1
|
Jácome R. Structural and Evolutionary Analysis of Proteins Endowed with a Nucleotidyltransferase, or Non-canonical Palm, Catalytic Domain. J Mol Evol 2024:10.1007/s00239-024-10207-7. [PMID: 39297932 DOI: 10.1007/s00239-024-10207-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Many polymerases and other proteins are endowed with a catalytic domain belonging to the nucleotidyltransferase fold, which has also been deemed the non-canonical palm domain, in which three conserved acidic residues coordinate two divalent metal ions. Tertiary structure-based evolutionary analyses provide valuable information when the phylogenetic signal contained in the primary structure is blurry or has been lost, as is the case with these proteins. Pairwise structural comparisons of proteins with a nucleotidyltransferase fold were performed in the PDBefold web server: the RMSD, the number of superimposed residues, and the Qscore were obtained. The structural alignment score (RMSD × 100/number of superimposed residues) and the 1-Qscore were calculated, and distance matrices were constructed, from which a dendogram and a phylogenetic network were drawn for each score. The dendograms and the phylogenetic networks display well-defined clades, reflecting high levels of structural conservation within each clade, not mirrored by primary sequence. The conserved structural core between all these proteins consists of the catalytic nucleotidyltransferase fold, which is surrounded by different functional domains. Hence, many of the clades include proteins that bind different substrates or partake in non-related functions. Enzymes endowed with a nucleotidyltransferase fold are present in all domains of life, and participate in essential cellular and viral functions, which suggests that this domain is very ancient. Despite the loss of evolutionary traces in their primary structure, tertiary structure-based analyses allow us to delve into the evolution and functional diversification of the NT fold.
Collapse
Affiliation(s)
- Rodrigo Jácome
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, México.
| |
Collapse
|
2
|
Fatica T, Naas T, Liwak U, Slaa H, Souaid M, Frangione B, Kattini R, Gaudreau-Lapierre A, Trinkle-Mulcahy L, Chakraborty P, Holcik M. TRNT-1 Deficiency Is Associated with Loss of tRNA Integrity and Imbalance of Distinct Proteins. Genes (Basel) 2023; 14:genes14051043. [PMID: 37239403 DOI: 10.3390/genes14051043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondrial diseases are a group of heterogeneous disorders caused by dysfunctional mitochondria. Interestingly, a large proportion of mitochondrial diseases are caused by defects in genes associated with tRNA metabolism. We recently discovered that partial loss-of-function mutations in tRNA Nucleotidyl Transferase 1 (TRNT1), the nuclear gene encoding the CCA-adding enzyme essential for modifying both nuclear and mitochondrial tRNAs, causes a multisystemic and clinically heterogenous disease termed SIFD (sideroblastic anemia with B-cell immunodeficiency, periodic fevers, and developmental delay; SIFD). However, it is not clear how mutations in a general and essential protein like TRNT1 cause disease with such clinically broad but unique symptomatology and tissue involvement. Using biochemical, cell, and mass spectrometry approaches, we demonstrate that TRNT1 deficiency is associated with sensitivity to oxidative stress, which is due to exacerbated, angiogenin-dependent cleavage of tRNAs. Furthermore, reduced levels of TRNT1 lead to phosphorylation of Eukaryotic Translation Initiation Factor 2 Subunit Alpha (eIF2α), increased reactive oxygen species (ROS) production, and changes in the abundance of distinct proteins. Our data suggest that the observed variable SIFD phenotypes are likely due to dysregulation of tRNA maturation and abundance, which in turn negatively affects the translation of distinct proteins.
Collapse
Affiliation(s)
- Thet Fatica
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Turaya Naas
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Urszula Liwak
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Hannah Slaa
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Maryam Souaid
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Brianna Frangione
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Ribal Kattini
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | - Laura Trinkle-Mulcahy
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Pranesh Chakraborty
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Martin Holcik
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
3
|
Modopathies Caused by Mutations in Genes Encoding for Mitochondrial RNA Modifying Enzymes: Molecular Mechanisms and Yeast Disease Models. Int J Mol Sci 2023; 24:ijms24032178. [PMID: 36768505 PMCID: PMC9917222 DOI: 10.3390/ijms24032178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
In eukaryotes, mitochondrial RNAs (mt-tRNAs and mt-rRNAs) are subject to specific nucleotide modifications, which are critical for distinct functions linked to the synthesis of mitochondrial proteins encoded by mitochondrial genes, and thus for oxidative phosphorylation. In recent years, mutations in genes encoding for mt-RNAs modifying enzymes have been identified as being causative of primary mitochondrial diseases, which have been called modopathies. These latter pathologies can be caused by mutations in genes involved in the modification either of tRNAs or of rRNAs, resulting in the absence of/decrease in a specific nucleotide modification and thus on the impairment of the efficiency or the accuracy of the mitochondrial protein synthesis. Most of these mutations are sporadic or private, thus it is fundamental that their pathogenicity is confirmed through the use of a model system. This review will focus on the activity of genes that, when mutated, are associated with modopathies, on the molecular mechanisms through which the enzymes introduce the nucleotide modifications, on the pathological phenotypes associated with mutations in these genes and on the contribution of the yeast Saccharomyces cerevisiae to confirming the pathogenicity of novel mutations and, in some cases, for defining the molecular defects.
Collapse
|
4
|
New biochemical insights of CCA enzyme role in tRNA maturation and an efficient method to synthesize the 3'-amino-tailed tRNA. Biochimie 2023; 209:95-102. [PMID: 36646204 DOI: 10.1016/j.biochi.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/19/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The maturation of tRNA and its quality control is crucial for aminoacylation and protein synthesis. The CCA enzyme, also known as tRNA nucleotidyltransferase, catalyzes the addition or repair of CCA at the 3'-terminus of tRNAs to facilitate aminoacylation. Structural studies of CCA enzyme in complex with ATP and CTP suggested that adding CCA at the 3'-terminus of tRNAs is a sequential process [1-4]. However, there are many inconsistent results of CCA addition from the biochemical studies, which raise the ambiguity about the CCA enzyme specificity in vitro [5-7]. On the other hand, there are no effective methods for preparing the 3'-amino-tailed tRNA to provide a stable amide linkage, which is vital to make homogeneous samples for structural studies of stalling peptides to understand ribosome mediated gene regulation [7-11]. In this study, we examined the functional specificity of the Class II CCA enzyme from E. coli, and optimized the benchmark experimental conditions to prepare the 3'-NH2-tRNA using the CCA enzyme. Our results suggest that the CCA enzyme has a specific ability to catalyze the CCA addition/repair activity within the stoichiometric range of the reactants, and excess amounts of nucleotides lead to non-specific polymerization of the tRNA. Further, we developed an efficient method for synthesizing 3'-amino tRNA, which can facilitate stable aminoacyl/peptidyl-tRNA preparation.
Collapse
|
5
|
Sekulovski S, Trowitzsch S. Transfer RNA processing - from a structural and disease perspective. Biol Chem 2022; 403:749-763. [PMID: 35728022 DOI: 10.1515/hsz-2021-0406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/24/2022] [Indexed: 01/05/2023]
Abstract
Transfer RNAs (tRNAs) are highly structured non-coding RNAs which play key roles in translation and cellular homeostasis. tRNAs are initially transcribed as precursor molecules and mature by tightly controlled, multistep processes that involve the removal of flanking and intervening sequences, over 100 base modifications, addition of non-templated nucleotides and aminoacylation. These molecular events are intertwined with the nucleocytoplasmic shuttling of tRNAs to make them available at translating ribosomes. Defects in tRNA processing are linked to the development of neurodegenerative disorders. Here, we summarize structural aspects of tRNA processing steps with a special emphasis on intron-containing tRNA splicing involving tRNA splicing endonuclease and ligase. Their role in neurological pathologies will be discussed. Identification of novel RNA substrates of the tRNA splicing machinery has uncovered functions unrelated to tRNA processing. Future structural and biochemical studies will unravel their mechanistic underpinnings and deepen our understanding of neurological diseases.
Collapse
Affiliation(s)
- Samoil Sekulovski
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt/Main, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt/Main, Germany
| |
Collapse
|
6
|
de Wijn R, Rollet K, Ernst FGM, Wellner K, Betat H, Mörl M, Sauter C. CCA-addition in the cold: Structural characterization of the psychrophilic CCA-adding enzyme from the permafrost bacterium Planococcus halocryophilus. Comput Struct Biotechnol J 2021; 19:5845-5855. [PMID: 34765099 PMCID: PMC8563995 DOI: 10.1016/j.csbj.2021.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022] Open
Abstract
A high-resolution structure of a psychrophilic RNA polymerase contributes to our knowledge of cold adaptation. While catalytic core motifs are conserved, at least one shows cold adaptation. Loss of helix-capping increases structural flexibility in a catalytic core motif. Overall reduction of alpha-helical elements appears as a strategy for cold adaptation.
CCA-adding enzymes are highly specific RNA polymerases that add and maintain the sequence C-C-A at tRNA 3‘-ends. Recently, we could reveal that cold adaptation of such a polymerase is not only achieved at the expense of enzyme stability, but also at the cost of polymerization fidelity. Enzymes from psychrophilic organisms usually show an increased structural flexibility to enable catalysis at low temperatures. Here, polymerases face a dilemma, as there is a discrepancy between the need for a tightly controlled flexibility during polymerization and an increased flexibility as strategy for cold adaptation. Based on structural and biochemical analyses, we contribute to clarify the cold adaptation strategy of the psychrophilic CCA-adding enzyme from Planococcus halocryophilus, a gram-positive bacterium thriving in the arctic permafrost at low temperatures down to −15 °C. A comparison with the closely related enzyme from the thermophilic bacterium Geobacillus stearothermophilus reveals several features of cold adaptation - a significantly reduced amount of alpha-helical elements in the C-terminal tRNA-binding region and a structural adaptation in one of the highly conserved catalytic core motifs located in the N-terminal catalytic core of the enzyme.
Collapse
Affiliation(s)
- Raphaël de Wijn
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| | - Kévin Rollet
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France.,Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Felix G M Ernst
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Karolin Wellner
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Claude Sauter
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| |
Collapse
|
7
|
Luo R, Delaunay‐Moisan A, Timmis K, Danchin A. SARS-CoV-2 biology and variants: anticipation of viral evolution and what needs to be done. Environ Microbiol 2021; 23:2339-2363. [PMID: 33769683 PMCID: PMC8251359 DOI: 10.1111/1462-2920.15487] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
The global propagation of SARS-CoV-2 and the detection of a large number of variants, some of which have replaced the original clade to become dominant, underscores the fact that the virus is actively exploring its evolutionary space. The longer high levels of viral multiplication occur - permitted by high levels of transmission -, the more the virus can adapt to the human host and find ways to success. The third wave of the COVID-19 pandemic is starting in different parts of the world, emphasizing that transmission containment measures that are being imposed are not adequate. Part of the consideration in determining containment measures is the rationale that vaccination will soon stop transmission and allow a return to normality. However, vaccines themselves represent a selection pressure for evolution of vaccine-resistant variants, so the coupling of a policy of permitting high levels of transmission/virus multiplication during vaccine roll-out with the expectation that vaccines will deal with the pandemic, is unrealistic. In the absence of effective antivirals, it is not improbable that SARS-CoV-2 infection prophylaxis will involve an annual vaccination campaign against 'dominant' viral variants, similar to influenza prophylaxis. Living with COVID-19 will be an issue of SARS-CoV-2 variants and evolution. It is therefore crucial to understand how SARS-CoV-2 evolves and what constrains its evolution, in order to anticipate the variants that will emerge. Thus far, the focus has been on the receptor-binding spike protein, but the virus is complex, encoding 26 proteins which interact with a large number of host factors, so the possibilities for evolution are manifold and not predictable a priori. However, if we are to mount the best defence against COVID-19, we must mount it against the variants, and to do this, we must have knowledge about the evolutionary possibilities of the virus. In addition to the generic cellular interactions of the virus, there are extensive polymorphisms in humans (e.g. Lewis, HLA, etc.), some distributed within most or all populations, some restricted to specific ethnic populations and these variations pose additional opportunities for/constraints on viral evolution. We now have the wherewithal - viral genome sequencing, protein structure determination/modelling, protein interaction analysis - to functionally characterize viral variants, but access to comprehensive genome data is extremely uneven. Yet, to develop an understanding of the impacts of such evolution on transmission and disease, we must link it to transmission (viral epidemiology) and disease data (patient clinical data), and the population granularities of these. In this editorial, we explore key facets of viral biology and the influence of relevant aspects of human polymorphisms, human behaviour, geography and climate and, based on this, derive a series of recommendations to monitor viral evolution and predict the types of variants that are likely to arise.
Collapse
Affiliation(s)
- Ruibang Luo
- Department of Computer ScienceThe University of Hong KongBonham RoadPokfulamHong Kong
| | - Agnès Delaunay‐Moisan
- Université Paris‐Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)Gif‐sur‐Yvette91198France
| | - Kenneth Timmis
- Institute of MicrobiologyTechnical University of BraunschweigBraunschweigGermany
| | - Antoine Danchin
- Kodikos Labs, Institut Cochin, 24 rue du Faubourg Saint‐JacquesParis75014France
- School of Biomedical Sciences, Li Kashing Faculty of MedicineUniversity of Hong Kong21 Sassoon RoadHong Kong
| |
Collapse
|
8
|
Erber L, Betat H, Mörl M. CCA-Addition Gone Wild: Unusual Occurrence and Phylogeny of Four Different tRNA Nucleotidyltransferases in Acanthamoeba castellanii. Mol Biol Evol 2021; 38:1006-1017. [PMID: 33095240 PMCID: PMC7947759 DOI: 10.1093/molbev/msaa270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
tRNAs are important players in the protein synthesis machinery, where they act as adapter molecules for translating the mRNA codons into the corresponding amino acid sequence. In a series of highly conserved maturation steps, the primary transcripts are converted into mature tRNAs. In the amoebozoan Acanthamoeba castellanii, a highly unusual evolution of some of these processing steps was identified that are based on unconventional RNA polymerase activities. In this context, we investigated the synthesis of the 3'-terminal CCA-end that is added posttranscriptionally by a specialized polymerase, the tRNA nucleotidyltransferase (CCA-adding enzyme). The majority of eukaryotic organisms carry only a single gene for a CCA-adding enzyme that acts on both the cytosolic and the mitochondrial tRNA pool. In a bioinformatic analysis of the genome of this organism, we identified a surprising multitude of genes for enzymes that contain the active site signature of eukaryotic/eubacterial tRNA nucleotidyltransferases. In vitro activity analyses of these enzymes revealed that two proteins represent bona fide CCA-adding enzymes, one of them carrying an N-terminal sequence corresponding to a putative mitochondrial target signal. The other enzymes have restricted activities and represent CC- and A-adding enzymes, respectively. The A-adding enzyme is of particular interest, as its sequence is closely related to corresponding enzymes from Proteobacteria, indicating a horizontal gene transfer. Interestingly, this unusual diversity of nucleotidyltransferase genes is not restricted to Acanthamoeba castellanii but is also present in other members of the Acanthamoeba genus, indicating an ancient evolutionary trait.
Collapse
Affiliation(s)
- Lieselotte Erber
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| |
Collapse
|
9
|
Hennig O, Philipp S, Bonin S, Rollet K, Kolberg T, Jühling T, Betat H, Sauter C, Mörl M. Adaptation of the Romanomermis culicivorax CCA-Adding Enzyme to Miniaturized Armless tRNA Substrates. Int J Mol Sci 2020; 21:E9047. [PMID: 33260740 PMCID: PMC7730189 DOI: 10.3390/ijms21239047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022] Open
Abstract
The mitochondrial genome of the nematode Romanomermis culicivorax encodes for miniaturized hairpin-like tRNA molecules that lack D- as well as T-arms, strongly deviating from the consensus cloverleaf. The single tRNA nucleotidyltransferase of this organism is fully active on armless tRNAs, while the human counterpart is not able to add a complete CCA-end. Transplanting single regions of the Romanomermis enzyme into the human counterpart, we identified a beta-turn element of the catalytic core that-when inserted into the human enzyme-confers full CCA-adding activity on armless tRNAs. This region, originally identified to position the 3'-end of the tRNA primer in the catalytic core, dramatically increases the enzyme's substrate affinity. While conventional tRNA substrates bind to the enzyme by interactions with the T-arm, this is not possible in the case of armless tRNAs, and the strong contribution of the beta-turn compensates for an otherwise too weak interaction required for the addition of a complete CCA-terminus. This compensation demonstrates the remarkable evolutionary plasticity of the catalytic core elements of this enzyme to adapt to unconventional tRNA substrates.
Collapse
Affiliation(s)
- Oliver Hennig
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| | - Susanne Philipp
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| | - Sonja Bonin
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| | - Kévin Rollet
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Tim Kolberg
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| | - Tina Jühling
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| | - Claude Sauter
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| |
Collapse
|
10
|
Slade A, Kattini R, Campbell C, Holcik M. Diseases Associated with Defects in tRNA CCA Addition. Int J Mol Sci 2020; 21:E3780. [PMID: 32471101 PMCID: PMC7312816 DOI: 10.3390/ijms21113780] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
tRNA nucleotidyl transferase 1 (TRNT1) is an essential enzyme catalyzing the addition of terminal cytosine-cytosine-adenosine (CCA) trinucleotides to all mature tRNAs, which is necessary for aminoacylation. It was recently discovered that partial loss-of-function mutations in TRNT1 are associated with various, seemingly unrelated human diseases including sideroblastic anemia with B-cell immunodeficiency, periodic fevers and developmental delay (SIFD), retinitis pigmentosa with erythrocyte microcytosis, and progressive B-cell immunodeficiency. In addition, even within the same disease, the severity and range of the symptoms vary greatly, suggesting a broad, pleiotropic impact of imparting TRNT1 function on diverse cellular systems. Here, we describe the current state of knowledge of the TRNT1 function and the phenotypes associated with mutations in TRNT1.
Collapse
Affiliation(s)
| | | | | | - Martin Holcik
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.S.); (R.K.); (C.C.)
| |
Collapse
|
11
|
Spruit CM, Wicklund A, Wan X, Skurnik M, Pajunen MI. Discovery of Three Toxic Proteins of Klebsiella Phage fHe-Kpn01. Viruses 2020; 12:E544. [PMID: 32429141 PMCID: PMC7291057 DOI: 10.3390/v12050544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/09/2023] Open
Abstract
The lytic phage, fHe-Kpn01 was isolated from sewage water using an extended-spectrum beta-lactamase-producing strain of Klebsiella pneumoniae as a host. The genome is 43,329 bp in size and contains direct terminal repeats of 222 bp. The genome contains 56 predicted genes, of which proteomics analysis detected 29 different proteins in purified phage particles. Comparison of fHe-Kpn01 to other phages, both morphologically and genetically, indicated that the phage belongs to the family Podoviridae and genus Drulisvirus. Because fHe-Kpn01 is strictly lytic and does not carry any known resistance or virulence genes, it is suitable for phage therapy. It has, however, a narrow host range since it infected only three of the 72 tested K. pneumoniae strains, two of which were of capsule type KL62. After annotation of the predicted genes based on the similarity to genes of known function and proteomics results on the virion-associated proteins, 22 gene products remained annotated as hypothetical proteins of unknown function (HPUF). These fHe-Kpn01 HPUFs were screened for their toxicity in Escherichia coli. Three of the HPUFs, encoded by the genes g10, g22, and g38, were confirmed to be toxic.
Collapse
Affiliation(s)
- Cindy M. Spruit
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (C.M.S.); (A.W.); (X.W.); (M.S.)
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
| | - Anu Wicklund
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (C.M.S.); (A.W.); (X.W.); (M.S.)
- Division of Clinical Microbiology, HUSLAB, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Xing Wan
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (C.M.S.); (A.W.); (X.W.); (M.S.)
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00790 Helsinki, Finland
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (C.M.S.); (A.W.); (X.W.); (M.S.)
- Division of Clinical Microbiology, HUSLAB, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Maria I. Pajunen
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (C.M.S.); (A.W.); (X.W.); (M.S.)
| |
Collapse
|
12
|
Yang L, Xue X, Zeng T, Chen X, Zhao Q, Tang X, Yang J, An Y, Zhao X. Novel biallelic TRNT1 mutations lead to atypical SIFD and multiple immune defects. Genes Dis 2020; 7:128-137. [PMID: 32181284 PMCID: PMC7063413 DOI: 10.1016/j.gendis.2020.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/07/2020] [Indexed: 01/26/2023] Open
Abstract
Mutations in the gene encoding transfer RNA (tRNA) nucleotidyltransferase, CCA-adding 1 (TRNT1), an enzyme essential for the synthesis of the 3'-terminal CCA sequence in tRNA molecules, are associated with a rare syndrome of congenital sideroblastic anemia, B cell immunodeficiency, periodic fevers, and developmental delay (SIFD). Clinical manifestations and immunological phenotypes were assessed in a Chinese patient with novel compound heterozygous mutations in TRNT1. The patient required multiple hospitalizations starting at the age of 2 years for recurrent fevers without an infective cause. During the febrile episode, the patient was found to have microcytic hypochromic anemia, B cell lymphopenia, and hypogammaglobulinemia. Targeted gene sequencing identified novel compound heterozygous mutations in the TRNT1 gene (c.525delT, p.Leu176X; c.938T>C, p.Leu313Ser). Immunophenotyping revealed increased CD8+ T cells, CD4+ terminally differentiated effector memory helper T lymphocytes (CD4 TEMRA), and CD4+ effector memory lymphocytes (CD4 EM). Analysis of CD4+ T subsets identified decreased T follicular helper cells (Tfh) with a biased phenotype to Th2-like cells. The patient also showed a lower percentage of switched memory B (smB) cells. Additionally, defects in the cytotoxicity of the patient's NK and γδT cells were shown by CD107alpha expression. In conclusion, T RNT1 mutations may lead to multiple immune abnormality especially humoral and cytotoxicity defects, which indicate that SIFD is not only suffered 'Predominantly antibody deficiencies' in IUIS classification system, and further studies are needed to understand the pathogenesis of immunodeficiency in these patients.
Collapse
Affiliation(s)
- Lu Yang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, PR China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xiuhong Xue
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, PR China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Xi'an Children's Hospital, Shanxi, PR China
| | - Ting Zeng
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, PR China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xuemei Chen
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, PR China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Qin Zhao
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, PR China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xuemei Tang
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, PR China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jun Yang
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, Shenzhen, Guangdong, PR China
| | - Yunfei An
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, PR China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xiaodong Zhao
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, PR China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
13
|
Erber L, Franz P, Betat H, Prohaska S, Mörl M. Divergent Evolution of Eukaryotic CC- and A-Adding Enzymes. Int J Mol Sci 2020; 21:ijms21020462. [PMID: 31936900 PMCID: PMC7014341 DOI: 10.3390/ijms21020462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/04/2022] Open
Abstract
Synthesis of the CCA end of essential tRNAs is performed either by CCA-adding enzymes or as a collaboration between enzymes restricted to CC- and A-incorporation. While the occurrence of such tRNA nucleotidyltransferases with partial activities seemed to be restricted to Bacteria, the first example of such split CCA-adding activities was reported in Schizosaccharomyces pombe. Here, we demonstrate that the choanoflagellate Salpingoeca rosetta also carries CC- and A-adding enzymes. However, these enzymes have distinct evolutionary origins. Furthermore, the restricted activity of the eukaryotic CC-adding enzymes has evolved in a different way compared to their bacterial counterparts. Yet, the molecular basis is very similar, as highly conserved positions within a catalytically important flexible loop region are missing in the CC-adding enzymes. For both the CC-adding enzymes from S. rosetta as well as S. pombe, introduction of the loop elements from closely related enzymes with full activity was able to restore CCA-addition, corroborating the significance of this loop in the evolution of bacterial as well as eukaryotic tRNA nucleotidyltransferases. Our data demonstrate that partial CC- and A-adding activities in Bacteria and Eukaryotes are based on the same mechanistic principles but, surprisingly, originate from different evolutionary events.
Collapse
Affiliation(s)
- Lieselotte Erber
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (L.E.); (P.F.); (H.B.)
| | - Paul Franz
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (L.E.); (P.F.); (H.B.)
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (L.E.); (P.F.); (H.B.)
| | - Sonja Prohaska
- Computational EvoDevo Group, Department of Computer Science, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany;
- Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany
- Santa Fe Institute for Complex Systems, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (L.E.); (P.F.); (H.B.)
- Correspondence: ; Tel.: +49-341-9736-911; Fax: +49-341-9736-919
| |
Collapse
|
14
|
Leibovitch M, Reid NE, Victoria J, Hanic-Joyce PJ, Joyce PBM. Analysis of the pathogenic I326T variant of human tRNA nucleotidyltransferase reveals reduced catalytic activity and thermal stability in vitro linked to a conformational change. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:616-626. [PMID: 30959222 DOI: 10.1016/j.bbapap.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/22/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022]
Abstract
The I326T mutation in the TRNT1 gene encoding human tRNA nucleotidyltransferase (tRNA-NT) is linked to a relatively mild form of SIFD. Previous work indicated that the I326T variant was unable to incorporate AMP into tRNAs in vitro, however, expression of the mutant allele from a strong heterologous promoter supported in vivo CCA addition to both cytosolic and mitochondrial tRNAs in a yeast strain lacking tRNA-NT. To address this discrepancy, we determined the biochemical and biophysical characteristics of the I326T variant enzyme and the related variant, I326A. Our in vitro analysis revealed that the I326T substitution decreases the thermal stability of the enzyme and causes a ten-fold reduction in enzyme activity. We propose that the structural changes in the I326T variant that lead to these altered parameters result from a rearrangement of helices within the body domain of the protein which can be probed by the inability of the monomeric enzyme to form a covalent dimer in vitro mediated by C373. In addition, we confirm that the effects of the I326T or I326A substitutions are relatively mild in vivo by demonstrating that the mutant alleles support both mitochondrial and cytosolic CCA-addition in yeast.
Collapse
Affiliation(s)
- M Leibovitch
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada
| | - N E Reid
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada
| | - J Victoria
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada
| | - P J Hanic-Joyce
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada
| | - P B M Joyce
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada.
| |
Collapse
|
15
|
Beck DB, Aksentijevich I. Biochemistry of Autoinflammatory Diseases: Catalyzing Monogenic Disease. Front Immunol 2019; 10:101. [PMID: 30766537 PMCID: PMC6365650 DOI: 10.3389/fimmu.2019.00101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
Monogenic autoinflammatory disorders are a group of conditions defined by systemic or localized inflammation without identifiable causes, such as infection. In contrast to classical primary immunodeficiencies that manifest with impaired immune responses, these disorders are due to defects in genes that regulate innate immunity leading to constitutive activation of pro-inflammatory signaling. Through studying patients with rare autoinflammatory conditions, novel mechanisms of inflammation have been identified that bare on our understanding not only of basic signaling in inflammatory cells, but also of the pathogenesis of more common inflammatory diseases and have guided treatment modalities. Autoinflammation has further been implicated as an important component of cardiovascular, neurodegenerative, and metabolic syndromes. In this review, we will focus on a subset of inherited enzymatic deficiencies that lead to constitutive inflammation, and how these rare diseases have provided insights into diverse areas of cell biology not restricted to immune cells. In this way, Mendelian disorders of the innate immune system, and in particular loss of catalytic activity of enzymes in distinct pathways, have expanded our understanding of the interplay between many seemingly disparate cellular processes. We also explore the overlap between autoinflammation, autoimmunity, and immunodeficiency, which has been increasingly recognized in patients with dysregulated immune responses.
Collapse
Affiliation(s)
- David B Beck
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ivona Aksentijevich
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
16
|
Leibovitch M, Hanic-Joyce PJ, Joyce PBM. In vitro studies of disease-linked variants of human tRNA nucleotidyltransferase reveal decreased thermal stability and altered catalytic activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:527-540. [PMID: 29454993 DOI: 10.1016/j.bbapap.2018.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 11/15/2022]
Abstract
Mutations in the human TRNT1 gene encoding tRNA nucleotidyltransferase (tRNA-NT), an essential enzyme responsible for addition of the CCA (cytidine-cytidine-adenosine) sequence to the 3'-termini of tRNAs, have been linked to disease phenotypes including congenital sideroblastic anemia with B-cell immunodeficiency, periodic fevers and developmental delay (SIFD) or retinitis pigmentosa with erythrocyte microcytosis. The effects of these disease-linked mutations on the structure and function of tRNA-NT have not been explored. Here we use biochemical and biophysical approaches to study how five SIFD-linked amino acid substitutions (T154I, M158V, L166S, R190I and I223T), residing in the N-terminal head and neck domains of the enzyme, affect the structure and activity of human tRNA-NT in vitro. Our data suggest that the SIFD phenotype is linked to poor stability of the T154I and L166S variant proteins, and to a combination of reduced stability and altered catalytic efficiency in the M158 V, R190I and I223T variants.
Collapse
Affiliation(s)
- M Leibovitch
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada
| | - P J Hanic-Joyce
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada
| | - P B M Joyce
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada.
| |
Collapse
|
17
|
Giannelou A, Wang H, Zhou Q, Park YH, Abu-Asab MS, Ylaya K, Stone DL, Sediva A, Sleiman R, Sramkova L, Bhatla D, Serti E, Tsai WL, Yang D, Bishop K, Carrington B, Pei W, Deuitch N, Brooks S, Edwan JH, Joshi S, Prader S, Kaiser D, Owen WC, Sonbul AA, Zhang Y, Niemela JE, Burgess SM, Boehm M, Rehermann B, Chae J, Quezado MM, Ombrello AK, Buckley RH, Grom AA, Remmers EF, Pachlopnik JM, Su HC, Gutierrez-Cruz G, Hewitt SM, Sood R, Risma K, Calvo KR, Rosenzweig SD, Gadina M, Hafner M, Sun HW, Kastner DL, Aksentijevich I. Aberrant tRNA processing causes an autoinflammatory syndrome responsive to TNF inhibitors. Ann Rheum Dis 2018; 77:612-619. [PMID: 29358286 PMCID: PMC5890629 DOI: 10.1136/annrheumdis-2017-212401] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/15/2017] [Accepted: 12/30/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To characterise the clinical features, immune manifestations and molecular mechanisms in a recently described autoinflammatory disease caused by mutations in TRNT1, a tRNA processing enzyme, and to explore the use of cytokine inhibitors in suppressing the inflammatory phenotype. METHODS We studied nine patients with biallelic mutations in TRNT1 and the syndrome of congenital sideroblastic anaemia with immunodeficiency, fevers and developmental delay (SIFD). Genetic studies included whole exome sequencing (WES) and candidate gene screening. Patients' primary cells were used for deep RNA and tRNA sequencing, cytokine profiling, immunophenotyping, immunoblotting and electron microscopy (EM). RESULTS We identified eight mutations in these nine patients, three of which have not been previously associated with SIFD. Three patients died in early childhood. Inflammatory cytokines, mainly interleukin (IL)-6, interferon gamma (IFN-γ) and IFN-induced cytokines were elevated in the serum, whereas tumour necrosis factor (TNF) and IL-1β were present in tissue biopsies of patients with active inflammatory disease. Deep tRNA sequencing of patients' fibroblasts showed significant deficiency of mature cytosolic tRNAs. EM of bone marrow and skin biopsy samples revealed striking abnormalities across all cell types and a mix of necrotic and normal-appearing cells. By immunoprecipitation, we found evidence for dysregulation in protein clearance pathways. In 4/4 patients, treatment with a TNF inhibitor suppressed inflammation, reduced the need for blood transfusions and improved growth. CONCLUSIONS Mutations of TRNT1 lead to a severe and often fatal syndrome, linking protein homeostasis and autoinflammation. Molecular diagnosis in early life will be crucial for initiating anti-TNF therapy, which might prevent some of the severe disease consequences.
Collapse
Affiliation(s)
- Angeliki Giannelou
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA.,Rheumatology Fellowship and Training Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Hongying Wang
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Qing Zhou
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Yong Hwan Park
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Mones S Abu-Asab
- Section of Histopathology, National Eye Institute, Bethesda, Maryland, USA
| | - Kris Ylaya
- Experimental Pathology Laboratory, National Cancer Institute, Bethesda, Maryland, USA
| | - Deborah L Stone
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Anna Sediva
- Department of Immunology Charles, University and University Hospital Motol, Prague, Czech Republic
| | - Rola Sleiman
- Dr. Sulaiman Al Habib Al Rayan Hospital, Riyadh, Saudi Arabia
| | - Lucie Sramkova
- Department of Pediatric Hematology and Oncology, University Hospital Motol, Prague, Czech Republic
| | - Deepika Bhatla
- SSM Health Cardinal Glennon Children's Hospital, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Elisavet Serti
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Wanxia Li Tsai
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Dan Yang
- Laboratory of Cardiovascular Regenerative Medicine, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Kevin Bishop
- Zebrafish Core, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Blake Carrington
- Zebrafish Core, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Wuhong Pei
- Zebrafish Core, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Natalie Deuitch
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Stephen Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Jehad H Edwan
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Sarita Joshi
- Department of Pathology, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Seraina Prader
- Department of Immunology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Daniela Kaiser
- Department of Pediatric Rheumatology, Children's Hospital, Lucerne, Switzerland
| | - William C Owen
- Children's Cancer and Blood Disorders Center, Children's Hospital of the King's Daughters, Norfolk, Virginia, USA
| | | | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Julie E Niemela
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Shawn M Burgess
- Zebrafish Core, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Manfred Boehm
- Laboratory of Cardiovascular Regenerative Medicine, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Barbara Rehermann
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - JaeJin Chae
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Martha M Quezado
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Amanda K Ombrello
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Rebecca H Buckley
- Departments of Pediatrics and Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Alexi A Grom
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Elaine F Remmers
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Jana M Pachlopnik
- Department of Immunology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Gustavo Gutierrez-Cruz
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, National Cancer Institute, Bethesda, Maryland, USA
| | - Raman Sood
- Zebrafish Core, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Kimberly Risma
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Katherine R Calvo
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Sergio D Rosenzweig
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Markus Hafner
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Hong-Wei Sun
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Daniel L Kastner
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Reinhard L, Sridhara S, Hällberg BM. The MRPP1/MRPP2 complex is a tRNA-maturation platform in human mitochondria. Nucleic Acids Res 2017; 45:12469-12480. [PMID: 29040705 PMCID: PMC5716156 DOI: 10.1093/nar/gkx902] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/25/2017] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial polycistronic transcripts are extensively processed to give rise to functional mRNAs, rRNAs and tRNAs; starting with the release of tRNA elements through 5′-processing by RNase P (MRPP1/2/3-complex) and 3′-processing by RNase Z (ELAC2). Here, we show using in vitro experiments that MRPP1/2 is not only a component of the mitochondrial RNase P but that it retains the tRNA product from the 5′-processing step and significantly enhances the efficiency of ELAC2-catalyzed 3′-processing for 17 of the 22 tRNAs encoded in the human mitochondrial genome. Furthermore, MRPP1/2 retains the tRNA product after ELAC2 processing and presents the nascent tRNA to the mitochondrial CCA-adding enzyme. Thus, in addition to being an essential component of the RNase P reaction, MRPP1/2 serves as a processing platform for several down-stream tRNA maturation steps in human mitochondria. These findings are of fundamental importance for our molecular understanding of disease-related mutations in MRPP1/2, ELAC2 and mitochondrial tRNA genes.
Collapse
Affiliation(s)
- Linda Reinhard
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.,Röntgen-Ångström-Cluster, Karolinska Institutet Outstation, Centre for Structural Systems Biology (CSSB), DESY-Campus, 22607 Hamburg, Germany
| | - Sagar Sridhara
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.,Röntgen-Ångström-Cluster, Karolinska Institutet Outstation, Centre for Structural Systems Biology (CSSB), DESY-Campus, 22607 Hamburg, Germany
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.,Röntgen-Ångström-Cluster, Karolinska Institutet Outstation, Centre for Structural Systems Biology (CSSB), DESY-Campus, 22607 Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, 22603 Hamburg, Germany
| |
Collapse
|
19
|
Mohanty B, Geralt M, Wüthrich K, Serrano P. NMR reveals structural rearrangements associated to substrate insertion in nucleotide-adding enzymes. Protein Sci 2016; 25:917-25. [PMID: 26749007 DOI: 10.1002/pro.2872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/30/2015] [Accepted: 01/02/2016] [Indexed: 11/09/2022]
Abstract
The protein NP_344798.1 from Streptococcus pneumoniae TIGR4 exhibits a head and base-interacting neck domain architecture, as observed in class II nucleotide-adding enzymes. Although it has less than 20% overall sequence identity with any member of this enzyme family, the residues involved in substrate-recognition and catalysis are highly conserved in NP_344798.1. NMR studies showed binding affinity of NP_344798.1 for nucleotides and revealed μs to ms time scale rate processes involving residues constituting the active site. The results thus obtained indicate that large-amplitude rearrangements of regular secondary structures facilitate the penetration of the substrate into the occluded nucleotide-binding site of NP_344798.1 and, by inference based on sequence and structural homology, probably a wide range of other nucleotide-adding enzymes.
Collapse
Affiliation(s)
- Biswaranjan Mohanty
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, 92037.,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, 92037.,Joint Center for Structural Genomics, The Scripps Research Insitute, La Jolla, California, 92037, http://www.jcsg.org
| | - Michael Geralt
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, 92037.,Joint Center for Structural Genomics, The Scripps Research Insitute, La Jolla, California, 92037, http://www.jcsg.org
| | - Kurt Wüthrich
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, 92037.,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, 92037.,Joint Center for Structural Genomics, The Scripps Research Insitute, La Jolla, California, 92037, http://www.jcsg.org
| | - Pedro Serrano
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, 92037.,Joint Center for Structural Genomics, The Scripps Research Insitute, La Jolla, California, 92037, http://www.jcsg.org
| |
Collapse
|
20
|
Extensive Mitochondrial mRNA Editing and Unusual Mitochondrial Genome Organization in Calcaronean Sponges. Curr Biol 2015; 26:86-92. [PMID: 26725199 DOI: 10.1016/j.cub.2015.11.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022]
Abstract
One of the unusual features of DNA-containing organelles in general and mitochondria in particular is the frequent occurrence of RNA editing [1]. The term "RNA editing" refers to a variety of mechanistically unrelated biochemical processes that alter RNA sequence during or after transcription [2]. The editing can be insertional, deletional, or substitutional and has been found in all major types of RNAs [3, 4]. Although mitochondrial mRNA editing is widespread in some eukaryotic lineages [5-7], it is rare in animals, with reported cases limited both in their scope and in phylogenetic distribution [8-11] (see also [12]). While analyzing genomic data from calcaronean sponges Sycon ciliatum and Leucosolenia complicata, we were perplexed by the lack of recognizable mitochondrial coding sequences. Comparison of genomic and transcriptomic data from these species revealed the presence of mitochondrial cryptogenes whose transcripts undergo extensive editing. This editing consisted of single or double uridylate (U) insertions in pre-existing short poly(U) tracts. Subsequent analysis revealed the presence of similar editing in Sycon coactum and the loss of editing in Petrobiona massiliana, a hypercalcified calcaronean sponge. In addition, mitochondrial genomes of at least some calcaronean sponges were found to have a highly unusual architecture, with nearly all genes located on individual and likely linear chromosomes. Phylogenetic analysis of mitochondrial coding sequences revealed accelerated rates of sequence evolution in this group. The latter observation presents a challenge for the mutational-hazard hypothesis [13], which posits that mRNA editing should not occur in lineages with an elevated mutation rate.
Collapse
|
21
|
Yamashita S, Martinez A, Tomita K. Measurement of Acceptor-TΨC Helix Length of tRNA for Terminal A76-Addition by A-Adding Enzyme. Structure 2015; 23:830-842. [PMID: 25914059 DOI: 10.1016/j.str.2015.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 02/25/2015] [Accepted: 03/23/2015] [Indexed: 11/25/2022]
Abstract
The 3'-terminal CCA (C74C75A76-3') of tRNA is required for protein synthesis. In Aquifex aeolicus, the CCA-3' is synthesized by CC-adding and A-adding enzymes, although in most organisms, CCA is synthesized by a single CCA-adding enzyme. The mechanisms by which the A-adding enzyme adds only A76, but not C74C75, onto tRNA remained elusive. The complex structures of the enzyme with various tRNAs revealed the presence of a single tRNA binding site on the enzyme, with the enzyme measuring the acceptor-TΨC helix length of tRNA. The 3'-C75 of tRNA lacking A76 can reach the active site and the size and shape of the nucleotide binding pocket at the insertion stage are suitable for ATP. The 3'-C74 of tRNA lacking C75A76 cannot reach the active site, although CTP or ATP can bind the active pocket. Thus, the A-adding enzyme adds only A76, but not C74C75, onto tRNA.
Collapse
Affiliation(s)
- Seisuke Yamashita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Anna Martinez
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Kozo Tomita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
22
|
Kuhn CD, Wilusz JE, Zheng Y, Beal PA, Joshua-Tor L. On-enzyme refolding permits small RNA and tRNA surveillance by the CCA-adding enzyme. Cell 2015; 160:644-658. [PMID: 25640237 PMCID: PMC4329729 DOI: 10.1016/j.cell.2015.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/07/2014] [Accepted: 12/31/2014] [Indexed: 11/16/2022]
Abstract
Transcription in eukaryotes produces a number of long noncoding RNAs (lncRNAs). Two of these, MALAT1 and Menβ, generate a tRNA-like small RNA in addition to the mature lncRNA. The stability of these tRNA-like small RNAs and bona fide tRNAs is monitored by the CCA-adding enzyme. Whereas CCA is added to stable tRNAs and tRNA-like transcripts, a second CCA repeat is added to certain unstable transcripts to initiate their degradation. Here, we characterize how these two scenarios are distinguished. Following the first CCA addition cycle, nucleotide binding to the active site triggers a clockwise screw motion, producing torque on the RNA. This ejects stable RNAs, whereas unstable RNAs are refolded while bound to the enzyme and subjected to a second CCA catalytic cycle. Intriguingly, with the CCA-adding enzyme acting as a molecular vise, the RNAs proofread themselves through differential responses to its interrogation between stable and unstable substrates.
Collapse
Affiliation(s)
- Claus-D Kuhn
- W.M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Yuxuan Zheng
- Department of Chemistry, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Peter A Beal
- Department of Chemistry, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Leemor Joshua-Tor
- W.M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
23
|
Ernst FGM, Rickert C, Bluschke A, Betat H, Steinhoff HJ, Mörl M. Domain movements during CCA-addition: a new function for motif C in the catalytic core of the human tRNA nucleotidyltransferases. RNA Biol 2015; 12:435-46. [PMID: 25849199 PMCID: PMC4615804 DOI: 10.1080/15476286.2015.1018502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 10/23/2022] Open
Abstract
CCA-adding enzymes are highly specific RNA polymerases that synthesize and maintain the sequence CCA at the tRNA 3'-end. This nucleotide triplet is a prerequisite for tRNAs to be aminoacylated and to participate in protein biosynthesis. During CCA-addition, a set of highly conserved motifs in the catalytic core of these enzymes is responsible for accurate sequential nucleotide incorporation. In the nucleotide binding pocket, three amino acid residues form Watson-Crick-like base pairs to the incoming CTP and ATP. A reorientation of these templating amino acids switches the enzyme's specificity from CTP to ATP recognition. However, the mechanism underlying this essential structural rearrangement is not understood. Here, we show that motif C, whose actual function has not been identified yet, contributes to the switch in nucleotide specificity during polymerization. Biochemical characterization as well as EPR spectroscopy measurements of the human enzyme reveal that mutating the highly conserved amino acid position D139 in this motif interferes with AMP incorporation and affects interdomain movements in the enzyme. We propose a model of action, where motif C forms a flexible spring element modulating the relative orientation of the enzyme's head and body domains to accommodate the growing 3'-end of the tRNA. Furthermore, these conformational transitions initiate the rearranging of the templating amino acids to switch the specificity of the nucleotide binding pocket from CTP to ATP during CCA-synthesis.
Collapse
Affiliation(s)
- Felix G M Ernst
- Institute for Biochemistry; University of Leipzig; Leipzig, Germany
| | | | | | - Heike Betat
- Institute for Biochemistry; University of Leipzig; Leipzig, Germany
| | | | - Mario Mörl
- Institute for Biochemistry; University of Leipzig; Leipzig, Germany
| |
Collapse
|
24
|
Tomita K, Yamashita S. Molecular mechanisms of template-independent RNA polymerization by tRNA nucleotidyltransferases. Front Genet 2014; 5:36. [PMID: 24596576 PMCID: PMC3925840 DOI: 10.3389/fgene.2014.00036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 01/31/2014] [Indexed: 11/13/2022] Open
Abstract
The universal 3'-terminal CCA sequence of tRNA is built and/or synthesized by the CCA-adding enzyme, CTP:(ATP) tRNA nucleotidyltransferase. This RNA polymerase has no nucleic acid template, but faithfully synthesizes the defined CCA sequence on the 3'-terminus of tRNA at one time, using CTP and ATP as substrates. The mystery of CCA-addition without a nucleic acid template by unique RNA polymerases has long fascinated researchers in the field of RNA enzymology. In this review, the mechanisms of RNA polymerization by the remarkable CCA-adding enzyme and its related enzymes are presented, based on their structural features.
Collapse
Affiliation(s)
- Kozo Tomita
- RNA Processing Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology Tsukuba, Japan
| | - Seisuke Yamashita
- RNA Processing Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology Tsukuba, Japan
| |
Collapse
|
25
|
Goring ME, Leibovitch M, Gea-Mallorqui E, Karls S, Richard F, Hanic-Joyce PJ, Joyce PBM. The ability of an arginine to tryptophan substitution in Saccharomyces cerevisiae tRNA nucleotidyltransferase to alleviate a temperature-sensitive phenotype suggests a role for motif C in active site organization. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2097-106. [PMID: 23872483 DOI: 10.1016/j.bbapap.2013.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 11/15/2022]
Abstract
We report that the temperature-sensitive (ts) phenotype in Saccharomyces cerevisiae associated with a variant tRNA nucleotidyltransferase containing an amino acid substitution at position 189 results from a reduced ability to incorporate AMP and CMP into tRNAs. We show that this defect can be compensated for by a second-site suppressor converting residue arginine 64 to tryptophan. The R64W substitution does not alter the structure or thermal stability of the enzyme dramatically but restores catalytic activity in vitro and suppresses the ts phenotype in vivo. R64 is found in motif A known to be involved in catalysis and nucleotide triphosphate binding while E189 lies within motif C previously thought only to connect the head and neck domains of the protein. Although mutagenesis experiments indicate that residues R64 and E189 do not interact directly, our data suggest a critical role for residue E189 in enzyme structure and function. Both R64 and E189 may contribute to the organization of the catalytic domain of the enzyme. These results, along with overexpression and deletion analyses, show that the ts phenotype of cca1-E189F does not arise from thermal instability of the variant tRNA nucleotidyltransferase but instead from the inability of a partially active enzyme to support growth only at higher temperatures.
Collapse
Affiliation(s)
- Mark E Goring
- Department of Biology, Concordia University, Montréal, H4B 1R6, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
The folding capacity of the mature domain of the dual-targeted plant tRNA nucleotidyltransferase influences organelle selection. Biochem J 2013; 453:401-12. [DOI: 10.1042/bj20121577] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
tRNA-NTs (tRNA nucleotidyltransferases) are required for the maturation or repair of tRNAs by ensuring that they have an intact cytidine-cytidine-adenosine sequence at their 3′-termini. Therefore this enzymatic activity is found in all cellular compartments, namely the nucleus, cytoplasm, plastids and mitochondria, in which tRNA synthesis or translation occurs. A single gene codes for tRNA-NT in plants, suggesting a complex targeting mechanism. Consistent with this, distinct signals have been proposed for plastidic, mitochondrial and nuclear targeting. Our previous research has shown that in addition to N-terminal targeting information, the mature domain of the protein itself modifies targeting to mitochondria and plastids. This suggests the existence of an as yet unknown determinate for the distribution of dual-targeted proteins between these two organelles. In the present study, we explore the enzymatic and physicochemical properties of tRNA-NT variants to correlate the properties of the enzyme with the intracellular distribution of the protein. We show that alteration of tRNA-NT stability influences its intracellular distribution due to variations in organelle import capacities. Hence the fate of the protein is determined not only by the transit peptide sequence, but also by the physicochemical properties of the mature protein.
Collapse
|
27
|
Wolf J, Obermaier-Kusser B, Jacobs M, Milles C, Mörl M, von Pein HD, Grau AJ, Bauer MF. A new mitochondrial point mutation in the transfer RNA(Lys) gene associated with progressive external ophthalmoplegia with impaired respiratory regulation. J Neurol Sci 2012; 316:108-11. [PMID: 22326363 DOI: 10.1016/j.jns.2012.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/13/2012] [Accepted: 01/20/2012] [Indexed: 11/18/2022]
Abstract
We report a novel heteroplasmic point mutation G8299A in the gene for mitochondrial tRNA(Lys) in a patient with progressive external ophthalmoplegia complicated by recurrent respiratory insufficiency. Biochemical analysis of respiratory chain complexes in muscle homogenate showed a combined complex I and IV deficiency. The transition does not represent a known neutral polymorphism and affects a position in the tRNA acceptor stem which is conserved in primates, leading to a destabilization of this functionally important domain. In vitro analysis of an essential maturation step of the tRNA transcript indicates the probable pathogenicity of this mutation. We hypothesize that there is a causal relationship between the novel G8299A transition and progressive external ophthalmoplegia with recurrent respiratory failure due to a depressed respiratory drive.
Collapse
Affiliation(s)
- Joachim Wolf
- Department of Neurology, Klinikum Ludwigshafen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
An inhibitory C-terminal region dictates the specificity of A-adding enzymes. Proc Natl Acad Sci U S A 2011; 108:21040-5. [PMID: 22167803 DOI: 10.1073/pnas.1116117108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For efficient aminoacylation, tRNAs carry the conserved 3'-terminal sequence C-C-A, which is synthesized by highly specific tRNA nucleotidyltransferases (CCA-adding enzymes). In several prokaryotes, this function is accomplished by separate enzymes for CC- and A-addition. As A-adding enzymes carry an N-terminal catalytic core identical to that of CCA-adding enzymes, it is unclear why their activity is restricted. Here, it is shown that C-terminal deletion variants of A-adding enzymes acquire full and precise CCA-incorporating activity. The deleted region seems to be responsible for tRNA primer selection, restricting the enzyme's specificity to tRNAs ending with CC. The data suggest that A-adding enzymes carry an intrinsic CCA-adding activity that can be reactivated by the introduction of deletions in the C-terminal domain. Furthermore, a unique subtype of CCA-adding enzymes could be identified that evolved out of A-adding enzymes, suggesting that mutations and deletions in nucleotidyltransferases can lead to altered and even more complex activities, as a simple A-incorporation is converted into sequence-specific addition of C and A residues. Such activity-modifying events may have had an important role in the evolution of tRNA nucleotidyltransferases.
Collapse
|
29
|
Wilusz JE, Whipple JM, Phizicky EM, Sharp PA. tRNAs marked with CCACCA are targeted for degradation. Science 2011; 334:817-21. [PMID: 22076379 DOI: 10.1126/science.1213671] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The CCA-adding enzyme [ATP(CTP):tRNA nucleotidyltransferase] adds CCA to the 3' ends of transfer RNAs (tRNAs), a critical step in tRNA biogenesis that generates the amino acid attachment site. We found that the CCA-adding enzyme plays a key role in tRNA quality control by selectively marking structurally unstable tRNAs and tRNA-like small RNAs for degradation. Instead of adding CCA to the 3' ends of these transcripts, CCA-adding enzymes from all three kingdoms of life add CCACCA. In addition, hypomodified mature tRNAs are subjected to CCACCA addition as part of a rapid tRNA decay pathway in vivo. We conjecture that CCACCA addition is a universal mechanism for controlling tRNA levels and preventing errors in translation.
Collapse
Affiliation(s)
- Jeremy E Wilusz
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
30
|
Pyrophosphorolysis of CCA addition: implication for fidelity. J Mol Biol 2011; 414:28-43. [PMID: 22001019 DOI: 10.1016/j.jmb.2011.09.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 09/13/2011] [Accepted: 09/21/2011] [Indexed: 11/21/2022]
Abstract
In nucleic acid polymerization reaction, pyrophosphorolysis is the reversal of nucleotide addition, in which the terminal nucleotide is excised in the presence of inorganic pyrophosphate (PPi). The CCA enzymes are unusual RNA polymerases, which catalyze CCA addition to positions 74-76 at the tRNA 3' end without using a nucleic acid template. To better understand the reaction mechanism of CCA addition, we tested pyrophosphorolysis of CCA enzymes, which are divided into two structurally distinct classes. Here, we show that only class II CCA enzymes catalyze pyrophosphorolysis and that the reaction can initiate from all three CCA positions and proceed processively until the removal of nucleotide C74. Pyrophosphorolysis of class II enzymes establishes a fundamental difference from class I enzymes, and it is achieved only with the tRNA structure and with specific divalent metal ions. Importantly, pyrophosphorolysis enables class II enzymes to efficiently remove an incorrect A75 nucleotide from the 3' end, at a rate much faster than the rate of A75 incorporation, suggesting the ability to perform a previously unexpected quality control mechanism for CCA synthesis. Measurement of kinetic parameters of the class II Escherichia coli CCA enzyme reveals that the enzyme catalyzes pyrophosphorolysis slowly relative to the forward nucleotide addition and that it exhibits weak binding affinity to PPi relative to NTP, suggesting a mechanism in which PPi is rapidly released after each nucleotide addition as a driving force to promote the forward synthesis of CCA.
Collapse
|
31
|
Mechanism for the alteration of the substrate specificities of template-independent RNA polymerases. Structure 2011; 19:232-43. [PMID: 21300291 DOI: 10.1016/j.str.2010.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 12/09/2010] [Accepted: 12/12/2010] [Indexed: 11/21/2022]
Abstract
PolyA polymerase (PAP) adds a polyA tail onto the 3'-end of RNAs without a nucleic acid template, using adenosine-5'-triphosphate (ATP) as a substrate. The mechanism for the substrate selection by eubacterial PAP remains obscure. Structural and biochemical studies of Escherichia coli PAP (EcPAP) revealed that the shape and size of the nucleobase-interacting pocket of EcPAP are maintained by an intra-molecular hydrogen-network, making it suitable for the accommodation of only ATP, using a single amino acid, Arg(197). The pocket structure is sustained by interactions between the catalytic domain and the RNA-binding domain. EcPAP has a flexible basic C-terminal region that contributes to optimal RNA translocation for processive adenosine 5'-monophosphate (AMP) incorporations onto the 3'-end of RNAs. A comparison of the EcPAP structure with those of other template-independent RNA polymerases suggests that structural changes of domain(s) outside the conserved catalytic core domain altered the substrate specificities of the template-independent RNA polymerases.
Collapse
|
32
|
Pan B, Xiong Y, Steitz TA. How the CCA-adding enzyme selects adenine over cytosine at position 76 of tRNA. Science 2010; 330:937-40. [PMID: 21071662 DOI: 10.1126/science.1194985] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
CCA-adding enzymes [ATP(CTP):tRNA nucleotidyltransferases] add CCA onto the 3' end of transfer RNA (tRNA) precursors without using a nucleic acid template. Although the mechanism by which cytosine (C) is selected at position 75 of tRNA has been established, the mechanism by which adenine (A) is selected at position 76 remains elusive. Here, we report five cocrystal structures of the enzyme complexed with both a tRNA mimic and nucleoside triphosphates under catalytically active conditions. These structures suggest that adenosine 5'-monophosphate is incorporated onto the A76 position of the tRNA via a carboxylate-assisted, one-metal-ion mechanism with aspartate 110 functioning as a general base. The discrimination against incorporation of cytidine 5'-triphosphate (CTP) at position 76 arises from improper placement of the α phosphate of the incoming CTP, which results from the interaction of C with arginine 224 and prevents the nucleophilic attack by the 3' hydroxyl group of cytidine75.
Collapse
Affiliation(s)
- Baocheng Pan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
33
|
Abstract
The CCA sequence is conserved at the 3' end of all mature tRNA molecules to function as the site of amino acid attachment. This sequence is acquired and maintained by stepwise nucleotide addition by the ubiquitous CCA enzyme, which is an unusual RNA polymerase that does not use a nucleic acid template for nucleotide addition. Crystal structural work has divided CCA enzymes into two structurally distinct classes, which differ in the mechanism of template-independent nucleotide selection. Recent kinetic work of the class II E. coli CCA enzyme has demonstrated a rapid and uniform rate constant for the chemistry of nucleotide addition at each step of CCA synthesis, although the enzyme uses different determinants to control the rate of each step. Importantly, the kinetic work reveals that, at each step of CCA synthesis, E. coli CCA enzyme has an innate ability to discriminate against tRNA backbone damage. This discrimination suggests the possibility of a previously unrecognized quality control mechanism that would prevent damaged tRNA from CCA maturation and from entering the ribosome machinery of protein synthesis. This quality control is relevant to cellular stress conditions that damage tRNA backbone and predicts a role of CCA addition in stress response.
Collapse
Affiliation(s)
- Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, BLSB 220, Philadelphia 19107, PA, USA.
| |
Collapse
|
34
|
Betat H, Rammelt C, Mörl M. tRNA nucleotidyltransferases: ancient catalysts with an unusual mechanism of polymerization. Cell Mol Life Sci 2010; 67:1447-63. [PMID: 20155482 PMCID: PMC11115931 DOI: 10.1007/s00018-010-0271-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 12/14/2009] [Accepted: 01/14/2010] [Indexed: 10/19/2022]
Abstract
RNA polymerases are important enzymes involved in the realization of the genetic information encoded in the genome. Thereby, DNA sequences are used as templates to synthesize all types of RNA. Besides these classical polymerases, there exists another group of RNA polymerizing enzymes that do not depend on nucleic acid templates. Among those, tRNA nucleotidyltransferases show remarkable and unique features. These enzymes add the nucleotide triplet C-C-A to the 3'-end of tRNAs at an astonishing fidelity and are described as "CCA-adding enzymes". During this incorporation of exactly three nucleotides, the enzymes have to switch from CTP to ATP specificity. How these tasks are fulfilled by rather simple and small enzymes without the help of a nucleic acid template is a fascinating research area. Surprising results of biochemical and structural studies allow scientists to understand at least some of the mechanistic principles of the unique polymerization mode of these highly unusual enzymes.
Collapse
Affiliation(s)
- Heike Betat
- Institute for Biochemistry, University of Leipzig, Brüderstr. 34, 04103 Leipzig, Germany
| | - Christiane Rammelt
- Institute for Biochemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle, Germany
| | - Mario Mörl
- Institute for Biochemistry, University of Leipzig, Brüderstr. 34, 04103 Leipzig, Germany
| |
Collapse
|
35
|
Hoffmeier A, Betat H, Bluschke A, Günther R, Junghanns S, Hofmann HJ, Mörl M. Unusual evolution of a catalytic core element in CCA-adding enzymes. Nucleic Acids Res 2010; 38:4436-47. [PMID: 20348137 PMCID: PMC2910056 DOI: 10.1093/nar/gkq176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CCA-adding enzymes are polymerases existing in two distinct enzyme classes that both synthesize the C-C-A triplet at tRNA 3′-ends. Class II enzymes (found in bacteria and eukaryotes) carry a flexible loop in their catalytic core required for switching the specificity of the nucleotide binding pocket from CTP- to ATP-recognition. Despite this important function, the loop sequence varies strongly between individual class II CCA-adding enzymes. To investigate whether this loop operates as a discrete functional entity or whether it depends on the sequence context of the enzyme, we introduced reciprocal loop replacements in several enzymes. Surprisingly, many of these replacements are incompatible with enzymatic activity and inhibit ATP-incorporation. A phylogenetic analysis revealed the existence of conserved loop families. Loop replacements within families did not interfere with enzymatic activity, indicating that the loop function depends on a sequence context specific for individual enzyme families. Accordingly, modeling experiments suggest specific interactions of loop positions with important elements of the protein, forming a lever-like structure. Hence, although being part of the enzyme’s catalytic core, the loop region follows an extraordinary evolutionary path, independent of other highly conserved catalytic core elements, but depending on specific sequence features in the context of the individual enzymes.
Collapse
Affiliation(s)
- Andrea Hoffmeier
- Institute for Biochemistry, University of Leipzig, Brüderstr. 34, 04103 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Vörtler S, Mörl M. tRNA-nucleotidyltransferases: highly unusual RNA polymerases with vital functions. FEBS Lett 2009; 584:297-302. [PMID: 19883645 DOI: 10.1016/j.febslet.2009.10.078] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 10/29/2009] [Indexed: 02/04/2023]
Abstract
tRNA-nucleotidyltransferases are fascinating and unusual RNA polymerases responsible for the synthesis of the nucleotide triplet CCA at the 3'-terminus of tRNAs. As this CCA end represents an essential functional element for aminoacylation and translation, these polymerases (CCA-adding enzymes) are of vital importance in all organisms. With a possible origin of ancient telomerase-like activity, the CCA-adding enzymes obviously emerged twice during evolution, leading to structurally different, but functionally identical enzymes. The evolution as well as the unique polymerization features of these interesting proteins will be discussed in this review.
Collapse
Affiliation(s)
- Stefan Vörtler
- Institute for Biochemistry, University of Leipzig, Brüderstr. 34, 04103 Leipzig, Germany.
| | | |
Collapse
|
37
|
Toh Y, Takeshita D, Numata T, Fukai S, Nureki O, Tomita K. Mechanism for the definition of elongation and termination by the class II CCA-adding enzyme. EMBO J 2009; 28:3353-65. [PMID: 19745807 DOI: 10.1038/emboj.2009.260] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 08/07/2009] [Indexed: 11/09/2022] Open
Abstract
The CCA-adding enzyme synthesizes the CCA sequence at the 3' end of tRNA without a nucleic acid template. The crystal structures of class II Thermotoga maritima CCA-adding enzyme and its complexes with CTP or ATP were determined. The structure-based replacement of both the catalytic heads and nucleobase-interacting neck domains of the phylogenetically closely related Aquifex aeolicus A-adding enzyme by the corresponding domains of the T. maritima CCA-adding enzyme allowed the A-adding enzyme to add CCA in vivo and in vitro. However, the replacement of only the catalytic head domain did not allow the A-adding enzyme to add CCA, and the enzyme exhibited (A, C)-adding activity. We identified the region in the neck domain that prevents (A, C)-adding activity and defines the number of nucleotide incorporations and the specificity for correct CCA addition. We also identified the region in the head domain that defines the terminal A addition after CC addition. The results collectively suggest that, in the class II CCA-adding enzyme, the head and neck domains collaboratively and dynamically define the number of nucleotide additions and the specificity of nucleotide selection.
Collapse
Affiliation(s)
- Yukimatsu Toh
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba-shi, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
We present a high-resolution mass spectrometric footprinting approach enabling the identification of amino acids in the protein of interest interacting with cognate RNA. This approach is particularly attractive for studying large nucleoprotein complexes that are less amenable to crystallographic or nuclear magnetic resonance analysis. Importantly, our methodology allows examination of protein-RNA interactions under biologically relevant conditions using limited amounts of protein and nucleic acid samples.
Collapse
|
39
|
Just A, Butter F, Trenkmann M, Heitkam T, Mörl M, Betat H. A comparative analysis of two conserved motifs in bacterial poly(A) polymerase and CCA-adding enzyme. Nucleic Acids Res 2008; 36:5212-20. [PMID: 18682528 PMCID: PMC2532741 DOI: 10.1093/nar/gkn494] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Showing a high sequence similarity, the evolutionary closely related bacterial poly(A) polymerases (PAP) and CCA-adding enzymes catalyze quite different reactions—PAP adds poly(A) tails to RNA 3′-ends, while CCA-adding enzymes synthesize the sequence CCA at the 3′-terminus of tRNAs. Here, two highly conserved structural elements of the corresponding Escherichia coli enzymes were characterized. The first element is a set of amino acids that was identified in CCA-adding enzymes as a template region determining the enzymes' specificity for CTP and ATP. The same element is also present in PAP, where it confers ATP specificity. The second investigated region corresponds to a flexible loop in CCA-adding enzymes and is involved in the incorporation of the terminal A-residue. Although, PAP seems to carry a similar flexible region, the functional relevance of this element in PAP is not known. The presented results show that the template region has an essential function in both enzymes, while the second element is surprisingly dispensable in PAP. The data support the idea that the bacterial PAP descends from CCA-adding enzymes and still carries some of the structural elements required for CCA-addition as an evolutionary relic and is now fixed in a conformation specific for A-addition.
Collapse
Affiliation(s)
- Andrea Just
- Institute for Biochemistry, University of Leipzig, Brüderstr. 34, 04103 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Toh Y, Numata T, Watanabe K, Takeshita D, Nureki O, Tomita K. Molecular basis for maintenance of fidelity during the CCA-adding reaction by a CCA-adding enzyme. EMBO J 2008; 27:1944-52. [PMID: 18583961 DOI: 10.1038/emboj.2008.124] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 06/05/2008] [Indexed: 11/09/2022] Open
Abstract
CCA-adding enzyme builds the 3'-end CCA of tRNA without a nucleic acid template. The mechanism for the maintenance of fidelity during the CCA-adding reaction remains elusive. Here, we present almost a dozen complex structures of the class I CCA-adding enzyme and tRNA mini-helices (mini-D(73)N(74), mini-D(73)N(74)C(75) and mini-D(73)C(74)N(75); D(73) is a discriminator nucleotide and N is either A, G, or U). The mini-D(73)N(74) complexes adopt catalytically inactive open forms, and CTP shifts the enzymes to the active closed forms and allows N(74) to flip for CMP incorporation. In contrast, unlike the catalytically active closed form of the mini-D(73)C(74)C(75) complex, the mini-D(73)N(74)C(75) and mini-D(73)C(74)N(75) complexes adopt inactive open forms. Only the mini-D(73)C(74)U(75) accepts AMP to a similar extent as mini-D(73)C(74)C(75), and ATP shifts the enzyme to a closed, active form and allows U(75) to flip for AMP incorporation. These findings suggest that the 3'-region of RNA is proofread, after two nucleotide additions, in the closed, active form of the complex at the AMP incorporation stage. This proofreading is a prerequisite for the maintenance of fidelity for complete CCA synthesis.
Collapse
Affiliation(s)
- Yukimatsu Toh
- Institute of Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Evolution of tRNA nucleotidyltransferases: a small deletion generated CC-adding enzymes. Proc Natl Acad Sci U S A 2008; 105:7953-8. [PMID: 18523015 DOI: 10.1073/pnas.0801971105] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CCA-adding enzymes are specialized polymerases that add a specific sequence (C-C-A) to tRNA 3' ends without requiring a nucleic acid template. In some organisms, CCA synthesis is accomplished by the collaboration of evolutionary closely related enzymes with partial activities (CC and A addition). These enzymes carry all known motifs of the catalytic core found in CCA-adding enzymes. Therefore, it is a mystery why these polymerases are restricted in their activity and do not synthesize a complete CCA terminus. Here, a region located outside of the conserved motifs was identified that is missing in CC-adding enzymes. When recombinantly introduced from a CCA-adding enzyme, the region restores full CCA-adding activity in the resulting chimera. Correspondingly, deleting the region in a CCA-adding enzyme abolishes the A-incorporating activity, also leading to CC addition. The presence of the deletion was used to predict the CC-adding activity of putative bacterial tRNA nucleotidyltransferases. Indeed, two such enzymes were experimentally identified as CC-adding enzymes, indicating that the existence of the deletion is a hallmark for this activity. Furthermore, phylogenetic analysis of identified and putative CC-adding enzymes indicates that this type of tRNA nucleotidyltransferases emerged several times during evolution. Obviously, these enzymes descend from CCA-adding enzymes, where the occurrence of the deletion led to the restricted activity of CC addition. A-adding enzymes, however, seem to represent a monophyletic group that might also be ancestral to CCA-adding enzymes. Yet, experimental data indicate that it is possible that A-adding activities also evolved from CCA-adding enzymes by the occurrence of individual point mutations.
Collapse
|
42
|
Dupasquier M, Kim S, Halkidis K, Gamper H, Hou YM. tRNA integrity is a prerequisite for rapid CCA addition: implication for quality control. J Mol Biol 2008; 379:579-88. [PMID: 18466919 DOI: 10.1016/j.jmb.2008.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Revised: 03/22/2008] [Accepted: 04/02/2008] [Indexed: 12/01/2022]
Abstract
CCA addition to the 3' end is an essential step in tRNA maturation. High-resolution crystal structures of the CCA enzymes reveal primary enzyme contact with the tRNA minihelix domain, consisting of the acceptor stem and T stem-loop. RNA and DNA minihelices are efficient substrates for CCA addition in steady-state kinetics. However, in contrast to structural models and steady-state experiments, we show here by single-turnover kinetics that minihelices are insufficient substrates for the Escherichia coli CCA enzyme and that only the full-length tRNA is kinetically competent. Even a nick in the full-length tRNA backbone in the T loop, or as far away from the minihelix domain as in the anticodon loop, prevents efficient CCA addition. These results suggest a kinetic quality control provided by the CCA enzyme to inspect the integrity of the tRNA molecule and to discriminate against nicked or damaged species from further maturation.
Collapse
Affiliation(s)
- Marcel Dupasquier
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
43
|
Shan X, Russell TA, Paul SM, Kushner DB, Joyce PBM. Characterization of a temperature-sensitive mutation that impairs the function of yeast tRNA nucleotidyltransferase. Yeast 2008; 25:219-33. [DOI: 10.1002/yea.1582] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
44
|
Martin G, Doublié S, Keller W. Determinants of substrate specificity in RNA-dependent nucleotidyl transferases. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2007; 1779:206-16. [PMID: 18177750 DOI: 10.1016/j.bbagrm.2007.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 11/23/2007] [Accepted: 12/06/2007] [Indexed: 01/28/2023]
Abstract
Poly(A) polymerases were identified almost 50 years ago as enzymes that add multiple AMP residues to the 3' ends of primer RNAs without use of a template from ATP as cosubstrate and with release of pyrophosphate. Based on sequence homology of a signature motif in the catalytic domain, poly(A) polymerases were later found to belong to a superfamily of nucleotidyl transferases acting on a very diverse array of substrates. Enzymes belonging to the superfamily can add from single nucleotides of AMP, CMP or UMP to RNA, antibiotics and proteins but also homopolymers of many hundred residues to the 3' ends of RNA molecules. The recently reported structures of several nucleotidyl transferases facilitate the study of the catalytic mechanisms of these very diverse enzymes. Numerous structures of CCA-adding enzymes have now revealed all steps in the formation of a CCA tail at the 3' end of tRNAs. In addition, structures of poly(A) polymerases and uridylyl transferases are now available as binary and ternary complexes with incoming nucleotide and RNA primer. Some of these proteins undergo significant conformational changes after substrate binding. This is proposed to be an indication for an induced fit mechanism that drives substrate selection and leads to catalysis. Insights from recent structures of ternary complexes indicate an important role for the primer molecule in selecting the incoming nucleotide.
Collapse
Affiliation(s)
- Georges Martin
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, Basel, Switzerland
| | | | | |
Collapse
|
45
|
Abstract
RNA-specific nucleotidyl transferases (rNTrs) are a diverse family of template-independent polymerases that add ribonucleotides to the 3'-ends of RNA molecules. All rNTrs share a related active-site architecture first described for DNA polymerase beta and a catalytic mechanism conserved among DNA and RNA polymerases. The best known examples are the nuclear poly(A) polymerases involved in the 3'-end processing of eukaryotic messenger RNA precursors and the ubiquitous CCA-adding enzymes that complete the 3'-ends of tRNA molecules. In recent years, a growing number of new enzymes have been added to the list that now includes the "noncanonical" poly(A) polymerases involved in RNA quality control or in the readenylation of dormant messenger RNAs in the cytoplasm. Other members of the group are terminal uridylyl transferases adding single or multiple UMP residues in RNA-editing reactions or upon the maturation of small RNAs and poly(U) polymerases, the substrates of which are still not known. 2'-5'Oligo(A) synthetases differ from the other rNTrs by synthesizing oligonucleotides with 2'-5'-phosphodiester bonds de novo.
Collapse
Affiliation(s)
- Georges Martin
- Department of Cell Biology, Biozentrum, University of Basel, Basel, Switzerland
| | | |
Collapse
|
46
|
Lizano E, Schuster J, Müller M, Kelso J, Mörl M. A splice variant of the human CCA-adding enzyme with modified activity. J Mol Biol 2006; 366:1258-65. [PMID: 17204286 DOI: 10.1016/j.jmb.2006.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 11/28/2006] [Accepted: 12/07/2006] [Indexed: 11/21/2022]
Abstract
The human CCA-adding enzyme (tRNA nucleotidyltransferase) is an essential enzyme that catalyzes the addition of the CCA terminus to the 3' end of tRNA precursors, a reaction which is a fundamental prerequisite for mature tRNAs to become aminoacylated and to participate in protein biosynthesis. To date only one form of this enzyme has been identified in humans. Here, we describe the sequence and activity of a splice variant of the human CCA-adding enzyme identified in public cDNA databases. The in silico analyses performed on this splice variant indicate that there is conservation of the alternative splice donor site among species and indicate that it seems to be used in vivo. Moreover, the recombinantly expressed protein is active in vitro and accepts tRNA transcripts as substrates incorporating the dinucleotide sequence CC to their 3' end, in contrast to the activity of the full length enzyme. These findings strongly suggest that the splice variant of the human CCA-adding enzyme is expressed in the cell although the in vivo function remains unclear.
Collapse
Affiliation(s)
- Esther Lizano
- University of Leipzig, Institute for Biochemistry, Brüderstrasse 34, D-04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
47
|
Cho HD, Chen Y, Varani G, Weiner AM. A model for C74 addition by CCA-adding enzymes: C74 addition, like C75 and A76 addition, does not involve tRNA translocation. J Biol Chem 2006; 281:9801-11. [PMID: 16455665 DOI: 10.1074/jbc.m512603200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CCA-adding enzyme adds CCA to the 3'-end of tRNA one nucleotide at a time, using CTP and ATP as substrates. We found previously that tRNA does not rotate or translocate on the enzyme during the addition of C75 and A76. We therefore predicted that the growing 3'-end of tRNA must, upon addition of each nucleotide, refold to reposition the new 3'-hydroxyl equivalently relative to the solitary nucleotidyltransferase motif. Cocrystal structures of the class I archaeal Archaeoglobus fulgidus enzyme, poised for addition of C75 and A76, confirmed this prediction. We have also demonstrated that an evolutionarily flexible beta-turn facilitates progressive refolding of the 3'-terminal C74 and C75 residues during C75 and A76 addition. Although useful cocrystals corresponding to C74 addition have not yet been obtained, we now show experimentally that tRNA does not rotate or translocate during C74 addition. We therefore propose, based on the existing A. fulgidus cocrystal structures, that the same flexible beta-turn functions as a wedge between the discriminator base (N73) and the terminal base pair of the acceptor stem, unstacking and repositioning N73 to attack the incoming CTP. Thus a single flexible beta-turn would orchestrate consecutive addition of all three nucleotides without significant movement of the tRNA on the enzyme surface.
Collapse
Affiliation(s)
- Hyundae D Cho
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, Washington 98195-7350, USA
| | | | | | | |
Collapse
|
48
|
Deng J, Ernst NL, Turley S, Stuart KD, Hol WGJ. Structural basis for UTP specificity of RNA editing TUTases from Trypanosoma brucei. EMBO J 2005; 24:4007-17. [PMID: 16281058 PMCID: PMC1356302 DOI: 10.1038/sj.emboj.7600861] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 10/10/2005] [Indexed: 01/07/2023] Open
Abstract
Trypanosomatids are pathogenic protozoa that undergo a unique form of post-transcriptional RNA editing that inserts or deletes uridine nucleotides in many mitochondrial pre-mRNAs. Editing is catalyzed by a large multiprotein complex, the editosome. A key editosome enzyme, RNA editing terminal uridylyl transferase 2 (TUTase 2; RET2) catalyzes the uridylate addition reaction. Here, we report the 1.8 A crystal structure of the Trypanosoma brucei RET2 apoenzyme and its complexes with uridine nucleotides. This structure reveals that the specificity of the TUTase for UTP is determined by a crucial water molecule that is exquisitely positioned by the conserved carboxylates D421 and E424 to sense a hydrogen atom on the N3 position of the uridine base. The three-domain structure also unveils a unique domain arrangement not seen before in the nucleotidyltansferase superfamily, with a large domain insertion between the catalytic aspartates. This insertion is present in all trypanosomatid TUTases. We also show that TbRET2 is essential for survival of the bloodstream form of the parasite and therefore is a potential target for drug therapy.
Collapse
Affiliation(s)
- Junpeng Deng
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
- Department of Biochemistry, Biomolecular Structure Center, University of Washington, Seattle, WA, USA
- Department of Biological Structure, Biomolecular Structure Center, University of Washington, Seattle, WA, USA
| | | | - Stewart Turley
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
- Department of Biochemistry, Biomolecular Structure Center, University of Washington, Seattle, WA, USA
- Department of Biological Structure, Biomolecular Structure Center, University of Washington, Seattle, WA, USA
| | - Kenneth D Stuart
- Seattle Biomedical Research Institute, Seattle, WA, USA
- Department of Pathobiology, University of Washington, Seattle, WA, USA
| | - Wim GJ Hol
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
- Department of Biochemistry, Biomolecular Structure Center, University of Washington, Seattle, WA, USA
- Department of Biological Structure, Biomolecular Structure Center, University of Washington, Seattle, WA, USA
- Department of Biochemistry, Biomolecular Structure Center, University of Washington, Seattle, WA 98195, USA. Tel.: +1 206 685 7044; Fax: +1 206 685 7002; E-mail:
| |
Collapse
|
49
|
Taanman JW, Llewelyn Williams S. The Human Mitochondrial Genome. OXIDATIVE STRESS AND DISEASE 2005. [DOI: 10.1201/9781420028843.ch3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
50
|
Abstract
The CCA-adding enzyme (tRNA nucleotidyltransferase) builds and repairs the 3' end of tRNA. A single active site adds both CTP and ATP, but the enzyme has no nucleic acid template, and tRNA does not translocate or rotate during C75 and A76 addition. We modeled the structure of the class I archaeal Sulfolobus shibatae CCA-adding enzyme on eukaryotic poly(A) polymerase and mutated residues in the vicinity of the active site. We found mutations that specifically affected C74, C75, or A76 addition, as well as mutations that progressively impaired addition of CCA. Many of these mutations clustered in an evolutionarily versatile beta-turn located between strands 3 and 4 of the nucleotidyltransferase domain. Our mutational analysis confirms and extends recent crystallographic studies of the highly homologous Archaeoglobus fulgidus enzyme. We suggest that the unusual phenotypes of the beta-turn mutants reflect the consecutive conformations assumed by the beta-turn as it presents the discriminator base N73, then C74, and finally C75 to the active site without translocation or rotation of the tRNA acceptor stem. We also suggest that beta-turn mutants can affect nucleotide selection because the growing 3' end of tRNA must be properly positioned to serve as part of the ribonucleoprotein template that selects the incoming nucleotide.
Collapse
Affiliation(s)
- Hyundae D Cho
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, Washington 98195-7350, USA
| | | | | |
Collapse
|