstract
The viability of a biological system depends upon careful regulation of the rates of various processes. These rates have limits imposed by intrinsic chemical or physical steps (e.g., diffusion). These limits can be expanded by interactions and dynamics of the biomolecules. For example, (a) a chemical reaction is catalyzed when its transition state is preferentially bound to an enzyme; (b) the folding of a protein molecule is speeded up by specific interactions within the transition-state ensemble and may be assisted by molecular chaperones; (c) the rate of specific binding of a protein molecule to a cellular target can be enhanced by mechanisms such as long-range electrostatic interactions, nonspecific binding and folding upon binding; (d) directional movement of motor proteins is generated by capturing favorable Brownian motion through intermolecular binding energy; and (e) conduction and selectivity of ions through membrane channels are controlled by interactions and the dynamics of channel proteins. Simple physical models are presented here to illustrate these processes and provide a unifying framework for understanding speed attainment and regulation in biomolecular systems.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics and School of Computational Science, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
42
|
Fawzi NL, Chubukov V, Clark LA, Brown S, Head-Gordon T. Influence of denatured and intermediate states of folding on protein aggregation. Protein Sci 2005; 14:993-1003. [PMID: 15772307 PMCID: PMC2253448 DOI: 10.1110/ps.041177505] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We simulate the aggregation thermodynamics and kinetics of proteins L and G, each of which self-assembles to the same alpha/beta [corrected] topology through distinct folding mechanisms. We find that the aggregation kinetics of both proteins at an experimentally relevant concentration exhibit both fast and slow aggregation pathways, although a greater proportion of protein G aggregation events are slow relative to those of found for protein L. These kinetic differences are correlated with the amount and distribution of intrachain contacts formed in the denatured state ensemble (DSE), or an intermediate state ensemble (ISE) if it exists, as well as the folding timescales of the two proteins. Protein G aggregates more slowly than protein L due to its rapidly formed folding intermediate, which exhibits native intrachain contacts spread across the protein, suggesting that certain early folding intermediates may be selected for by evolution due to their protective role against unwanted aggregation. Protein L shows only localized native structure in the DSE with timescales of folding that are commensurate with the aggregation timescale, leaving it vulnerable to domain swapping or nonnative interactions with other chains that increase the aggregation rate. Folding experiments that characterize the structural signatures of the DSE, ISE, or the transition state ensemble (TSE) under nonaggregating conditions should be able to predict regions where interchain contacts will be made in the aggregate, and to predict slower aggregation rates for proteins with contacts that are dispersed across the fold. Since proteins L and G can both form amyloid fibrils, this work also provides mechanistic and structural insight into the formation of prefibrillar species.
Collapse
Affiliation(s)
- Nicolas L Fawzi
- UCSF/UCB Joint Graduate Group in Bioengineering, Department of Bioengineering, Donner 272, University of California at Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
43
|
Merlo C, Dill KA, Weikl TR. Phi values in protein-folding kinetics have energetic and structural components. Proc Natl Acad Sci U S A 2005; 102:10171-5. [PMID: 16009941 PMCID: PMC1177393 DOI: 10.1073/pnas.0504171102] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phi values are experimental measures of how the kinetics of protein folding is changed by single-site mutations. Phi values measure energetic quantities, but they are often interpreted in terms of the structures of the transition-state ensemble. Here, we describe a simple analytical model of the folding kinetics in terms of the formation of protein substructures. The model shows that Phi values have both structural and energetic components. It also provides a natural and general interpretation of "nonclassical" Phi values (i.e., < 0 or > 1). The model reproduces the Phi values for 20 single-residue mutations in the alpha-helix of the protein CI2, including several nonclassical Phi values, in good agreement with experiments.
Collapse
Affiliation(s)
- Claudia Merlo
- Max Planck Institute of Colloids and Interfaces, Theory Division, 14424 Potsdam, Germany
| | | | | |
Collapse
|
44
|
Lin HN, Chang JM, Wu KP, Sung TY, Hsu WL. HYPROSP II--a knowledge-based hybrid method for protein secondary structure prediction based on local prediction confidence. Bioinformatics 2005; 21:3227-33. [PMID: 15932901 DOI: 10.1093/bioinformatics/bti524] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION In our previous approach, we proposed a hybrid method for protein secondary structure prediction called HYPROSP, which combined our proposed knowledge-based prediction algorithm PROSP and PSIPRED. The knowledge base constructed for PROSP contains small peptides together with their secondary structural information. The hybrid strategy of HYPROSP uses a global quantitative measure, match rate, to determine whether PROSP or PSIPRED is to be used for the prediction of a target protein. HYPROSP made slight improvement of Q(3) over PSIPRED because PROSP predicted well for proteins with match rate >80%. As the portion of proteins with match rate >80% is quite small and as the performance of PSIPRED also improves, the advantage of HYPROSP is diluted. To overcome this limitation and further improve the hybrid prediction method, we present in this paper a new hybrid strategy HYPROSP II that is based on a new quantitative measure called local match rate. RESULTS Local match rate indicates the amount of structural information that each amino acid can extract from the knowledge base. With the local match rate, we are able to define a confidence level of the PROSP prediction results for each amino acid. Our new hybrid approach, HYPROSP II, is proposed as follows: for each amino acid in a target protein, we combine the prediction results of PROSP and PSIPRED using a hybrid function defined on their respective confidence levels. Two datasets in nrDSSP and EVA are used to perform a 10-fold cross validation. The average Q(3) of HYPROSP II is 81.8% and 80.7% on nrDSSP and EVA datasets, respectively, which is 2.0% and 1.1% better than that of PSIPRED. For local structures with match rate >80%, the average Q(3) improvement is 4.4% on the nrDSSP dataset. The use of local match rate improves the accuracy better than global match rate. There has been a long history of attempts to improve secondary structure prediction. We believe that HYPROSP II has greatly utilized the power of peptide knowledge base and raised the prediction accuracy to a new high. The method we developed in this paper could have a profound effect on the general use of knowledge base techniques for various predictionalgorithms. AVAILABILITY The Linux executable file of HYPROSP II, as well as both nrDSSP and EVA datasets can be downloaded from http://bioinformatics.iis.sinica.edu.tw/HYPROSPII/.
Collapse
Affiliation(s)
- Hsin-Nan Lin
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | |
Collapse
|
45
|
Meadows PY, Walker GC. Force microscopy studies of fibronectin adsorption and subsequent cellular adhesion to substrates with well-defined surface chemistries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:4096-4107. [PMID: 15835980 DOI: 10.1021/la047241v] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Molecular force spectroscopy was used to study the mechanical behavior of plasma fibronectin (FN) on mica, gold, poly(ethylene glycol), and -CH(3), -OH, and -COOH terminated alkanethiol self-assembled monolayers. Proteins were examined at two concentrations, one resulting in a saturated surface with multiple intermolecular interactions referred to as the aggregate state and another resulting in a semiaggregate state where the proteins were neither completely isolated nor completely aggregated. Modeling of the force-extension data using two different theories resulted in similar trends for the fitted thermodynamic parameters from which insight into the protein's binding state could be obtained. Aggregated proteins adsorbed on hydrophobic surfaces adopted more rigid conformations apparently as a result of increased surface denaturation and tighter binding while looser conformations were observed on more hydrophilic surfaces. Studies of FN in a semiaggregate state showed heterogeneity in the model's thermodynamic parameters suggesting that, in the early stages of nonspecific adsorption, multiple protein conformations exist, each having bound irreversibly to the substrate. Proteins in this state all demonstrated a more rigid conformation than in the corresponding aggregate studies due to the greater number of substrate contacts available to the protein. Finally, the force spectroscopy experiments were examined for any biocompatibility correlation by seeding substrates with human umbilical vascular endothelial cells. As predicted from the models used in this work, surfaces with aggregated FN promoted cellular deposition while surfaces with FN in a semiaggregate state appeared to hinder cellular deposition and growth. The atomic force microscope's use as a means for projecting surface biocompatibility, although requiring additional testing, does look promising.
Collapse
Affiliation(s)
- Pamela Y Meadows
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
46
|
Time-resolved FTIR studies provide activation free energy, activation enthalpy and activation entropy for GTPase reactions. Chem Phys 2004. [DOI: 10.1016/j.chemphys.2004.06.051] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Henry ER, Eaton WA. Combinatorial modeling of protein folding kinetics: free energy profiles and rates. Chem Phys 2004. [DOI: 10.1016/j.chemphys.2004.06.064] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Abstract
We present a solvable model that predicts the folding kinetics of two-state proteins from their native structures. The model is based on conditional chain entropies. It assumes that folding processes are dominated by small-loop closure events that can be inferred from native structures. For CI2, the src SH3 domain, TNfn3, and protein L, the model reproduces two-state kinetics, and it predicts well the average Phi-values for secondary structures. The barrier to folding is the formation of predominantly local structures such as helices and hairpins, which are needed to bring nonlocal pairs of amino acids into contact.
Collapse
Affiliation(s)
- Thomas R Weikl
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 94143, USA. Thomas.
| | | | | |
Collapse
|
49
|
Abstract
We use a minimalist protein model, in combination with a sequence design strategy, to determine differences in primary structure for proteins L and G, which are responsible for the two proteins folding through distinctly different folding mechanisms. We find that the folding of proteins L and G are consistent with a nucleation-condensation mechanism, each of which is described as helix-assisted beta-1 and beta-2 hairpin formation, respectively. We determine that the model for protein G exhibits an early intermediate that precedes the rate-limiting barrier of folding, and which draws together misaligned secondary structure elements that are stabilized by hydrophobic core contacts involving the third beta-strand, and presages the later transition state in which the correct strand alignment of these same secondary structure elements is restored. Finally, the validity of the targeted intermediate ensemble for protein G was analyzed by fitting the kinetic data to a two-step first-order reversible reaction, proving that protein G folding involves an on-pathway early intermediate, and should be populated and therefore observable by experiment.
Collapse
Affiliation(s)
- Scott Brown
- Department of Bioengineering, 472 Donner Laboratory, University of California, Berkeley, Berkeley, CA 94720-1762, USA
| | | |
Collapse
|
50
|
Abstract
Protein folding should be complex. Proteins organize themselves into specific three-dimensional structures, through a myriad of conformational changes. The classical view of protein folding describes this process as a nearly sequential series of discrete intermediates. In contrast, the energy landscape theory of folding considers folding as the progressive organization of an ensemble of partially folded structures through which the protein passes on its way to the natively folded structure. As a result of evolution, proteins have a rugged funnel-like landscape biased toward the native structure. Connecting theory and simulations of minimalist models with experiments has completely revolutionized our understanding of the underlying mechanisms that control protein folding.
Collapse
Affiliation(s)
- José Nelson Onuchic
- Center for Theoretical Biological Physics, Department of Physics, University of California at San Diego, La Jolla 92093, USA.
| | | |
Collapse
|