1
|
Barde C, Destainville N, Manghi M. Energy required to pinch a DNA plectoneme. Phys Rev E 2018; 97:032412. [PMID: 29776038 DOI: 10.1103/physreve.97.032412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Indexed: 11/07/2022]
Abstract
DNA supercoiling plays an important role from a biological point of view. One of its consequences at the supramolecular level is the formation of DNA superhelices named plectonemes. Normally separated by a distance on the order of 10 nm, the two opposite double strands of a DNA plectoneme must be brought closer if a protein or protein complex implicated in genetic regulation is to be bound simultaneously to both strands, as if the plectoneme was locally pinched. We propose an analytic calculation of the energetic barrier, of elastic nature, required to bring closer the two loci situated on the opposed double strands. We examine how this energy barrier scales with the DNA supercoiling. For physically relevant values of elastic parameters and of supercoiling density, we show that the energy barrier is in the k_{B}T range under physiological conditions, thus demonstrating that the limiting step to loci encounter is more likely the preceding plectoneme slithering bringing the two loci side by side.
Collapse
Affiliation(s)
- Céline Barde
- Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS 118 route de Narbonne, F-31062 Toulouse, France, EU
| | - Nicolas Destainville
- Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS 118 route de Narbonne, F-31062 Toulouse, France, EU
| | - Manoel Manghi
- Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS 118 route de Narbonne, F-31062 Toulouse, France, EU
| |
Collapse
|
2
|
Luzzietti N, Brutzer H, Klaue D, Schwarz FW, Staroske W, Clausing S, Seidel R. Efficient preparation of internally modified single-molecule constructs using nicking enzymes. Nucleic Acids Res 2010; 39:e15. [PMID: 21071409 PMCID: PMC3035433 DOI: 10.1093/nar/gkq1004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Investigations of enzymes involved in DNA metabolism have strongly benefited from the establishment of single molecule techniques. These experiments frequently require elaborate DNA substrates, which carry chemical labels or nucleic acid tertiary structures. Preparing such constructs often represents a technical challenge: long modified DNA molecules are usually produced via multi-step processes, involving low efficiency intermolecular ligations of several fragments. Here, we show how long stretches of DNA (>50 bp) can be modified using nicking enzymes to produce complex DNA constructs. Multiple different chemical and structural modifications can be placed internally along DNA, in a specific and precise manner. Furthermore, the nicks created can be resealed efficiently yielding intact molecules, whose mechanical properties are preserved. Additionally, the same strategy is applied to obtain long single-strand overhangs subsequently used for efficient ligation of ss- to dsDNA molecules. This technique offers promise for a wide range of applications, in particular single-molecule experiments, where frequently multiple internal DNA modifications are required.
Collapse
Affiliation(s)
- Nicholas Luzzietti
- Biotechnology Center, Technische Universität Dresden, D-01062 Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
3
|
Gansen A, Tóth K, Schwarz N, Langowski J. Structural variability of nucleosomes detected by single-pair Förster resonance energy transfer: histone acetylation, sequence variation, and salt effects. J Phys Chem B 2009; 113:2604-13. [PMID: 18950220 DOI: 10.1021/jp7114737] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nucleosomes were reconstituted from 170 bp long fragments of 5S rDNA and an optimal positioning sequence, the Selex 601, with recombinant histones. In free-solution single pair Förster resonance energy transfer (spFRET) measurements of the distance between fluorescently labeled bases in the nucleosomal DNA, the samples exhibited structural diversity. The structural heterogeneity correlated with the stability of the complexes and depended on the DNA sequence and histone acetylation. The stability of the nucleosomes was assessed via dilution-driven disruption: histone acetylation decreased nucleosome stability. The spFRET experiments used a new approach for data acquisition and analysis that we term "deliberately detuned detection" (D3). This permits the separation of subpopulations in the samples even for the low-FRET regime characteristic for the linker-DNA labeled nucleosomes. Thus, it became possible to study in more detail histone acetylation- and salt-dependent structural variations using either end- or internally labeled DNAs on the nucleosome. We found that the distance distribution of the fluorophore pairs on the linker DNA ends was much more sensitive to histone acetylation or sequence variation than that of labels on the internal part of the DNA, which was more tightly associated with the histone core. spFRET on freely diffusing nucleosomes allows us therefore to localize the influence of histone modifications and DNA sequence variations on the nucleosome structure and dynamics.
Collapse
Affiliation(s)
- Alex Gansen
- Division Biophysics of Macromolecules, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
4
|
Catto LE, Bellamy SRW, Retter SE, Halford SE. Dynamics and consequences of DNA looping by the FokI restriction endonuclease. Nucleic Acids Res 2008; 36:2073-81. [PMID: 18276642 PMCID: PMC2346600 DOI: 10.1093/nar/gkn051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Genetic events often require proteins to be activated by interacting with two DNA sites, trapping the intervening DNA in a loop. While much is known about looping equilibria, only a few studies have examined DNA-looping dynamics experimentally. The restriction enzymes that cut DNA after interacting with two recognition sites, such as FokI, can be used to exemplify looping reactions. The reaction pathway for FokI on a supercoiled DNA with two sites was dissected by fast kinetics to reveal, in turn: the initial binding of a protein monomer to each site; the protein–protein association to form the dimer, trapping the loop; the subsequent phosphodiester hydrolysis step. The DNA motion that juxtaposes the sites ought on the basis of Brownian dynamics to take ∼2 ms, but loop capture by FokI took 230 ms. Hence, DNA looping by FokI is rate limited by protein association rather than DNA dynamics. The FokI endonuclease also illustrated activation by looping: it cut looped DNA 400 times faster than unlooped DNA.
Collapse
Affiliation(s)
- Lucy E Catto
- The DNA-Protein Interactions Unit, Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
5
|
Langowski J, Heermann DW. Computational modeling of the chromatin fiber. Semin Cell Dev Biol 2007; 18:659-67. [PMID: 17936653 DOI: 10.1016/j.semcdb.2007.08.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 08/22/2007] [Indexed: 11/17/2022]
Abstract
The packing of the genomic DNA in the living cell is essential for its biological function. While individual aspects of the genome architecture, such as DNA and nucleosome structure or the arrangement of chromosome territories are well studied, much information is missing for a unified description of cellular DNA at all its structural levels. Computer modeling can contribute to such a description. We present here some typical approaches to models of the chromatin fiber, including different amounts of detail in the description of the local nucleosome structure. The main results from our simulations are that the physical properties of the chromatin fiber can be well described by a simplified model consisting of cylinder-like nucleosomes connected by flexible DNA segments, with a geometry determined by the bending and twisting angles between nucleosomes. Randomness in the local geometry - such as random absence of linker histone H1 - leads to a dramatic increase in the chromatin fiber flexibility. Furthermore, we show that chromatin is much more flexible to bending than to stretching, and that the structure of the chromatin fiber favors the formation of sharp bends.
Collapse
Affiliation(s)
- Jörg Langowski
- Division Biophysics of Macromolecules, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
6
|
Escudé C, Roulon T, Lyonnais S, Le Cam E. Multiple topological labeling for imaging single plasmids. Anal Biochem 2007; 362:55-62. [PMID: 17250797 DOI: 10.1016/j.ab.2006.12.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 12/06/2006] [Accepted: 12/13/2006] [Indexed: 11/18/2022]
Abstract
Sequence-specific labeling methods for double-stranded DNA are required for mapping protein binding sites or specific DNA structures on circular DNA molecules by high-resolution imaging techniques such as electron and atomic force microscopies. Site-specific labeling can be achieved by ligating a DNA fragment to a stem-loop-triplex-forming oligonucleotide, thereby forming a topologically linked complex. The superhelicity of the plasmid is not altered and the process can be applied to two different target sites simultaneously, using DNA fragments of different sizes. Observation of the labeled plasmids by electron microscopy revealed that, under conditions where the triple helices were stable, the two labels were located at 339+/-34 bp from one another, in agreement with the distance between the two target sequences for triple helix formation (350 bp). Under conditions where the triple helices were not stable, the short DNA fragments could slide away from their target site. The concomitant attachment of two different stable labels makes it possible, for the first time to our knowledge, to label a circular DNA molecule and obtain information on its direction. In addition to its potential applications as a tool for structural investigations of single DNA molecules and their interactions with proteins, this DNA labeling method may also prove useful in biotechnology and gene therapy.
Collapse
Affiliation(s)
- Christophe Escudé
- Département Régulations, Développement et Diversité Moléculaire, USM 0503 Muséum National d'Histoire Naturelle, INSERM U565, CNRS UMR5153, Case postale 26, 43 Rue Cuvier, 75231 Paris Cedex 05, France.
| | | | | | | |
Collapse
|
7
|
Blumberg S, Pennington MW, Meiners JC. Do femtonewton forces affect genetic function? A review. J Biol Phys 2006; 32:73-95. [PMID: 19669453 DOI: 10.1007/s10867-005-9002-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 12/21/2005] [Indexed: 11/29/2022] Open
Abstract
Protein-Mediated DNA looping is intricately related to gene expression. Therefore any mechanical constraint that disrupts loop formation can play a significant role in gene regulation. Polymer physics models predict that less than a piconewton of force may be sufficient to prevent the formation of DNA loops. Thus, it appears that tension can act as a molecular switch that controls the much larger forces associated with the processive motion of RNA polymerase. Since RNAP can exert forces over 20 pN before it stalls, a 'substrate tension switch' could offer a force advantage of two orders of magnitude. Evidence for such a mechanism is seen in recent in vitro micromanipulation experiments. In this article we provide new perspective on existing theory and experimental data on DNA looping in vitro and in vivo. We elaborate on the connection between tension and a variety of other intracellular mechanical constraints including sequence specific curvature and supercoiling. In the process, we emphasize that the richness and versatility of DNA mechanics opens up a whole new paradigm of gene regulation to explore.
Collapse
Affiliation(s)
- Seth Blumberg
- Department of Physics and Biophysics Research Division, Randall Laboratory, University of Michigan, Ann Arbor, MI 48109-1120, USA.
| | | | | |
Collapse
|
8
|
Langowski J. Polymer chain models of DNA and chromatin. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2006; 19:241-9. [PMID: 16547610 DOI: 10.1140/epje/i2005-10067-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 01/31/2006] [Indexed: 05/07/2023]
Abstract
Many properties of the genome in the cell nucleus can be understood by modeling DNA and chromatin as a flexible polymer chain. This article introduces into current models for such a coarse-grained description and reviews some recent results from our own group. Examples given are the unrolling of DNA from the histone core and the response of the 30 nm chromatin fiber to mechanical stretching.
Collapse
Affiliation(s)
- J Langowski
- Division Biophysics of Macromolecules, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany.
| |
Collapse
|
9
|
Bussiek M, Tóth K, Brun N, Langowski J. DNA-loop formation on nucleosomes shown by in situ scanning force microscopy of supercoiled DNA. J Mol Biol 2005; 345:695-706. [PMID: 15588819 DOI: 10.1016/j.jmb.2004.11.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 10/21/2004] [Accepted: 11/09/2004] [Indexed: 11/22/2022]
Abstract
The flexibility of the chromatin structure, necessary for the processing of the genomic DNA, is controlled by a number of factors where flexibility and mobility of the nucleosomes is essential. Here, the influence of DNA supercoiling on the structure of single nucleosomes is investigated. Circular supercoiled plasmid DNA sub-saturated with histones was visualized by scanning force microscopy (SFM) in aqueous solution. SFM-imaging compared with topological analysis indicates instability of nucleosomes when the salt concentration is raised from 10 mM to 100 mM NaCl. Nucleosomes were observed after the deposition to the used scanning surface, i.e. mica coated with polylysine. On the images, the nucleosomes appear with a high probability in end-loops near the apices of the superhelices. In 100 mM NaCl but not in 10 mM NaCl, a significant number of complexes present the nucleosomes on superhelical crossings mainly located adjacent to an end-loop. The morphology of these structures and statistical analysis suggest that DNA loops were formed on the histone octamers, where the loop size distribution shows a pronounced peak at 50 nm. Recently, the formation and diffusion of loops on octamers has been discussed as a mechanism of translocations of nucleosomes along DNA. The presented data likely confirm the occurrence of loops, which may be stabilized by supercoiling. Analysis of the structure of regular nucleosomes not located on crossings indicates that reducing the salt concentration leads to more conformations, where DNA is partially unwrapped from the distal ends of the octamer.
Collapse
Affiliation(s)
- Malte Bussiek
- German Cancer Research Center, Div. Biophysics of Macromolecules, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
10
|
Blumberg S, Tkachenko AV, Meiners JC. Disruption of protein-mediated DNA looping by tension in the substrate DNA. Biophys J 2005; 88:1692-701. [PMID: 15653717 PMCID: PMC1305226 DOI: 10.1529/biophysj.104.054486] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein-mediated DNA looping is important in a variety of biological processes, including gene regulation and genetic transformation. Although the biochemistry of loop formation is well established, the mechanics of loop closure in a constrained cellular environment has received less attention. Recent single molecule measurements show that mechanical constraints have a significant impact on DNA looping and motivate the need for a more comprehensive characterization of the effects of tension. By modeling DNA as a wormlike chain, we calculate how continuous stretching of the substrate DNA affects the loop formation probability. We find that when the loop size is >100 bp, a tension of 500 fN can increase the time required for loop closure by two orders of magnitude. This force is small compared to the piconewton forces that are associated with RNA polymerases and other molecular motors, indicating that intracellular mechanical forces might affect transcriptional regulation. In contrast to existing theory, we find that for loops <200 bp, the effect of tension is partly dependent on the relative orientation of the DNA-binding domains in the linker protein. Our results provide perspective on recent DNA looping experiments and suggestions for future micromechanical studies.
Collapse
Affiliation(s)
- Seth Blumberg
- Department of Physics, Randall Laboratory, University of Michigan, Ann Arbor, Michigan 48109-1120, USA
| | | | | |
Collapse
|
11
|
Abstract
Nucleic acids are characterized by a vast structural variability. Secondary structural conformations include the main polymorphs A, B, and Z, cruciforms, intrinsic curvature, and multistranded motifs. DNA secondary motifs are stabilized and regulated by the primary base sequence, contextual effects, environmental factors, as well as by high-order DNA packaging modes. The high-order modes are, in turn, affected by secondary structures and by the environment. This review is concerned with the flow of structural information among the hierarchical structural levels of DNA molecules, the intricate interplay between the various factors that affect these levels, and the regulation and physiological significance of DNA high-order structures.
Collapse
Affiliation(s)
- Abraham Minsky
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
12
|
Embleton ML, Vologodskii AV, Halford SE. Dynamics of DNA loop capture by the SfiI restriction endonuclease on supercoiled and relaxed DNA. J Mol Biol 2004; 339:53-66. [PMID: 15123420 DOI: 10.1016/j.jmb.2004.03.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 03/11/2004] [Accepted: 03/18/2004] [Indexed: 11/18/2022]
Abstract
The SfiI endonuclease is a prototype for DNA looping. It binds two copies of its recognition sequence and, if Mg(2+) is present, cuts both concertedly. Looping was examined here on supercoiled and relaxed forms of a 5.5 kb plasmid with three SfiI sites: sites 1 and 2 were separated by 0.4 kb, and sites 2 and 3 by 2.0 kb. SfiI converted this plasmid directly to the products cut at all three sites, though DNA species cleaved at one or two sites were formed transiently during a burst phase. The burst revealed three sets of doubly cut products, corresponding to the three possible pairings of sites. The equilibrium distribution between the different loops was evaluated from the burst phases of reactions initiated by adding MgCl(2) to SfiI bound to the plasmid. The short loop was favored over the longer loops, particularly on supercoiled DNA. The relative rates for loop capture were assessed after adding SfiI to solutions containing the plasmid and MgCl(2). On both supercoiled and relaxed DNA, the rate of loop capture across 0.4 kb was only marginally faster than over 2.0 kb or 2.4 kb. The relative strengths and rates of looping were compared to computer simulations of conformational fluctuations in DNA. The simulations concurred broadly with the experimental data, though they predicted that increasing site separations should cause a shallower decline in the equilibrium constants than was observed but a slightly steeper decline in the rates for loop capture. Possible reasons for these discrepancies are discussed.
Collapse
Affiliation(s)
- Michelle L Embleton
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
13
|
Moreno-Herrero F, Colchero J, Gómez-Herrero J, Baró A, Ávila J. Jumping mode atomic force microscopy obtains reproducible images of Alzheimer paired helical filaments in liquids. Eur Polym J 2004. [DOI: 10.1016/j.eurpolymj.2004.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Sucato CA, Rangel DP, Aspleaf D, Fujimoto BS, Schurr JM. Monte Carlo simulations of locally melted supercoiled DNAs in 20 mM ionic strength. Biophys J 2004; 86:3079-96. [PMID: 15111422 PMCID: PMC1304174 DOI: 10.1016/s0006-3495(04)74357-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Accepted: 01/14/2004] [Indexed: 11/17/2022] Open
Abstract
Mesoscopic models of unmelted and locally melted supercoiled DNAs in 20 mM ionic strength are simulated over a range of linking difference from deltal = 0 to -26 turns, or superhelix density from sigma = 0 to -0.062. A domain containing m = 0, 28, or 56 melted basepairs (out of 4349 total) is modeled simply by a region of suitable length with substantially reduced torsion and bending elastic constants. Average structural properties are calculated from the saved configurations, and a reversible work protocol is used to calculate the supercoiling free energy, The cross-writhe between duplex and melted regions (defined herein) is found to be negligibly small. The total writhe, radius of gyration, and ordered elements of the diagonalized inertial tensor are found to be nearly universal functions of the residual linking difference (deltal(r)) associated with the duplex region, independent of m. However, deformability of the tertiary structure, as manifested by the variance of those same properties, is not a universal function of deltal(r)), but depends upon m.delta (SC) varies with deltal(r)) more strongly than deltal(r)) (2)due to the low ionic strength. The twist energy parameter, E (T) obtained from the simulated delta G(SC), deltal(r)), and net twisting strain of the melted region T (D), is found to be independent of m, hence also of the torsion and bending elastic constants of the melted region. However, E(T) increases linearly with -deltalr), which leads to 1). a small overestimation of E (T) for any given deltal(r)) when E(T) is determined from the observed deltal and deltal (r) by the protocol of Bauer and Benham; and 2). a significant enhancement of the apparent slope, -dE(T)/d(T), obtained via the protocol of Bauer and Benham, relative to the actual slope at fixed delta l(r). After taking these two effects into account, the theoretical and experimental values E(T) and -dE(T)/d(T) values agree rather well. For the larger deltal the melted regions are found preferentially in the linker domains between interwound arms, rather than in the apical regions at the ends of interwound arms.
Collapse
Affiliation(s)
- Christopher A Sucato
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Jörg Langowski
- Biophysics of Macromolecules, German Cancer Research Center, D-69120 Heidelberg, Germany.
| |
Collapse
|
16
|
Bussiek M, Mücke N, Langowski J. Polylysine-coated mica can be used to observe systematic changes in the supercoiled DNA conformation by scanning force microscopy in solution. Nucleic Acids Res 2004; 31:e137. [PMID: 14602930 PMCID: PMC275574 DOI: 10.1093/nar/gng137] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The conformations of supercoiled (sc) DNA and linear DNA bound to polylysine (PL)-coated mica were investigated by scanning force microscopy (SFM) in solution. From the polymer statistical analysis of linear DNA, we could distinguish between re-arrangements or trapping of the DNA on the surface. Conditions of re-arrangements to an almost equilibrated state can be achieved at appropriate PL surface concentrations. We could show that the ability of re-arrangements depends on the salt concentration of the adsorption/imaging buffer. Comparing the statistical analysis of the linear DNA with SFM images of scDNA suggested that irregular scDNA conformations are formed under conditions of trapping, whereas plectonemic structures are favoured under conditions of surface re-arrangements. Salt-dependent changes in the scDNA conformation over the range of 10-100 mM NaCl, as characterised by the parameters writhe and the superhelix radius r, are observable only under conditions that enable surface re-arrangements. The measured values of writhe suggest that the scDNA loses approximately one-half of the supercoils during the binding to the surface. At the same time r increases systematically with decreasing writhe, thus the scDNA topology remains determined by the constraints on supercoiling during the binding to PL-coated mica.
Collapse
Affiliation(s)
- Malte Bussiek
- German Cancer Research Center, Department of Biophysics of Macromolecules, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|