1
|
Palm SM, Horton CA, Zhang X, Collins K. Structure and sequence at an RNA template 5' end influence insertion of transgenes by an R2 retrotransposon protein. RNA (NEW YORK, N.Y.) 2024; 30:1227-1245. [PMID: 38960642 PMCID: PMC11331408 DOI: 10.1261/rna.080031.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
R2 non-long terminal repeat retrotransposons insert site-specifically into ribosomal RNA genes (rDNA) in a broad range of multicellular eukaryotes. R2-encoded proteins can be leveraged to mediate transgene insertion at 28S rDNA loci in cultured human cells. This strategy, precise RNA-mediated insertion of transgenes (PRINT), relies on the codelivery of an mRNA encoding R2 protein and an RNA template encoding a transgene cassette of choice. Here, we demonstrate that the PRINT RNA template 5' module, which as a complementary DNA 3' end will generate the transgene 5' junction with rDNA, influences the efficiency and mechanism of gene insertion. Iterative design and testing identified optimal 5' modules consisting of a hepatitis delta virus-like ribozyme fold with high thermodynamic stability, suggesting that RNA template degradation from its 5' end may limit transgene insertion efficiency. We also demonstrate that transgene 5' junction formation can be either precise, formed by annealing the 3' end of first-strand complementary DNA with the upstream target site, or imprecise, by end-joining, but this difference in junction formation mechanism is not a major determinant of insertion efficiency. Sequence characterization of imprecise end-joining events indicates surprisingly minimal reliance on microhomology. Our findings expand the current understanding of the role of R2 retrotransposon transcript sequence and structure, and especially the 5' ribozyme fold, for retrotransposon mobility and RNA-templated gene synthesis in cells.
Collapse
Affiliation(s)
- Sarah M Palm
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Connor A Horton
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Xiaozhu Zhang
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
2
|
Jolley EA, Bormes KM, Bevilacqua PC. Upstream Flanking Sequence Assists Folding of an RNA Thermometer. J Mol Biol 2022; 434:167786. [PMID: 35952804 PMCID: PMC9554833 DOI: 10.1016/j.jmb.2022.167786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022]
Abstract
Many heat shock genes in bacteria are regulated through a class of temperature-sensitive stem-loop (SL) RNAs called RNA thermometers (RNATs). One of the most widely studied RNATs is the Repression Of heat Shock Expression (ROSE) element associated with expression of heat shock proteins. Located in the 5'UTR, the RNAT contains one to three auxiliary hairpins upstream of it. Herein, we address roles of these upstream SLs in the folding and function of an RNAT. Bradyrhizobium japonicum is a nitrogen-fixing bacterium that experiences a wide range of temperatures in the soil and contains ROSE elements, each having multiple upstream SLs. The 5'UTR of the messenger (mRNA) for heat shock protein A (hspA) in B. japonicum has an intricate secondary structure containing three SLs upstream of the RNAT SL. While structure-function studies of the hspA RNAT itself have been reported, it has been unclear if these auxiliary SLs contribute to the temperature-sensing function of the ROSE elements. Herein, we show that the full length (FL) sequence has several melting transitions indicating that the ROSE element unfolds in a non-two-state manner. The upstream SLs are more stable than the RNAT itself, and a variant with disrupted base pairing in the SL immediately upstream of the RNAT has little influence on the melting of the RNAT. On the basis of these results and modeling of the co-transcriptional folding of the ROSE element, we propose that the upstream SLs function to stabilize the transcript and aid proper folding and dynamics of the RNAT.
Collapse
Affiliation(s)
- Elizabeth A Jolley
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, United States; Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, United States
| | - Kathryn M Bormes
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, United States; Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, United States; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
3
|
de la Peña M, Ceprián R, Casey JL, Cervera A. Hepatitis delta virus-like circular RNAs from diverse metazoans encode conserved hammerhead ribozymes. Virus Evol 2021; 7:veab016. [PMID: 33708415 PMCID: PMC7936874 DOI: 10.1093/ve/veab016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human hepatitis delta virus (HDV) is a unique infectious agent whose genome is composed of a small circular RNA. Recent data, however, have reported the existence of highly divergent HDV-like circRNAs in the transcriptomes of diverse vertebrate and invertebrate species. The HDV-like genomes described in amniotes such as birds and reptiles encode self-cleaving RNA motifs or ribozymes similar to the ones present in the human HDV, whereas no catalytic RNA domains have been reported for the HDV-like genomes detected in metagenomic data from some amphibians, fish, and invertebrates. Herein, we describe the self-cleaving motifs of the HDV-like genomes reported in newts and fish, which belong to the characteristic class of HDV ribozymes. Surprisingly, HDV-like genomes from a toad and a termite show conserved type III hammerhead ribozymes, which belong to an unrelated class of catalytic RNAs characteristic of plant genomes and plant subviral circRNAs, such as some viral satellites and viroids. Sequence analyses revealed the presence of similar HDV-like hammerhead ribozymes encoded in two termite genomes, but also in the genomes of several dipteran species. In vitro transcriptions confirmed the cleaving activity for these motifs, with moderate rates of self-cleavage. These data indicate that all described HDV-like agents contain self-cleaving motifs from either the HDV or the hammerhead class. Autocatalytic ribozymes in HDV-like genomes could be regarded as interchangeable domains and may have arisen from cellular transcriptomes, although we still cannot rule out some other evolutionary explanations.
Collapse
Affiliation(s)
- Marcos de la Peña
- IBMCP (CSIC-UPV), C/Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - Raquel Ceprián
- IBMCP (CSIC-UPV), C/Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - John L Casey
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Amelia Cervera
- IBMCP (CSIC-UPV), C/Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| |
Collapse
|
4
|
Abstract
Self-cleaving ribozymes are RNA molecules that catalyze a site-specific self-scission reaction. Analysis of self-cleavage is a crucial aspect of the biochemical study and understanding of these molecules. Here we describe a co-transcriptional assay that allows the analysis of self-cleaving ribozymes in different reaction conditions and in the presence of desired ligands and/or cofactors. Utilizing a standard T7 RNA polymerase in vitro transcription system under limiting Mg2+ concentration, followed by a 25-fold dilution of the reaction in desired conditions of self-cleavage (buffer, ions, ligands, pH, temperature, etc.) to halt the synthesis of new RNA molecules, allows the study of self-scission of these molecules without the need for purification or additional preparation steps, such as refolding procedures. Furthermore, because the transcripts are not denatured, this assay likely yields RNAs in conformations relevant to co-transcriptionally folded species in vivo.
Collapse
|
5
|
Passalacqua LFM, Dingilian AI, Lupták A. Single-pass transcription by T7 RNA polymerase. RNA (NEW YORK, N.Y.) 2020; 26:2062-2071. [PMID: 32958559 PMCID: PMC7668259 DOI: 10.1261/rna.076778.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
RNA molecules can be conveniently synthesized in vitro by the T7 RNA polymerase (T7 RNAP). In some experiments, such as cotranscriptional biochemical analyses, continuous synthesis of RNA is not desired. Here, we propose a method for a single-pass transcription that yields a single transcript per template DNA molecule using the T7 RNAP system. We hypothesized that stalling the polymerase downstream from the promoter region and subsequent cleavage of the promoter by a restriction enzyme (to prevent promoter binding by another polymerase) would allow synchronized production of a single transcript per template. The single-pass transcription was verified in two different scenarios: a short self-cleaving ribozyme and a long mRNA. The results show that a controlled single-pass transcription using T7 RNAP allows precise measurement of cotranscriptional ribozyme activity, and this approach will facilitate the study of other kinetic events.
Collapse
Affiliation(s)
- Luiz F M Passalacqua
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, USA
| | - Armine I Dingilian
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, USA
| | - Andrej Lupták
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, USA
- Department of Chemistry, University of California, Irvine, California 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| |
Collapse
|
6
|
Wang Y, Wang Z, Liu T, Gong S, Zhang W. Effects of flanking regions on HDV cotranscriptional folding kinetics. RNA (NEW YORK, N.Y.) 2018; 24:1229-1240. [PMID: 29954950 PMCID: PMC6097654 DOI: 10.1261/rna.065961.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/25/2018] [Indexed: 05/20/2023]
Abstract
Hepatitis delta virus (HDV) ribozyme performs the self-cleavage activity through folding to a double pseudoknot structure. The folding of functional RNA structures is often coupled with the transcription process. In this work, we developed a new approach for predicting the cotranscriptional folding kinetics of RNA secondary structures with pseudoknots. We theoretically studied the cotranscriptional folding behavior of the 99-nucleotide (nt) HDV sequence, two upstream flanking sequences, and one downstream flanking sequence. During transcription, the 99-nt HDV can effectively avoid the trap intermediates and quickly fold to the cleavage-active state. It is different from its refolding kinetics, which folds into an intermediate trap state. For all the sequences, the ribozyme regions (from 1 to 73) all fold to the same structure during transcription. However, the existence of the 30-nt upstream flanking sequence can inhibit the ribozyme region folding into the active native state through forming an alternative helix Alt1 with the segments 70-90. The longer upstream flanking sequence of 54 nt itself forms a stable hairpin structure, which sequesters the formation of the Alt1 helix and leads to rapid formation of the cleavage-active structure. Although the 55-nt downstream flanking sequence could invade the already folded active structure during transcription by forming a more stable helix with the ribozyme region, the slow transition rate could keep the structure in the cleavage-active structure to perform the activity.
Collapse
Affiliation(s)
- Yanli Wang
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Zhen Wang
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Taigang Liu
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Sha Gong
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Wenbing Zhang
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, P.R. China
| |
Collapse
|
7
|
Gong S, Wang Y, Wang Z, Zhang W. Computational Methods for Modeling Aptamers and Designing Riboswitches. Int J Mol Sci 2017; 18:E2442. [PMID: 29149090 PMCID: PMC5713409 DOI: 10.3390/ijms18112442] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/12/2017] [Accepted: 11/14/2017] [Indexed: 02/04/2023] Open
Abstract
Riboswitches, which are located within certain noncoding RNA region perform functions as genetic "switches", regulating when and where genes are expressed in response to certain ligands. Understanding the numerous functions of riboswitches requires computation models to predict structures and structural changes of the aptamer domains. Although aptamers often form a complex structure, computational approaches, such as RNAComposer and Rosetta, have already been applied to model the tertiary (three-dimensional (3D)) structure for several aptamers. As structural changes in aptamers must be achieved within the certain time window for effective regulation, kinetics is another key point for understanding aptamer function in riboswitch-mediated gene regulation. The coarse-grained self-organized polymer (SOP) model using Langevin dynamics simulation has been successfully developed to investigate folding kinetics of aptamers, while their co-transcriptional folding kinetics can be modeled by the helix-based computational method and BarMap approach. Based on the known aptamers, the web server Riboswitch Calculator and other theoretical methods provide a new tool to design synthetic riboswitches. This review will represent an overview of these computational methods for modeling structure and kinetics of riboswitch aptamers and for designing riboswitches.
Collapse
Affiliation(s)
- Sha Gong
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang 438000, China.
| | - Yanli Wang
- Department of Physics, Wuhan University, Wuhan 430072, China.
| | - Zhen Wang
- Department of Physics, Wuhan University, Wuhan 430072, China.
| | - Wenbing Zhang
- Department of Physics, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
8
|
Kobori S, Takahashi K, Yokobayashi Y. Deep Sequencing Analysis of Aptazyme Variants Based on a Pistol Ribozyme. ACS Synth Biol 2017; 6:1283-1288. [PMID: 28398719 DOI: 10.1021/acssynbio.7b00057] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chemically regulated self-cleaving ribozymes, or aptazymes, are emerging as a promising class of genetic devices that allow dynamic control of gene expression in synthetic biology. However, further expansion of the limited repertoire of ribozymes and aptamers, and development of new strategies to couple the RNA elements to engineer functional aptazymes are highly desirable for synthetic biology applications. Here, we report aptazymes based on the recently identified self-cleaving pistol ribozyme class using a guanine aptamer as the molecular sensing element. Two aptazyme architectures were studied by constructing and assaying 17 728 mutants by deep sequencing. Although one of the architectures did not yield functional aptazymes, a novel aptazyme design in which the aptamer and the ribozyme were placed in tandem yielded a number of guanine-inhibited ribozymes. Detailed analysis of the extensive sequence-function data suggests a mechanism that involves a competition between two mutually exclusive RNA structures reminiscent of natural bacterial riboswitches.
Collapse
Affiliation(s)
- Shungo Kobori
- Nucleic Acid Chemistry and
Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| | - Kei Takahashi
- Nucleic Acid Chemistry and
Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and
Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| |
Collapse
|
9
|
Gong S, Wang Y, Wang Z, Zhang W. Co-Transcriptional Folding and Regulation Mechanisms of Riboswitches. Molecules 2017; 22:molecules22071169. [PMID: 28703767 PMCID: PMC6152003 DOI: 10.3390/molecules22071169] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 07/07/2017] [Accepted: 07/09/2017] [Indexed: 11/16/2022] Open
Abstract
Riboswitches are genetic control elements within non-coding regions of mRNA. These self-regulatory elements have been found to sense a range of small metabolites, ions, and other physical signals to exert regulatory control of transcription, translation, and splicing. To date, more than a dozen riboswitch classes have been characterized that vary widely in size and secondary structure. Extensive experiments and theoretical studies have made great strides in understanding the general structures, genetic mechanisms, and regulatory activities of individual riboswitches. As the ligand-dependent co-transcriptional folding and unfolding dynamics of riboswitches are the key determinant of gene expression, it is important to investigate the thermodynamics and kinetics of riboswitches both in the presence and absence of metabolites under the transcription. This review will provide a brief summary of the studies about the regulation mechanisms of the pbuE, SMK, yitJ, and metF riboswitches based on the ligand-dependent co-transcriptional folding of the riboswitches.
Collapse
Affiliation(s)
- Sha Gong
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang 438000, Hubei, China.
| | - Yanli Wang
- Department of Physics, Wuhan University, Wuhan 430072, Hubei, China.
| | - Zhen Wang
- Department of Physics, Wuhan University, Wuhan 430072, Hubei, China.
| | - Wenbing Zhang
- Department of Physics, Wuhan University, Wuhan 430072, Hubei, China.
| |
Collapse
|
10
|
Helmling C, Wacker A, Wolfinger MT, Hofacker IL, Hengesbach M, Fürtig B, Schwalbe H. NMR Structural Profiling of Transcriptional Intermediates Reveals Riboswitch Regulation by Metastable RNA Conformations. J Am Chem Soc 2017; 139:2647-2656. [PMID: 28134517 DOI: 10.1021/jacs.6b10429] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gene repression induced by the formation of transcriptional terminators represents a prime example for the coupling of RNA synthesis, folding, and regulation. In this context, mapping the changes in available conformational space of transcription intermediates during RNA synthesis is important to understand riboswitch function. A majority of riboswitches, an important class of small metabolite-sensing regulatory RNAs, act as transcriptional regulators, but the dependence of ligand binding and the subsequent allosteric conformational switch on mRNA transcript length has not yet been investigated. We show a strict fine-tuning of binding and sequence-dependent alterations of conformational space by structural analysis of all relevant transcription intermediates at single-nucleotide resolution for the I-A type 2'dG-sensing riboswitch from Mesoplasma florum by NMR spectroscopy. Our results provide a general framework to dissect the coupling of synthesis and folding essential for riboswitch function, revealing the importance of metastable states for RNA-based gene regulation.
Collapse
Affiliation(s)
- Christina Helmling
- Institute for Organic Chemisty and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität , Frankfurt/M. 60438, Germany
| | - Anna Wacker
- Institute for Organic Chemisty and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität , Frankfurt/M. 60438, Germany
| | - Michael T Wolfinger
- Medical University of Vienna , Center for Anatomy and Cell Biology, Währingerstraße 13, 1090 Vienna, Austria
| | | | - Martin Hengesbach
- Institute for Organic Chemisty and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität , Frankfurt/M. 60438, Germany
| | - Boris Fürtig
- Institute for Organic Chemisty and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität , Frankfurt/M. 60438, Germany
| | - Harald Schwalbe
- Institute for Organic Chemisty and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität , Frankfurt/M. 60438, Germany
| |
Collapse
|
11
|
Kushwaha M, Rostain W, Prakash S, Duncan JN, Jaramillo A. Using RNA as Molecular Code for Programming Cellular Function. ACS Synth Biol 2016; 5:795-809. [PMID: 26999422 DOI: 10.1021/acssynbio.5b00297] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RNA is involved in a wide-range of important molecular processes in the cell, serving diverse functions: regulatory, enzymatic, and structural. Together with its ease and predictability of design, these properties can lead RNA to become a useful handle for biological engineers with which to control the cellular machinery. By modifying the many RNA links in cellular processes, it is possible to reprogram cells toward specific design goals. We propose that RNA can be viewed as a molecular programming language that, together with protein-based execution platforms, can be used to rewrite wide ranging aspects of cellular function. In this review, we catalogue developments in the use of RNA parts, methods, and associated computational models that have contributed to the programmability of biology. We discuss how RNA part repertoires have been combined to build complex genetic circuits, and review recent applications of RNA-based parts and circuitry. We explore the future potential of RNA engineering and posit that RNA programmability is an important resource for firmly establishing an era of rationally designed synthetic biology.
Collapse
Affiliation(s)
- Manish Kushwaha
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
| | - William Rostain
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
- iSSB, Genopole,
CNRS, UEVE, Université Paris-Saclay, Évry, France
| | - Satya Prakash
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
| | - John N. Duncan
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
| | - Alfonso Jaramillo
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
- iSSB, Genopole,
CNRS, UEVE, Université Paris-Saclay, Évry, France
| |
Collapse
|
12
|
Corley M, Solem A, Qu K, Chang HY, Laederach A. Detecting riboSNitches with RNA folding algorithms: a genome-wide benchmark. Nucleic Acids Res 2015; 43:1859-68. [PMID: 25618847 PMCID: PMC4330374 DOI: 10.1093/nar/gkv010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ribonucleic acid (RNA) secondary structure prediction continues to be a significant challenge, in particular when attempting to model sequences with less rigidly defined structures, such as messenger and non-coding RNAs. Crucial to interpreting RNA structures as they pertain to individual phenotypes is the ability to detect RNAs with large structural disparities caused by a single nucleotide variant (SNV) or riboSNitches. A recently published human genome-wide parallel analysis of RNA structure (PARS) study identified a large number of riboSNitches as well as non-riboSNitches, providing an unprecedented set of RNA sequences against which to benchmark structure prediction algorithms. Here we evaluate 11 different RNA folding algorithms’ riboSNitch prediction performance on these data. We find that recent algorithms designed specifically to predict the effects of SNVs on RNA structure, in particular remuRNA, RNAsnp and SNPfold, perform best on the most rigorously validated subsets of the benchmark data. In addition, our benchmark indicates that general structure prediction algorithms (e.g. RNAfold and RNAstructure) have overall better performance if base pairing probabilities are considered rather than minimum free energy calculations. Although overall aggregate algorithmic performance on the full set of riboSNitches is relatively low, significant improvement is possible if the highest confidence predictions are evaluated independently.
Collapse
Affiliation(s)
- Meredith Corley
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 37599, USA Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Amanda Solem
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 37599, USA
| | - Kun Qu
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Howard Y Chang
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 37599, USA Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Riccitelli N, Lupták A. HDV family of self-cleaving ribozymes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 120:123-71. [PMID: 24156943 DOI: 10.1016/b978-0-12-381286-5.00004-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hepatitis delta virus (HDV) ribozymes are catalytic RNAs capable of cleaving their own sugar-phosphate backbone. The HDV virus possesses the ribozymes in both sense and antisense genomic transcripts, where they are essential for processing during replication. These ribozymes have been the subject of intense biochemical scrutiny and have yielded a wealth of mechanistic insights. In recent years, many HDV-like ribozymes have been identified in nearly all branches of life. The ribozymes are implicated in a variety of biological events, including episodic memory in mammals and retrotransposition in many eukaryotes. Detailed analysis of additional HDV-like ribozyme isolates will likely reveal many more biological functions and provide information about the evolution of this unique RNA.
Collapse
Affiliation(s)
- Nathan Riccitelli
- Department of Chemistry, University of California, Irvine, California, USA
| | | |
Collapse
|
14
|
Chen J, Gong S, Wang Y, Zhang W. Kinetic partitioning mechanism of HDV ribozyme folding. J Chem Phys 2014; 140:025102. [DOI: 10.1063/1.4861037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
15
|
The kinetics of ribozyme cleavage: a tool to analyze RNA folding as a function of catalysis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2013; 1086:209-24. [PMID: 24136606 DOI: 10.1007/978-1-62703-667-2_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
As catalytically active RNAs, ribozymes can be characterized by kinetic measurements similar to classical enzyme kinetics. However, in contrast to standard protein enzymes, for which reactions can usually be started by mixing the enzyme with its substrate, ribozymes are typically self-cleaving. The reaction has to be initiated by folding the RNA into its active conformation. Thus, ribozyme kinetics are influenced by both folding and catalytic components and often enable indirect observation of RNA folding. Here, I describe how to obtain quantitative ribozyme cleavage data via denaturing polyacrylamide gel electrophoresis (PAGE) of radioactively labeled in vitro transcripts and discuss general considerations for subsequent kinetic analysis.
Collapse
|
16
|
Heinicke LA, Bevilacqua PC. Activation of PKR by RNA misfolding: HDV ribozyme dimers activate PKR. RNA (NEW YORK, N.Y.) 2012; 18:2157-65. [PMID: 23105000 PMCID: PMC3504668 DOI: 10.1261/rna.034744.112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 09/20/2012] [Indexed: 05/22/2023]
Abstract
Protein Kinase R (PKR), the double-stranded RNA (dsRNA)-activated protein kinase, plays important roles in innate immunity. Previous studies have shown that PKR is activated by long stretches of dsRNA, RNA pseudoknots, and certain single-stranded RNAs; however, regulation of PKR by RNAs with globular tertiary structure has not been reported. In this study, the HDV ribozyme is used as a model of a mostly globular RNA. In addition to a catalytic core, the ribozyme contains a peripheral 13-bp pairing region (P4), which, upon shortening, affects neither the catalytic activity of the ribozyme nor its ability to crystallize. We report that the HDV ribozyme sequence alone can activate PKR. To elucidate the RNA structural basis for this, we prepared a number of HDV variants, including those with shortened or lengthened P4 pairing regions, with the anticipation that lengthening the P4 extension would yield a more potent activator since it would offer more base pairs of dsRNA. Surprisingly, the variant with a shortened P4 was the most potent activator. Through native gel mobility and enzymatic structure mapping experiments we implicate misfolded HDV ribozyme dimers as the PKR-activating species, and show that the shortened P4 leads to enhanced occupancy of the RNA dimer. These observations have implications for how RNA misfolding relates to innate immune response and human disease.
Collapse
Affiliation(s)
- Laurie A. Heinicke
- Department of Chemistry, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C. Bevilacqua
- Department of Chemistry, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Corresponding authorE-mail
| |
Collapse
|
17
|
Chadalavada DM, Cerrone-Szakal AL, Wilcox JL, Siegfried NA, Bevilacqua PC. Mechanistic analysis of the hepatitis delta virus (HDV) ribozyme: methods for RNA preparation, structure mapping, solvent isotope effects, and co-transcriptional cleavage. Methods Mol Biol 2012; 848:21-40. [PMID: 22315061 DOI: 10.1007/978-1-61779-545-9_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Small ribozymes such as the hairpin, hammerhead, VS, glm S, and hepatitis delta virus (HDV) are self-cleaving RNAs that are typically characterized by kinetics and structural methods. Working with these RNAs requires attention to numerous experimental details. In this chapter we focus on four different experimental aspects of ribozyme studies: preparing the RNA, mapping its structure with reverse transcription and end-labeled techniques, solvent isotope experiments, and co-transcriptional cleavage assays. Although the focus of these methods is the HDV ribozyme, the methods should be applicable to other ribozymes.
Collapse
Affiliation(s)
- Durga M Chadalavada
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
RNA folding is the most essential process underlying RNA function. While significant progress has been made in understanding the forces driving RNA folding in vitro, exploring the rules governing intracellular RNA structure formation is still in its infancy. The cellular environment hosts a great diversity of factors that potentially influence RNA folding in vivo. For example, the nature of transcription and translation is known to shape the folding landscape of RNA molecules. Trans-acting factors such as proteins, RNAs and metabolites, among others, are also able to modulate the structure and thus the fate of an RNA. Here we summarize the ongoing efforts to uncover how RNA folds in living cells.
Collapse
Affiliation(s)
- Georgeta Zemora
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | |
Collapse
|
19
|
Chadalavada DM, Gratton EA, Bevilacqua PC. The human HDV-like CPEB3 ribozyme is intrinsically fast-reacting. Biochemistry 2010; 49:5321-30. [PMID: 20524672 DOI: 10.1021/bi100434c] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Self-cleaving RNAs have recently been identified in mammalian genomes. A small ribozyme related in structure to the hepatitis delta virus (HDV) ribozyme occurs in a number of mammals, including chimpanzees and humans, within an intron of the CPEB3 gene. The catalytic mechanisms for the CPEB3 and HDV ribozymes appear to be similar, generating cleavage products with 5'-hydroxyl and 2',3'-cyclic phosphate termini; nonetheless, the cleavage rate reported for the CPEB3 ribozyme is more than 6000-fold slower than for the fastest HDV ribozyme. Herein, we use full-length RNA and cotranscriptional self-cleavage assays to compare reaction rates among human CPEB3, chimp CPEB3, and HDV ribozymes. Our data reveal that a single base change of the upstream flanking sequence, which sequesters an intrinsically weak P1.1 pairing in a misfold, increases the rate of the wild-type human CPEB3 ribozyme by approximately 250-fold; thus, the human ribozyme is intrinsically fast-reacting. Secondary structure determination and native gel analyses reveal that the cleaved population of the CPEB3 ribozyme has a single, secondary structure that closely resembles the HDV ribozyme. In contrast, the precleavage population of the CPEB3 ribozyme appears to have a more diverse secondary structure, possibly reflecting misfolding with the upstream sequence and dynamics intrinsic to the ribozyme. Prior identification of expressed sequence tags (ESTs) in human cells indicated that cleavage activity of the human ribozyme is tissue-specific. It is therefore possible that cellular factors interact with regions upstream of the CPEB3 ribozyme to unmask its high intrinsic reactivity.
Collapse
Affiliation(s)
- Durga M Chadalavada
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
20
|
Mahen EM, Watson PY, Cottrell JW, Fedor MJ. mRNA secondary structures fold sequentially but exchange rapidly in vivo. PLoS Biol 2010; 8:e1000307. [PMID: 20161716 PMCID: PMC2817708 DOI: 10.1371/journal.pbio.1000307] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 01/04/2010] [Indexed: 01/07/2023] Open
Abstract
RNAs adopt defined structures to perform biological activities, and conformational transitions among alternative structures are critical to virtually all RNA-mediated processes ranging from metabolite-activation of bacterial riboswitches to pre-mRNA splicing and viral replication in eukaryotes. Mechanistic analysis of an RNA folding reaction in a biological context is challenging because many steps usually intervene between assembly of a functional RNA structure and execution of a biological function. We developed a system to probe mechanisms of secondary structure folding and exchange directly in vivo using self-cleavage to monitor competition between mutually exclusive structures that promote or inhibit ribozyme assembly. In previous work, upstream structures were more effective than downstream structures in blocking ribozyme assembly during transcription in vitro, consistent with a sequential folding mechanism. However, upstream and downstream structures blocked ribozyme assembly equally well in vivo, suggesting that intracellular folding outcomes reflect thermodynamic equilibration or that annealing of contiguous sequences is favored kinetically. We have extended these studies to learn when, if ever, thermodynamic stability becomes an impediment to rapid equilibration among alternative RNA structures in vivo. We find that a narrow thermodynamic threshold determines whether kinetics or thermodynamics govern RNA folding outcomes in vivo. mRNA secondary structures fold sequentially in vivo, but exchange between adjacent secondary structures is much faster in vivo than it is in vitro. Previous work showed that simple base-paired RNA helices dissociate at similar rates in vivo and in vitro so exchange between adjacent structures must occur through a different mechanism, one that likely involves facilitation of branch migration by proteins associated with nascent transcripts.
Collapse
Affiliation(s)
- Elisabeth M. Mahen
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Peter Y. Watson
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Joseph W. Cottrell
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Martha J. Fedor
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
21
|
Linnstaedt SD, Kasprzak WK, Shapiro BA, Casey JL. The fraction of RNA that folds into the correct branched secondary structure determines hepatitis delta virus type 3 RNA editing levels. RNA (NEW YORK, N.Y.) 2009; 15:1177-1187. [PMID: 19383766 PMCID: PMC2685515 DOI: 10.1261/rna.1504009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 01/20/2009] [Indexed: 05/27/2023]
Abstract
RNA editing by the host RNA adenosine deaminase ADAR1 at the amber/W site of hepatitis delta virus RNA plays a central role in the viral replication cycle by affecting the balance between viral RNA synthesis and packaging. Previously, we found that HDV genotype III (HDV-3) RNA can form two secondary structures following transcription: an unbranched rod structure, which is characteristic of HDV, and a metastable branched structure that serves as the substrate for editing. The unstable nature of the branched editing substrate structure raised the possibility that structural dynamics of the RNA following transcription could determine the rate at which editing occurs. Here, editing and its control are examined in two HDV-3 isolates, from Peru and Ecuador. Analysis of editing in vitro by ADAR1 indicated that the branched structure formed by RNA derived from the Peruvian isolate is edited more efficiently than that from the Ecuadorian isolate. In contrast, in the context of replication, Peruvian RNA is edited less efficiently than RNA containing Ecuadorian sequences. Computational analyses of RNA folding using the massively parallel genetic algorithm (MPGAfold) indicated that the Peruvian RNA is less likely to form the branched structure required for editing than the Ecuadorian isolate. This difference was confirmed by in vitro transcription of these RNAs. Overall, our data indicate that HDV-3 controls RNA editing levels via (1) the fraction of the RNA that folds, during transcription, into the metastable branched structure required for editing and (2) the efficiency with which ADAR1 edits this branched substrate RNA.
Collapse
Affiliation(s)
- Sarah D Linnstaedt
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | |
Collapse
|
22
|
Abstract
RNA folds during transcription in the cell. Compared to most in vitro studies where the focus is generally on Mg(2+)-initiated refolding of fully synthesized transcripts, cotranscriptional RNA folding studies better replicate how RNA folds in a cellular environment. Unique aspects of cotranscriptional folding include the 5'- to 3'-polarity of RNA, the transcriptional speed, pausing properties of the RNA polymerase, the effect of the transcriptional complex and associated factors, and the effect of RNA-binding proteins. Identifying strategic pause sites can reveal insights on the folding pathway of the nascent transcript. Structural mapping of the paused transcription complexes identifies important folding intermediates along these pathways. Oligohybridization assays and the appearance of the catalytic activity of a ribozyme either in trans or in cis can be used to monitor cotranscriptional folding under a wide range of conditions. In our laboratory, these methodologies have been applied to study the folding of three highly conserved RNAs (RNase P, SRP, and tmRNA), several circularly permuted forms of a bacterial RNase P RNA, a riboswitch (thiM), and an aptamer-activated ribozyme (glmS).
Collapse
Affiliation(s)
- Terrence N Wong
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
23
|
Chadalavada DM, Cerrone-Szakal AL, Bevilacqua PC. Wild-type is the optimal sequence of the HDV ribozyme under cotranscriptional conditions. RNA (NEW YORK, N.Y.) 2007; 13:2189-2201. [PMID: 17956974 PMCID: PMC2080589 DOI: 10.1261/rna.778107] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Accepted: 09/11/2007] [Indexed: 05/25/2023]
Abstract
RNA viruses are responsible for a variety of human diseases, and the pathogenicity of RNA viruses is often attributed to a high rate of mutation. Self-cleavage activity of the wild-type hepatitis delta virus (HDV) ribozyme as measured in standard divalent ion renaturation assays is biphasic and mostly slow and can be improved by multiple rational changes to ribozyme sequence or by addition of chemical denaturants. This is unusual in the sense that wild type is the most catalytically active sequence for the majority of protein enzymes, and RNA viruses are highly mutable. To see whether the ribozyme takes advantage of fast-reacting sequence changes in vivo, we performed alignment of 76 genomic and 269 antigenomic HDV isolates. Paradoxically, the sequence for the ribozyme was found to be essentially invariant in nature. We therefore tested whether three ribozyme sequence changes that improve self-cleavage under standard divalent ion renaturation assays also improve self-cleavage during transcription. Remarkably, wild type was as fast, or faster, than these mutants under cotranscriptional conditions. Slowing the rate of transcription or adding the hepatitis delta antigen protein only further stimulated cotranscriptional self-cleavage activity. Thus, the relative activity of HDV ribozyme mutants depends critically on whether the reaction is assayed under in vivo-like conditions. A model is presented for how wild-type ribozyme sequence and flanking sequence work in concert to promote efficient self-cleavage during transcription. Wild type being the optimal ribozyme sequence under in vivo-like conditions parallels the behavior of most protein enzymes.
Collapse
Affiliation(s)
- Durga M Chadalavada
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
24
|
Jackson SA, Koduvayur S, Woodson SA. Self-splicing of a group I intron reveals partitioning of native and misfolded RNA populations in yeast. RNA (NEW YORK, N.Y.) 2006; 12:2149-59. [PMID: 17135489 PMCID: PMC1664722 DOI: 10.1261/rna.184206] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Stable RNAs must form specific three-dimensional structures, yet many RNAs become kinetically trapped in misfolded conformations. To understand the factors that control the accuracy of RNA folding in the cell, the self-splicing activity of the Tetrahymena group I intron was compared in different genetic contexts in budding yeast. The extent of splicing was 98% when the intron was placed in its natural rDNA context, but only 3% when the intron was expressed in an exogenous pre-mRNA. Further experiments showed that the probability of forming the active intron structure depends on local sequence context and transcription by Pol I. Pre-rRNAs decayed at similar rates, whether the intron was wild type or inactivated by an internal deletion, suggesting that most of the unreacted pre-rRNA is incompetent to splice. Northern blots and complementation assays showed that mutations that destabilize the intron tertiary structure inhibited self-splicing and processing of internal transcribed spacer 2. The data are consistent with partitioning of pre-rRNAs into active and inactive populations. The misfolded RNAs are sequestered and degraded without refolding to a significant extent. Thus, the initial fidelity of folding can dictate the intracellular fate of transcripts containing this group I intron.
Collapse
Affiliation(s)
- Scott A Jackson
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
25
|
Linnstaedt SD, Kasprzak WK, Shapiro BA, Casey JL. The role of a metastable RNA secondary structure in hepatitis delta virus genotype III RNA editing. RNA (NEW YORK, N.Y.) 2006; 12:1521-33. [PMID: 16790843 PMCID: PMC1524886 DOI: 10.1261/rna.89306] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
RNA editing plays a critical role in the life cycle of hepatitis delta virus (HDV). The host editing enzyme ADAR1 recognizes specific RNA secondary structure features around the amber/W site in the HDV antigenome and deaminates the amber/W adenosine. A previous report suggested that a branched secondary structure is necessary for editing in HDV genotype III. This branched structure, which is distinct from the characteristic unbranched rod structure required for HDV replication, was only partially characterized, and knowledge concerning its formation and stability was limited. Here, we examine the secondary structures, conformational dynamics, and amber/W site editing of HDV genotype III RNA using a miniaturized HDV genotype III RNA in vitro. Computational analysis of this RNA using the MPGAfold algorithm indicated that the RNA has a tendency to form both metastable and stable unbranched secondary structures. Moreover, native polyacrylamide gel electrophoresis demonstrated that this RNA forms both branched and unbranched rod structures when transcribed in vitro. As predicted, the branched structure is a metastable structure that converts readily to the unbranched rod structure. Only branched RNA was edited at the amber/W site by ADAR1 in vitro. The structural heterogeneity of HDV genotype III RNA is significant because not only are both conformations of the RNA functionally important for viral replication, but the ratio of the two forms could modulate editing by determining the amount of substrate RNA available for modification.
Collapse
Affiliation(s)
- Sarah D Linnstaedt
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
26
|
Abstract
The evolution of RNA sequence needs to satisfy three requirements: folding, structure, and function. Studies on folding during transcription are related directly to folding in the cell. Understanding RNA folding during transcription requires the elucidation of structure formation and structural changes of the RNA, and the consideration of intrinsic properties of the RNA polymerase and other proteins that interact with the RNA. This review summarizes the research progress in this area and outlines the enormous challenges facing this field. Significant advancement requires the development of new experimental methods and theoretical considerations in all aspects of transcription and RNA folding.
Collapse
Affiliation(s)
- Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
27
|
Schoemaker RJW, Gultyaev AP. Computer simulation of chaperone effects of Archaeal C/D box sRNA binding on rRNA folding. Nucleic Acids Res 2006; 34:2015-26. [PMID: 16614451 PMCID: PMC1435978 DOI: 10.1093/nar/gkl154] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2005] [Revised: 03/12/2006] [Accepted: 03/20/2006] [Indexed: 12/04/2022] Open
Abstract
Archaeal C/D box small RNAs (sRNAs) are homologues of eukaryotic C/D box small nucleolar RNAs (snoRNAs). Their main function is guiding 2'-O-ribose methylation of nucleotides in rRNAs. The methylation requires the pairing of an sRNA antisense element to an rRNA target site with formation of an RNA-RNA duplex. The temporary formation of such a duplex during rRNA maturation is expected to influence rRNA folding in a chaperone-like way, in particular in thermophilic Archaea, where multiple sRNAs with two binding sites are found. Here we investigate possible mechanisms of chaperone function of Archaeoglobus fulgidus and Pyrococcus abyssi C/D box sRNAs using computer simulations of rRNA secondary structure formation by genetic algorithm. The effects of sRNA binding on rRNA structure are introduced as temporary structural constraints during co-transcriptional folding. Comparisons of the final predictions with simulations without sRNA binding and with phylogenetic structures show that sRNAs with two antisense elements may significantly facilitate the correct formation of long-range interactions in rRNAs, in particular at elevated temperatures. The simulations suggest that the main mechanism of this effect is a transient restriction of folding in rRNA domains where the termini are brought together by binding to double-guide sRNAs.
Collapse
MESH Headings
- Archaeoglobus fulgidus/genetics
- Base Sequence
- Binding Sites
- Computer Simulation
- Molecular Chaperones/chemistry
- Molecular Chaperones/metabolism
- Molecular Sequence Data
- Nucleic Acid Conformation
- Pyrococcus abyssi/genetics
- RNA, Antisense/chemistry
- RNA, Archaeal/chemistry
- RNA, Archaeal/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/metabolism
- Temperature
- RNA, Small Untranslated
Collapse
Affiliation(s)
- Ruud J. W. Schoemaker
- Section Theoretical Biology, Leiden Institute of Biology, Leiden UniversityKaiserstraat 63, 2311 GP Leiden, The Netherlands
| | - Alexander P. Gultyaev
- Section Theoretical Biology, Leiden Institute of Biology, Leiden UniversityKaiserstraat 63, 2311 GP Leiden, The Netherlands
| |
Collapse
|
28
|
Mahen EM, Harger JW, Calderon EM, Fedor MJ. Kinetics and thermodynamics make different contributions to RNA folding in vitro and in yeast. Mol Cell 2005; 19:27-37. [PMID: 15989962 DOI: 10.1016/j.molcel.2005.05.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 05/12/2005] [Accepted: 05/20/2005] [Indexed: 02/06/2023]
Abstract
RNAs somehow adopt specific functional structures despite the capacity to form alternative nonfunctional structures with similar stabilities. We analyzed RNA assembly during transcription in vitro and in yeast using hairpin ribozyme self-cleavage to assess partitioning between functional ribozyme structures and nonfunctional stem loops. Complementary insertions located upstream of the ribozyme inhibited ribozyme assembly more than downstream insertions during transcription in vitro, consistent with a sequential folding model in which the outcome is determined by the structure that forms first. In contrast, both upstream and downstream insertions strongly inhibited assembly of the same ribozyme variants when expressed as chimeric mRNAs in yeast, indicating that inhibitory stem loops can form even after the entire ribozyme sequence has been transcribed. Evidently, some feature unique to the intracellular environment modulates the influence of transcription polarity and enhances the contribution of thermodynamic stability to RNA folding in vivo.
Collapse
MESH Headings
- Genes, Fungal
- Genetic Variation
- In Vitro Techniques
- Kinetics
- Models, Biological
- Mutation
- Nucleic Acid Conformation
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Fungal/analysis
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/metabolism
- Saccharomyces cerevisiae/metabolism
- Temperature
- Thermodynamics
- Transcription, Genetic
Collapse
Affiliation(s)
- Elisabeth M Mahen
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, MB35, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
29
|
Bevilacqua PC, Brown TS, Chadalavada D, Lecomte J, Moody E, Nakano SI. Linkage between proton binding and folding in RNA: implications for RNA catalysis. Biochem Soc Trans 2005; 33:466-70. [PMID: 15916542 DOI: 10.1042/bst0330466] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Small ribozymes use their nucleobases to catalyse phosphodiester bond cleavage. The hepatitis delta virus ribozyme employs C75 as a general acid to protonate the 5′-bridging oxygen leaving group, and to accomplish this task efficiently, it shifts its pKa towards neutrality. Simulations and thermodynamic experiments implicate linkage between folding and protonation in nucleobase pKa shifting. Even small oligonucleotides are shown to fold in a highly co-operative manner, although they do so in a context-specific fashion. Linkage between protonation and co-operativity of folding may drive pKa shifting and provide for enhanced function in RNA.
Collapse
Affiliation(s)
- P C Bevilacqua
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Wong T, Sosnick TR, Pan T. Mechanistic Insights on the Folding of a Large Ribozyme during Transcription†. Biochemistry 2005; 44:7535-42. [PMID: 15895996 DOI: 10.1021/bi047560l] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA folding during transcription resembles folding in a cellular environment. We previously investigated the folding of a large ribozyme derived from a bacterial RNase P RNA during its transcription by the Escherichia coli RNA polymerase and the effect of the elongation factor NusA. We found that transcriptional pausing at a specific site induced by NusA significantly altered the folding pathway. In this work, we compare folding during transcription by the E. coli RNA polymerase of circularly permuted variants and site-specific mutants of the RNase P ribozyme to elucidate the molecular mechanism of transcriptional pausing and RNA folding. The effect of NusA-induced pausing depends on the order of RNA synthesis and only affects local folding of the RNA. Pausing likely prevents a misfolded structure between the 5' strand of a helix and its adjacent junction located in the specificity domain and a region known to bind single-stranded RNA located in the catalytic domain. These results lead to a structural model on how transcriptional pausing affects folding of RNase P RNA. Structural rearrangements of a nascent RNA transcript enhanced by transcriptional pausing may be a general feature of RNA folding during transcription.
Collapse
Affiliation(s)
- Terrence Wong
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
31
|
Feng H, Zhou Z, Bai Y. A protein folding pathway with multiple folding intermediates at atomic resolution. Proc Natl Acad Sci U S A 2005; 102:5026-31. [PMID: 15793003 PMCID: PMC555603 DOI: 10.1073/pnas.0501372102] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2004] [Indexed: 11/18/2022] Open
Abstract
Using native-state hydrogen-exchange-directed protein engineering and multidimensional NMR, we determined the high-resolution structure (rms deviation, 1.1 angstroms) for an intermediate of the four-helix bundle protein: Rd-apocytochrome b562. The intermediate has the N-terminal helix and a part of the C-terminal helix unfolded. In earlier studies, we also solved the structures of two other folding intermediates for the same protein: one with the N-terminal helix alone unfolded and the other with a reorganized hydrophobic core. Together, these structures provide a description of a protein folding pathway with multiple intermediates at atomic resolution. The two general features for the intermediates are (i) native-like backbone topology and (ii) nonnative side-chain interactions. These results have implications for important issues in protein folding studies, including large-scale conformation search, -value analysis, and computer simulations.
Collapse
Affiliation(s)
- Hanqiao Feng
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Building 37, Room 6114E, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
32
|
Proctor DJ, Ma H, Kierzek E, Kierzek R, Gruebele M, Bevilacqua PC. Folding thermodynamics and kinetics of YNMG RNA hairpins: specific incorporation of 8-bromoguanosine leads to stabilization by enhancement of the folding rate. Biochemistry 2005; 43:14004-14. [PMID: 15518549 DOI: 10.1021/bi048213e] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modified nucleotides allow fundamental energetic and kinetic properties of nucleic acids to be probed. Here, we demonstrate that an RNA hairpin containing the nucleotide analogue 8-bromoguanosine (8BrG or G), gcUUCGgc, has enhanced stability relative to the unmodified hairpin, with DeltaDeltaG(37)(degrees)= -0.69 +/- 0.15 kcal mol(-1) and DeltaT(M) = +6.8 +/- 1.4 degrees C. NMR spectroscopic data suggest that the enhanced stability of gcUUCGgc does not arise from the native state; laser temperature-jump experiments support this notion, as gcUUCGgc and gcUUCGgc have similar unfolding rate constants, but the folding rate constant of gcUUCGgc is 4.1-fold faster at 37.5 degrees C and 2.8-fold faster under isoenergetic conditions. On the basis of these findings, we propose that 8BrG reduces the conformational entropy of the denatured state, resulting in an accelerated conformational search for the native state and enhanced stability.
Collapse
Affiliation(s)
- David J Proctor
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | |
Collapse
|
33
|
Brown TS, Chadalavada DM, Bevilacqua PC. Design of a highly reactive HDV ribozyme sequence uncovers facilitation of RNA folding by alternative pairings and physiological ionic strength. J Mol Biol 2004; 341:695-712. [PMID: 15288780 DOI: 10.1016/j.jmb.2004.05.071] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 05/18/2004] [Accepted: 05/21/2004] [Indexed: 11/23/2022]
Abstract
The hepatitis delta virus (HDV) ribozyme is a self-cleaving RNA that resides in the HDV genome and regulates its replication. The native fold of the ribozyme is complex, having two pseudoknots. Earlier work implicated four non-native pairings in slowing pseudoknot formation: Alt 1, Alt 2, Alt 3, and Alt P1. The goal of the present work was design of a kinetically simplified and maximally reactive construct for in vitro mechanistic and structural studies. The initial approach chosen was site-directed mutagenesis in which known alternative pairings were destabilized while leaving the catalytic core intact. Based on prior studies, the G11C/U27Delta double mutant was prepared. However, biphasic kinetics and antisense oligonucleotide response trends opposite those of the well-studied G11C mutant were observed suggesting that new alternative pairings with multiple registers, termed Alt X and Alt Y, had been created. Enzymatic structure mapping of oligonucleotide models supported this notion. This led to a model wherein Alt 2 and the phylogenetically conserved Alt 3 act as "folding guides", facilitating folding of the major population of the RNA molecules by hindering formation of the Alt X and Alt Y registers. Attempts to eliminate the strongest of the Alt X pairings by rational design of a quadruple mutant only resulted in more complex kinetic behavior. In an effort to simultaneously destabilize multiple alternative pairings, studies were carried out on G11C/U27Delta in the presence of urea or increased monovalent ion concentration. Inclusion of physiological ionic strength allowed the goal of monophasic, fast-folding (kobs approximately 60 min(-1)) kinetics to be realized. To account for this, a model is developed wherein Na+, which destabilizes secondary and tertiary structures in the presence of Mg2+, facilitates native folding by destabilizing the multiple alternative secondary structures with a higher-order dependence.
Collapse
Affiliation(s)
- Trevor S Brown
- The Huck Institutes of the Life, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
34
|
Abstract
Intrinsic events during RNA folding include conformational search and metal ion binding. Several experimentally testable models have been proposed to explain how large ribozymes accomplish folding. Future challenges include the validation of these models, and the correlation of experimental results and theoretical simulations.
Collapse
Affiliation(s)
- Tobin R Sosnick
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
35
|
Heilman-Miller SL, Woodson SA. Effect of transcription on folding of the Tetrahymena ribozyme. RNA (NEW YORK, N.Y.) 2003; 9:722-33. [PMID: 12756330 PMCID: PMC1370439 DOI: 10.1261/rna.5200903] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2003] [Accepted: 03/11/2003] [Indexed: 05/20/2023]
Abstract
Sequential formation of RNA interactions during transcription can bias the folding pathway and ultimately determine the functional state of a transcript. The kinetics of cotranscriptional folding of the Tetrahymena L-21 ribozyme was compared with refolding of full-length transcripts under the same conditions. Sequential folding after transcription by phage T7 or Escherichia coli polymerase is only twice as fast as refolding, and the yield of native RNA is the same. By contrast, a greater fraction of circularly permuted variants folded correctly at early times during transcription than during refolding. Hybridization of complementary oligonucleotides suggests that cotranscriptional folding enables a permuted RNA beginning at G303 to escape non-native interactions in P3 and P9. We propose that base pairing of upstream sequences during transcription elongation favors branched secondary structures that increase the probability of forming the native ribozyme structure.
Collapse
Affiliation(s)
- Susan L Heilman-Miller
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2021, USA
| | | |
Collapse
|
36
|
Nakano SI, Cerrone AL, Bevilacqua PC. Mechanistic characterization of the HDV genomic ribozyme: classifying the catalytic and structural metal ion sites within a multichannel reaction mechanism. Biochemistry 2003; 42:2982-94. [PMID: 12627964 DOI: 10.1021/bi026815x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prior studies of the metal ion dependence of the self-cleavage reaction of the HDV genomic ribozyme led to a mechanistic framework in which the ribozyme can self-cleave by multiple Mg2+ ion-independent and -dependent channels [Nakano et al. (2001) Biochemistry 40, 12022]. In particular, channel 2 involves cleavage in the presence of a structural Mg2+ ion without participation of a catalytic divalent metal ion, while channel 3 involves both structural and catalytic Mg2+ ions. In the present study, experiments were performed to probe the nature of the various divalent ion sites and any specificity for Mg2+. A series of alkaline earth metal ions was tested for the ability to catalyze self-cleavage of the ribozyme under conditions that favor either channel 2 or channel 3. Under conditions that populate primarily channel 3, nearly identical K(d)s were obtained for Mg2+, Ca2+, Ba2+, and Sr2+, with a slight discrimination against Ca2+. In contrast, under conditions that populate primarily channel 2, tighter binding was observed as ion size decreases. Moreover, [Co(NH3)6]3+ was found to be a strong competitive inhibitor of Mg2+ for channel 3 but not for channel 2. The thermal unfolding of the cleaved ribozyme was also examined, and two transitions were found. Urea-dependent studies gave m-values that allowed the lower temperature transition to be assigned to tertiary structure unfolding. The effects of high concentrations of Na+ on the melting temperature for RNA unfolding and the reaction rate revealed ion binding to the folded RNA, with significant competition of Na+ (Hill coefficient of 1.5-1.7) for a structural Mg2+ ion and an unusually high intrinsic affinity of the structural ion for the RNA. Taken together, these data support the existence of two different classes of metal ion sites on the ribozyme: a structural site that is inner sphere with a major electrostatic component and a preference for Mg2+, and a weak catalytic site that is outer sphere with little preference for a particular divalent ion.
Collapse
Affiliation(s)
- Shu-ichi Nakano
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|