1
|
Mietzsch M, Bennett A, McKenna R. Structural Capsidomics of Single-Stranded DNA Viruses. Viruses 2025; 17:333. [PMID: 40143263 PMCID: PMC11945456 DOI: 10.3390/v17030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/05/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Single-stranded DNA (ssDNA) viruses are a diverse group of pathogens with broad host range, including bacteria, archaea, protists, fungi, plants, invertebrates, and vertebrates. Their small compact genomes have evolved to encode multiple proteins. This review focuses on the structure and functional diversity of the icosahedral capsids across the ssDNA viruses. To date, X-ray crystallography and cryo-electron microscopy structural studies have provided detailed capsid architectures for 8 of the 35 ssDNA virus families, illustrating variations in assembly mechanisms, symmetry, and structural adaptations of the capsid. However, common features include the conserved jelly-roll motif of the capsid protein and strategies for genome packaging, also showing evolutionary convergence. The ever-increasing availability of genomic sequences of ssDNA viruses and predictive protein modeling programs, such as using AlphaFold, allows for the extension of structural insights to the less-characterized families. Therefore, this review is a comparative analysis of the icosahedral ssDNA virus families and how the capsid proteins are arranged with different tessellations to form icosahedral spheres. It summarizes the current knowledge, emphasizing gaps in the structural characterization of the ssDNA capsidome, and it underscores the importance of continued exploration to understand the molecular underpinnings of capsid function and evolution. These insights have implications for virology, molecular biology, and therapeutic applications.
Collapse
Affiliation(s)
- Mario Mietzsch
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA;
| | - Antonette Bennett
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA;
| | | |
Collapse
|
2
|
Abramsson ML, Persson LJ, Sobott F, Marklund EG, Landreh M. Charging of DNA Complexes in Positive-Mode Native Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:3157-3162. [PMID: 39417657 PMCID: PMC11622369 DOI: 10.1021/jasms.4c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Native mass spectrometry (nMS) provides insights into the structures and dynamics of biomacromolecules in their native-like states by preserving noncovalent interactions through "soft" electrospray ionization (ESI). For native proteins, the number of charges that are acquired scales with the surface area and mass. Here, we explore the effect of highly negatively charged DNA on the ESI charge of protein complexes and find a reduction of the mass-to-charge ratio as well as a greater variation. The charge state distributions of pure DNA assemblies show a lower mass-to-charge ratio than proteins due to their greater density in the gas phase, whereas the charge of protein-DNA complexes can additionally be influenced by the distribution of the ESI charges, ion pairing events, and collapse of the DNA components. Our findings suggest that structural features of protein-DNA complexes can result in lower charge states than expected for proteins.
Collapse
Affiliation(s)
- Mia L. Abramsson
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Sweden
| | - Louise J. Persson
- Department
of Chemistry - BMC, Uppsala University, 751 23, Uppsala, Sweden
| | - Frank Sobott
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, LS2
9JT Leeds, U.K.
| | - Erik G. Marklund
- Department
of Chemistry - BMC, Uppsala University, 751 23, Uppsala, Sweden
| | - Michael Landreh
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Sweden
- Department
for Cell and Molecular Biology, Uppsala
University, 751 24 Uppsala, Sweden
| |
Collapse
|
3
|
Ngo VQH, Sotomski M, Guenne A, Mariadassou M, Krupovic M, Enault F, Bize A. Establishing Host-Virus Link Through Host Metabolism: Viral DNA SIP Validation Using T4 Bacteriophage and E. coli. Curr Microbiol 2024; 81:266. [PMID: 39003664 PMCID: PMC11247047 DOI: 10.1007/s00284-024-03774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/14/2024] [Indexed: 07/15/2024]
Abstract
DNA Stable Isotope Probing is emerging as a potent methodology for investigating host-virus interactions, based on the essential reliance of viruses on host organisms for the production of virions. Despite the anticipated link between host isotopic compositions and the generated virions, the application of stable isotope probing to viral DNA has never been evaluated on simple biological models. In this study, we assessed the efficacy of this method on the bacteriophage T4 and its host, Escherichia coli. Through the cultivation of E. coli cells on a 13C-enriched substrate and subsequent propagation of T4 bacteriophage, we examine the degree of isotopic enrichment in viral DNA. Our investigation reveals a strong correlation between the proportion of 13C6-D-glucose in the growth substrate and the buoyant density in CsCl gradient of T4 DNA, confirming the validity of DNA SIP in viral ecology. These findings underscore the potential of DNA SIP as a robust tool for characterizing the diversity of viruses infecting hosts with specific metabolic activities and provide then a foundation for further exploration in viral ecology research.
Collapse
Affiliation(s)
| | | | - Angeline Guenne
- Université Paris-Saclay, INRAE, PROSE, 92761, Antony, France
| | - Mahendra Mariadassou
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France
- BioinfOmics, MIGALE Bioinformatics Facility, Université Paris-Saclay, INRAE, 78350, Jouy-en-Josas, France
| | - Mart Krupovic
- CNRS UMR6047, Archaeal Virology Unit, Institut Pasteur, Université de Paris, 75015, Paris, France
| | - François Enault
- Université Clermont Auvergne, CNRS, LMGE, 63000, Clermont-Ferrand, France
| | - Ariane Bize
- Université Paris-Saclay, INRAE, PROSE, 92761, Antony, France.
| |
Collapse
|
4
|
Villanueva Valencia JR, Tsimtsirakis E, Krueger S, Evilevitch A. Temperature-induced DNA density transition in phage λ capsid revealed with contrast-matching SANS. Proc Natl Acad Sci U S A 2023; 120:e2220518120. [PMID: 37903276 PMCID: PMC10636372 DOI: 10.1073/pnas.2220518120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 09/25/2023] [Indexed: 11/01/2023] Open
Abstract
Structural details of a genome packaged in a viral capsid are essential for understanding how the structural arrangement of a viral genome in a capsid controls its release dynamics during infection, which critically affects viral replication. We previously found a temperature-induced, solid-like to fluid-like mechanical transition of packaged λ-genome that leads to rapid DNA ejection. However, an understanding of the structural origin of this transition was lacking. Here, we use small-angle neutron scattering (SANS) to reveal the scattering form factor of dsDNA packaged in phage λ capsid by contrast matching the scattering signal from the viral capsid with deuterated buffer. We used small-angle X-ray scattering and cryoelectron microscopy reconstructions to determine the initial structural input parameters for intracapsid DNA, which allows accurate modeling of our SANS data. As result, we show a temperature-dependent density transition of intracapsid DNA occurring between two coexisting phases-a hexagonally ordered high-density DNA phase in the capsid periphery and a low-density, less-ordered DNA phase in the core. As the temperature is increased from 20 °C to 40 °C, we found that the core-DNA phase undergoes a density and volume transition close to the physiological temperature of infection (~37 °C). The transition yields a lower energy state of DNA in the capsid core due to lower density and reduced packing defects. This increases DNA mobility, which is required to initiate rapid genome ejection from the virus capsid into a host cell, causing infection. These data reconcile our earlier findings of mechanical DNA transition in phage.
Collapse
Affiliation(s)
| | - Efthymios Tsimtsirakis
- Department of Experimental Medical Science and NanoLund, Lund University, Lund22184, Sweden
| | - Susan Krueger
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD20899-6102
| | - Alex Evilevitch
- Department of Experimental Medical Science and NanoLund, Lund University, Lund22184, Sweden
| |
Collapse
|
5
|
Saroj DB, Ahire JJ, Shukla R. Genetic and phenotypic assessments for the safety of probiotic Bacillus clausii 088AE. 3 Biotech 2023; 13:238. [PMID: 37333714 PMCID: PMC10275836 DOI: 10.1007/s13205-023-03662-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/05/2023] [Indexed: 06/20/2023] Open
Abstract
In this study, we report on whole genome sequence analysis of clinically documented, commercial probiotic Bacillus clausii 088AE and genome features contributing to probiotic properties. The whole genome sequence of B. clausii 088AE generated a single scaffold of 4,598,457 bp with 44.74 mol% G + C. This assembled genome sequence annotated by the RAST resulted in 4371 coding genes, 75 tRNAs, and 22 rRNAs. Gene ontology classification indicated 39.5% proteins with molecular function, 44.24% cellular component, and 16.25% proteins involved in biological processes. In taxonomic analysis, B. clausii 088AE shared 99% identity with B. clausii DSM 8716. The gene sequences related to safety and genome stability such as antibiotic resistance (840), virulence factors (706), biogenic amines (1), enterotoxin (0), emetic toxin (0), lanthipeptides (4), prophage (4) and clustered regularly interspaced short palindromic repeats (CRISPR) sequences (11), were identified and evaluated for safety and functions. The absence of functional prophage sequences and the presence of CRISPR indicated an advantage in genome stability. Moreover, the presence of genome features contributing to probiotic characteristics such as acid, and bile salt tolerance, adhesion to the gut mucosa, and environmental resistance ensure the strains survivability when consumed as a probiotic. In conclusion, the absence of risks associated with sequences/genes in the B. clausii 088AE genome and the presence of essential probiotic traits confirm the strain to be safe for use as a probiotic.
Collapse
Affiliation(s)
- Dina B. Saroj
- Advanced Enzyme Technologies Limited, Sun Magnetica, Louiswadi, Thane-West, Maharashtra 400 604 India
| | - Jayesh J. Ahire
- Advanced Enzyme Technologies Limited, Sun Magnetica, Louiswadi, Thane-West, Maharashtra 400 604 India
| | - Rohit Shukla
- Advanced Enzyme Technologies Limited, Sun Magnetica, Louiswadi, Thane-West, Maharashtra 400 604 India
| |
Collapse
|
6
|
Hestrin R, Kan M, Lafler M, Wollard J, Kimbrel JA, Ray P, Blazewicz SJ, Stuart R, Craven K, Firestone M, Nuccio EE, Pett-Ridge J. Plant-associated fungi support bacterial resilience following water limitation. THE ISME JOURNAL 2022; 16:2752-2762. [PMID: 36085516 PMCID: PMC9666503 DOI: 10.1038/s41396-022-01308-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022]
Abstract
Drought disrupts soil microbial activity and many biogeochemical processes. Although plant-associated fungi can support plant performance and nutrient cycling during drought, their effects on nearby drought-exposed soil microbial communities are not well resolved. We used H218O quantitative stable isotope probing (qSIP) and 16S rRNA gene profiling to investigate bacterial community dynamics following water limitation in the hyphospheres of two distinct fungal lineages (Rhizophagus irregularis and Serendipita bescii) grown with the bioenergy model grass Panicum hallii. In uninoculated soil, a history of water limitation resulted in significantly lower bacterial growth potential and growth efficiency, as well as lower diversity in the actively growing bacterial community. In contrast, both fungal lineages had a protective effect on hyphosphere bacterial communities exposed to water limitation: bacterial growth potential, growth efficiency, and the diversity of the actively growing bacterial community were not suppressed by a history of water limitation in soils inoculated with either fungus. Despite their similar effects at the community level, the two fungal lineages did elicit different taxon-specific responses, and bacterial growth potential was greater in R. irregularis compared to S. bescii-inoculated soils. Several of the bacterial taxa that responded positively to fungal inocula belong to lineages that are considered drought susceptible. Overall, H218O qSIP highlighted treatment effects on bacterial community structure that were less pronounced using traditional 16S rRNA gene profiling. Together, these results indicate that fungal-bacterial synergies may support bacterial resilience to moisture limitation.
Collapse
Affiliation(s)
- Rachel Hestrin
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, USA.
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA.
| | - Megan Kan
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, USA
| | - Marissa Lafler
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, USA
| | - Jessica Wollard
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, USA
| | - Jeffrey A Kimbrel
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, USA
| | - Prasun Ray
- Department of Natural Resources, University of Maryland Eastern Shore, Princess Anne, MD, USA
- Plant Biology Division, Noble Research Institute, Ardmore, OK, USA
| | - Steven J Blazewicz
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, USA
| | - Rhona Stuart
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, USA
| | - Kelly Craven
- Plant Biology Division, Noble Research Institute, Ardmore, OK, USA
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Mary Firestone
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, USA
| | - Erin E Nuccio
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, USA
| | - Jennifer Pett-Ridge
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, USA.
- Life & Environmental Sciences Department, University of California Merced, Merced, CA, USA.
| |
Collapse
|
7
|
Cahanovitc R, Livne-Luzon S, Angel R, Klein T. Ectomycorrhizal fungi mediate belowground carbon transfer between pines and oaks. THE ISME JOURNAL 2022; 16:1420-1429. [PMID: 35042973 PMCID: PMC9039061 DOI: 10.1038/s41396-022-01193-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023]
Abstract
Inter-kingdom belowground carbon (C) transfer is a significant, yet hidden, biological phenomenon, due to the complexity and highly dynamic nature of soil ecology. Among key biotic agents influencing C allocation belowground are ectomycorrhizal fungi (EMF). EMF symbiosis can extend beyond the single tree-fungus partnership to form common mycorrhizal networks (CMNs). Despite the high prevalence of CMNs in forests, little is known about the identity of the EMF transferring the C and how these in turn affect the dynamics of C transfer. Here, Pinus halepensis and Quercus calliprinos saplings growing in forest soil were labeled using a 13CO2 labeling system. Repeated samplings were applied during 36 days to trace how 13C was distributed along the tree-fungus-tree pathway. To identify the fungal species active in the transfer, mycorrhizal fine root tips were used for DNA-stable isotope probing (SIP) with 13CO2 followed by sequencing of labeled DNA. Assimilated 13CO2 reached tree roots within four days and was then transferred to various EMF species. C was transferred across all four tree species combinations. While Tomentella ellisii was the primary fungal mediator between pines and oaks, Terfezia pini, Pustularia spp., and Tuber oligospermum controlled C transfer among pines. We demonstrate at a high temporal, quantitative, and taxonomic resolution, that C from EMF host trees moved into EMF and that C was transferred further to neighboring trees of similar and distinct phylogenies.
Collapse
Affiliation(s)
- Rotem Cahanovitc
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Stav Livne-Luzon
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Roey Angel
- Soil and Water Research Infrastructure and Institute of Soil Biology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Tamir Klein
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
8
|
Yu H, Kondo Y, Fujii K, Yokoya A, Yamashita S. Establishment of a Method for Investigating Direct and Indirect Actions of Ionizing Radiation Using Scavenger-free Plasmid DNA. Radiat Res 2022; 197:594-604. [PMID: 35363873 DOI: 10.1667/rade-21-00057.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 03/10/2022] [Indexed: 11/03/2022]
Abstract
In this study, an improved method using scavenger-free plasmid DNA was established to accurately determine yields of DNA damage induced by direct and indirect actions of ionizing radiation. The scavenger-free plasmid DNA was obtained by dialysis over 5-7 days, and the DNA solvent was replaced with phosphate buffer to completely remove impurities, which could be scavengers of radicals produced as a result of water radiolysis. DNA samples of films and dilute aqueous solutions were used to separately evaluate contributions of the direct and indirect actions of X rays (150-160 kVp). The irradiated DNA was analyzed by agarose gel electrophoresis to quantify strand-break yields. The yields of single-strand breaks (SSBs), n(SSB), were determined to be (6.5 ± 2.0) × 10-10 and (3.1 ± 0.9) × 10-7 SSBs/Gy/Da for the film and solution samples, respectively, showing a significant contribution of hydroxyl radicals (•OH) compared with direct energy depositions from ionizing radiation to DNA. As observed in SSBs, the yields of double-strand breaks (DSBs), n(DSB), were (5.6 ± 1.1) × 10-11 and (1.3 ± 0.2) × 10-8 DSBs/Gy/Da for the film and solution samples, respectively. The yield ratio of DSBs to SSBs, that is, n(DSB)/n(SSB), was 0.091 ± 0.026 for the film samples, while it was much lower for the solution samples (0.045 ± 0.010), indicating that direct actions result in more localized strand breaks relative to indirect actions. Base excision repair enzymes, namely, endonuclease III (Nth) and formamidopyrimidine-DNA glycosylase (Fpg), were utilized after irradiations to convert base lesions and apurinic/apyrimidinic (AP) sites into strand breaks. The amounts of Nth and Fpg for the conversion were optimized to a few units per μg of DNA, although the optimal concentrations can differ among conditions.
Collapse
Affiliation(s)
- Hao Yu
- Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188, Japan
| | - Yusuke Kondo
- Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kentaro Fujii
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1106, Japan
| | - Akinari Yokoya
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1106, Japan
| | - Shinichi Yamashita
- Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188, Japan.,Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
9
|
Developing an Updated Strategy for Estimating the Free-Energy Parameters in RNA Duplexes. Int J Mol Sci 2021; 22:ijms22189708. [PMID: 34575896 PMCID: PMC8467000 DOI: 10.3390/ijms22189708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
For the last 20 years, it has been common lore that the free energy of RNA duplexes formed from canonical Watson-Crick base pairs (bps) can be largely approximated with dinucleotide bp parameters and a few simple corrective constants that are duplex independent. Additionally, the standard benchmark set of duplexes used to generate the parameters were GC-rich in the shorter duplexes and AU-rich in the longer duplexes, and the length of the majority of the duplexes ranged between 6 and 8 bps. We were curious if other models would generate similar results and whether adding longer duplexes of 17 bps would affect the conclusions. We developed a gradient-descent fitting program for obtaining free-energy parameters-the changes in Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS), and the melting temperature (Tm)-directly from the experimental melting curves. Using gradient descent and a genetic algorithm, the duplex melting results were combined with the standard benchmark data to obtain bp parameters. Both the standard (Turner) model and a new model that includes length-dependent terms were tested. Both models could fit the standard benchmark data; however, the new model could handle longer sequences better. We developed an updated strategy for fitting the duplex melting data.
Collapse
|
10
|
Harper CC, Brauer DD, Francis MB, Williams ER. Direct observation of ion emission from charged aqueous nanodrops: effects on gaseous macromolecular charging. Chem Sci 2021; 12:5185-5195. [PMID: 34168773 PMCID: PMC8179642 DOI: 10.1039/d0sc05707j] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/25/2021] [Indexed: 01/04/2023] Open
Abstract
Mechanistic information about how gaseous ions are formed from charged droplets has been difficult to establish because direct observation of nanodrops in a size range relevant to gaseous macromolecular ion formation by optical or traditional mass spectrometry methods is challenging owing to their small size and heterogeneity. Here, the mass and charge of individual aqueous nanodrops between 1-10 MDa (15-32 nm diameter) with ∼50-300 charges are dynamically monitored for 1 s using charge detection mass spectrometry. Discrete losses of minimally solvated singly charged ions occur, marking the first direct observation of ion emission from aqueous nanodrops in late stages of droplet evaporation relevant to macromolecular ion formation in native mass spectrometry. Nanodrop charge depends on the identity of constituent ions, with pure water nanodrops charged slightly above the Rayleigh limit and aqueous solutions containing alkali metal ions charged progressively below the Rayleigh limit with increasing cation size. MS2 capsid ions (∼3.5 MDa; ∼27 nm diameter) are more highly charged from aqueous ammonium acetate than from its biochemically preferred, 100 mM NaCl/10 mM Na phosphate solution, consistent with ion emission reducing the nanodrop and resulting capsid charge. The extent of charging indicates that the capsid partially collapses inside the nanodrops prior to the charging and formation of the dehydrated gaseous ions. These results demonstrate that ion emission can affect macromolecular charging and that conformational changes to macromolecular structure can occur in nanodrops prior to the formation of naked gaseous ions.
Collapse
Affiliation(s)
- Conner C Harper
- Department of Chemistry, University of California Berkeley California 94720-1460 USA
| | - Daniel D Brauer
- Department of Chemistry, University of California Berkeley California 94720-1460 USA
| | - Matthew B Francis
- Department of Chemistry, University of California Berkeley California 94720-1460 USA
| | - Evan R Williams
- Department of Chemistry, University of California Berkeley California 94720-1460 USA
| |
Collapse
|
11
|
Sieradzki ET, Koch BJ, Greenlon A, Sachdeva R, Malmstrom RR, Mau RL, Blazewicz SJ, Firestone MK, Hofmockel KS, Schwartz E, Hungate BA, Pett-Ridge J. Measurement Error and Resolution in Quantitative Stable Isotope Probing: Implications for Experimental Design. mSystems 2020; 5:e00151-20. [PMID: 32694124 PMCID: PMC7566279 DOI: 10.1128/msystems.00151-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Quantitative stable isotope probing (qSIP) estimates isotope tracer incorporation into DNA of individual microbes and can link microbial biodiversity and biogeochemistry in complex communities. As with any quantitative estimation technique, qSIP involves measurement error, and a fuller understanding of error, precision, and statistical power benefits qSIP experimental design and data interpretation. We used several qSIP data sets-from soil and seawater microbiomes-to evaluate how variance in isotope incorporation estimates depends on organism abundance and resolution of the density fractionation scheme. We assessed statistical power for replicated qSIP studies, plus sensitivity and specificity for unreplicated designs. As a taxon's abundance increases, the variance of its weighted mean density declines. Nine fractions appear to be a reasonable trade-off between cost and precision for most qSIP applications. Increasing the number of density fractions beyond that reduces variance, although the magnitude of this benefit declines with additional fractions. Our analysis suggests that, if a taxon has an isotope enrichment of 10 atom% excess, there is a 60% chance that this will be detected as significantly different from zero (with alpha 0.1). With five replicates, isotope enrichment of 5 atom% could be detected with power (0.6) and alpha (0.1). Finally, we illustrate the importance of internal standards, which can help to calibrate per sample conversions of %GC to mean weighted density. These results should benefit researchers designing future SIP experiments and provide a useful reference for metagenomic SIP applications where both financial and computational limitations constrain experimental scope.IMPORTANCE One of the biggest challenges in microbial ecology is correlating the identity of microorganisms with the roles they fulfill in natural environmental systems. Studies of microbes in pure culture reveal much about their genomic content and potential functions but may not reflect an organism's activity within its natural community. Culture-independent studies supply a community-wide view of composition and function in the context of community interactions but often fail to link the two. Quantitative stable isotope probing (qSIP) is a method that can link the identity and functional activity of specific microbes within a naturally occurring community. Here, we explore how the resolution of density gradient fractionation affects the error and precision of qSIP results, how they may be improved via additional experimental replication, and discuss cost-benefit balanced scenarios for SIP experimental design.
Collapse
Affiliation(s)
- Ella T Sieradzki
- University of California Berkeley, Environmental Science and Policy Management, Berkeley, California, USA
| | - Benjamin J Koch
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Alex Greenlon
- University of California Berkeley, Environmental Science and Policy Management, Berkeley, California, USA
| | - Rohan Sachdeva
- University of California Berkeley, Earth and Planetary Sciences, Berkeley, California, USA
| | - Rex R Malmstrom
- Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Rebecca L Mau
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | - Steven J Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Mary K Firestone
- University of California Berkeley, Environmental Science and Policy Management, Berkeley, California, USA
| | - Kirsten S Hofmockel
- Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
12
|
Microbial Taxon-Specific Isotope Incorporation with DNA Quantitative Stable Isotope Probing. Methods Mol Biol 2020; 2046:137-149. [PMID: 31407302 DOI: 10.1007/978-1-4939-9721-3_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Quantitative stable isotope probing (qSIP) measures rates of taxon-specific element assimilation in intact microbial communities, utilizing substrates labeled with a heavy isotope.The laboratory protocol for qSIP is nearly identical to that for conventional stable isotope probing, with two key additions: (1) in qSIP, qPCR measurements are conducted on each density fraction recovered after isopycnic separation, and (2) in qSIP, multiple density fractions are sequenced spanning the entire range of densities over which nucleic acids were recovered. qSIP goes beyond identifying taxa assimilating a substrate, as it also allows for measuring that assimilation for each taxon within a given microbial community. Here, we describe an analysis process necessary to determine atom fraction excess of a heavy stable isotope added to an environmental sample for a given taxon's DNA.
Collapse
|
13
|
Blazewicz SJ, Hungate BA, Koch BJ, Nuccio EE, Morrissey E, Brodie EL, Schwartz E, Pett-Ridge J, Firestone MK. Taxon-specific microbial growth and mortality patterns reveal distinct temporal population responses to rewetting in a California grassland soil. THE ISME JOURNAL 2020; 14:1520-1532. [PMID: 32203117 PMCID: PMC7242442 DOI: 10.1038/s41396-020-0617-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 02/01/2023]
Abstract
Microbial activity increases after rewetting dry soil, resulting in a pulse of carbon mineralization and nutrient availability. The biogeochemical responses to wet-up are reasonably well understood and known to be microbially mediated. Yet, the population level dynamics, and the resulting changes in microbial community patterns, are not well understood as ecological phenomena. Here, we used sequencing of 16S rRNA genes coupled with heavy water (H218O) DNA quantitative stable isotope probing to estimate population-specific rates of growth and mortality in response to a simulated wet-up event in a California annual grassland soil. Bacterial growth and mortality responded rapidly to wet-up, within 3 h, and continued throughout the 168 h incubation, with patterns of sequential growth observed at the phylum level. Of the 37 phyla detected in the prewet community, growth was found in 18 phyla while mortality was measured in 26 phyla. Rapid growth and mortality rates were measurable within 3 h of wet-up but had contrasting characteristics; growth at 3 h was dominated by select taxa within the Proteobacteria and Firmicutes, whereas mortality was taxonomically widespread. Furthermore, across the community, mortality exhibited density-independence, consistent with the indiscriminate shock resulting from dry-down and wet-up, whereas growth was density-dependent, consistent with control by competition or predation. Total aggregated growth across the community was highly correlated with total soil CO2 production. Together, these results illustrate how previously "invisible" population responses can translate quantitatively to emergent observations of ecosystem-scale biogeochemistry.
Collapse
Affiliation(s)
- Steven J Blazewicz
- Department of Environmental Science, Policy, and Management, University of California, 137 Mulford Hall, Berkeley, CA, 94720, USA.
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA.
- Lawrence Livermore National Laboratory, 7000 East Ave L-231, Livermore, CA, 94550, USA.
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Benjamin J Koch
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Erin E Nuccio
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Ember Morrissey
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Eoin L Brodie
- Department of Environmental Science, Policy, and Management, University of California, 137 Mulford Hall, Berkeley, CA, 94720, USA
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd. MS70A-3317, Berkeley, CA, 94720, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Mary K Firestone
- Department of Environmental Science, Policy, and Management, University of California, 137 Mulford Hall, Berkeley, CA, 94720, USA
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd. MS70A-3317, Berkeley, CA, 94720, USA
| |
Collapse
|
14
|
Wang J, Zhang X, Yao H. Optimizing ultracentrifugation conditions for DNA-based stable isotope probing (DNA-SIP). J Microbiol Methods 2020; 173:105938. [PMID: 32360380 DOI: 10.1016/j.mimet.2020.105938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
DNA-SIP (DNA-based stable isotope probing) is increasingly being employed in soil microbial ecology to identify those microbes assimilating the 13C/15N labelled substrate. Isopycnic gradient centrifugation is the primary experimental process for conducting DNA-SIP. However, diverse centrifugal conditions have been used in various recent studies. In order to get the optimum conditions of centrifugation for DNA-SIP, centrifugation time (36, 42, 48, 60 h), speed (45,000, 55,000 rpm) and the initial buoyant density (1.69, 1.71, 1.725 g ml-1), as were used extensively in related studies, were tested in this experiment with the Vti 65.2 rotor. DNA with either 13C-labelling or unlabelled was extracted from a paddy soil pre-incubated with either 13C-labelled or natural abundance glucose. After ultracentrifugation, the gene abundance of bacterial 16S rRNA, fungal 18S rRNA, bacterial and archaeal amoA within the fractioned DNA was detected. The results showed that centrifugation for 48 h was enough for the DNA to reach stabilization in the CsCl solution. The initial density of the mixed solution was best adjusted to 1.71 g ml-1 to ensure that most of the genes were concentrated on the middle fractions of the density gradient. Increasing the centrifugation speed would increase the density gradient of fractions; therefore, 45,000 rpm (184,000 g) was recommended so as to obtain the more widespread pattern of DNA in the centrifugal tube. We hope these findings will assist future researchers to conduct optimum ultracentrifugation for DNA-SIP.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China; Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China
| | - Xian Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Huaiying Yao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China; Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China; Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China.
| |
Collapse
|
15
|
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395:565-574. [PMID: 32007145 PMCID: PMC7159086 DOI: 10.1016/s0140-6736(20)30251-8] [Citation(s) in RCA: 7525] [Impact Index Per Article: 1505.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/02/2022]
Abstract
BACKGROUND In late December, 2019, patients presenting with viral pneumonia due to an unidentified microbial agent were reported in Wuhan, China. A novel coronavirus was subsequently identified as the causative pathogen, provisionally named 2019 novel coronavirus (2019-nCoV). As of Jan 26, 2020, more than 2000 cases of 2019-nCoV infection have been confirmed, most of which involved people living in or visiting Wuhan, and human-to-human transmission has been confirmed. METHODS We did next-generation sequencing of samples from bronchoalveolar lavage fluid and cultured isolates from nine inpatients, eight of whom had visited the Huanan seafood market in Wuhan. Complete and partial 2019-nCoV genome sequences were obtained from these individuals. Viral contigs were connected using Sanger sequencing to obtain the full-length genomes, with the terminal regions determined by rapid amplification of cDNA ends. Phylogenetic analysis of these 2019-nCoV genomes and those of other coronaviruses was used to determine the evolutionary history of the virus and help infer its likely origin. Homology modelling was done to explore the likely receptor-binding properties of the virus. FINDINGS The ten genome sequences of 2019-nCoV obtained from the nine patients were extremely similar, exhibiting more than 99·98% sequence identity. Notably, 2019-nCoV was closely related (with 88% identity) to two bat-derived severe acute respiratory syndrome (SARS)-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21, collected in 2018 in Zhoushan, eastern China, but were more distant from SARS-CoV (about 79%) and MERS-CoV (about 50%). Phylogenetic analysis revealed that 2019-nCoV fell within the subgenus Sarbecovirus of the genus Betacoronavirus, with a relatively long branch length to its closest relatives bat-SL-CoVZC45 and bat-SL-CoVZXC21, and was genetically distinct from SARS-CoV. Notably, homology modelling revealed that 2019-nCoV had a similar receptor-binding domain structure to that of SARS-CoV, despite amino acid variation at some key residues. INTERPRETATION 2019-nCoV is sufficiently divergent from SARS-CoV to be considered a new human-infecting betacoronavirus. Although our phylogenetic analysis suggests that bats might be the original host of this virus, an animal sold at the seafood market in Wuhan might represent an intermediate host facilitating the emergence of the virus in humans. Importantly, structural analysis suggests that 2019-nCoV might be able to bind to the angiotensin-converting enzyme 2 receptor in humans. The future evolution, adaptation, and spread of this virus warrant urgent investigation. FUNDING National Key Research and Development Program of China, National Major Project for Control and Prevention of Infectious Disease in China, Chinese Academy of Sciences, Shandong First Medical University.
Collapse
Affiliation(s)
- Roujian Lu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiang Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Juan Li
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Peihua Niu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bo Yang
- Division for Viral Disease Detection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Honglong Wu
- BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China
| | - Wenling Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Baoying Huang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Na Zhu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuhai Bi
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, China
| | - Xuejun Ma
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Faxian Zhan
- Division for Viral Disease Detection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Liang Wang
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, China
| | - Tao Hu
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Hong Zhou
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Zhenhong Hu
- Central Theater, People's Liberation Army General Hospital, Wuhan, China
| | - Weimin Zhou
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, Institute of Medical Virology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yao Meng
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ji Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yang Lin
- BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China
| | - Jianying Yuan
- BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China
| | - Zhihao Xie
- BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China
| | - Jinmin Ma
- BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China
| | - William J Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dayan Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenbo Xu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - George F Gao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, China
| | - Guizhen Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Weijun Chen
- BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China; The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan, China.
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Central Theater, People's Liberation Army General Hospital, Wuhan, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Barnett SE, Buckley DH. Simulating metagenomic stable isotope probing datasets with MetaSIPSim. BMC Bioinformatics 2020; 21:37. [PMID: 32000676 PMCID: PMC6993524 DOI: 10.1186/s12859-020-3372-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/16/2020] [Indexed: 11/10/2022] Open
Abstract
Background DNA-stable isotope probing (DNA-SIP) links microorganisms to their in-situ function in diverse environmental samples. Combining DNA-SIP and metagenomics (metagenomic-SIP) allows us to link genomes from complex communities to their specific functions and improves the assembly and binning of these targeted genomes. However, empirical development of metagenomic-SIP methods is hindered by the complexity and cost of these studies. We developed a toolkit, ‘MetaSIPSim,’ to simulate sequencing read libraries for metagenomic-SIP experiments. MetaSIPSim is intended to generate datasets for method development and testing. To this end, we used MetaSIPSim generated data to demonstrate the advantages of metagenomic-SIP over a conventional shotgun metagenomic sequencing experiment. Results Through simulation we show that metagenomic-SIP improves the assembly and binning of isotopically labeled genomes relative to a conventional metagenomic approach. Improvements were dependent on experimental parameters and on sequencing depth. Community level G + C content impacted the assembly of labeled genomes and subsequent binning, where high community G + C generally reduced the benefits of metagenomic-SIP. Furthermore, when a high proportion of the community is isotopically labeled, the benefits of metagenomic-SIP decline. Finally, the choice of gradient fractions to sequence greatly influences method performance. Conclusions Metagenomic-SIP is a valuable method for recovering isotopically labeled genomes from complex communities. We show that metagenomic-SIP performance depends on optimization of experimental parameters. MetaSIPSim allows for simulation of metagenomic-SIP datasets which facilitates the optimization and development of metagenomic-SIP experiments and analytical approaches for dealing with these data.
Collapse
Affiliation(s)
- Samuel E Barnett
- School of Integrative Plant Science, Cornell University, Bradfield Hall, room 705, 306 Tower Rd, Ithaca, NY, 14853, USA
| | - Daniel H Buckley
- School of Integrative Plant Science, Cornell University, Bradfield Hall, room 705, 306 Tower Rd, Ithaca, NY, 14853, USA.
| |
Collapse
|
17
|
Moore RJ, Lacey JA. Genomics of the Pathogenic Clostridia. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0033-2018. [PMID: 31215504 PMCID: PMC11257213 DOI: 10.1128/microbiolspec.gpp3-0033-2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Indexed: 12/12/2022] Open
Abstract
Whole-genome sequences are now available for all the clinically important clostridia and many of the lesser or opportunistically pathogenic clostridia. The complex clade structures of C. difficile, C. perfringens, and the species that produce botulinum toxins have been delineated by whole-genome sequence analysis. The true clostridia of cluster I show relatively low levels of gross genomic rearrangements within species, in contrast to the species of cluster XI, notably C. difficile, which have been found to have very plastic genomes with significant levels of chromosomal rearrangement. Throughout the clostridial phylotypes, a large proportion of the strain diversity is driven by the acquisition and loss of mobile elements, including phages, plasmids, insertion sequences, and transposons. Genomic analysis has been used to investigate the diversity and spread of C. difficile within hospital settings, the zoonotic transfer of isolates, and the emergence, origins, and geographic spread of epidemic ribotypes. In C. perfringens the clades defined by chromosomal sequence analysis show no indications of clustering based on host species or geographical location. Whole-genome sequence analysis helps to define the different survival and pathogenesis strategies that the clostridia use. Some, such as C. botulinum, produce toxins which rapidly act to kill the host, whereas others, such as C. perfringens and C. difficile, produce less lethal toxins which can damage tissue but do not rapidly kill the host. The genomes provide a resource that can be mined to identify potential vaccine antigens and targets for other forms of therapeutic intervention.
Collapse
Affiliation(s)
- Robert J Moore
- Host-Microbe Interactions Laboratory, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Jake A Lacey
- Doherty Department, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
18
|
Theodorakopoulos N. Thermodynamics of force-induced B-DNA melting: Single-strand discreteness matters. Phys Rev E 2019; 99:032404. [PMID: 30999428 DOI: 10.1103/physreve.99.032404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Indexed: 11/07/2022]
Abstract
Overstretching of B-DNA is currently understood as force-induced melting. Depending on the geometry of the stretching experiment, the force threshold for the overstretching transition is around 65 or 110 pN. Although the mechanisms behind force-induced melting have been correctly described by Rouzina and Bloomfield [Biophys. J. 80, 882 (2001)BIOJAU0006-349510.1016/S0006-3495(01)76067-5], neither force threshold has been exactly calculated by theory. In this work, a detailed analysis of the force-extension curve is presented, based on a description of single-stranded (ss) DNA in terms of the discrete Kratky-Porod model, consistent with (i) the contour length expected from the crystallographically determined monomer distance and (ii) a high value of the elastic stretch modulus arising from covalent bonding. The value estimated for the ss-DNA persistence length, λ=1.0 nm, is at the low end of currently known estimates and reflects the intrinsic stiffness of the partially, or fully stretched state, where electrostatic repulsion effects are expected to be minimal. A detailed analysis of single- and double-stranded DNA free energies provides estimates of the overstretching force thresholds. In the unconstrained geometry, the predicted threshold is 64 pN. In the constrained geometry, after allowing for the entropic penalty of the plectonemic topology of the molten state, the predicted threshold is 111 pN.
Collapse
Affiliation(s)
- Nikos Theodorakopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Vasileos Constantinou 48, 116 35 Athens, Greece and Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
19
|
Piovesan A, Pelleri MC, Antonaros F, Strippoli P, Caracausi M, Vitale L. On the length, weight and GC content of the human genome. BMC Res Notes 2019; 12:106. [PMID: 30813969 PMCID: PMC6391780 DOI: 10.1186/s13104-019-4137-z] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/15/2019] [Indexed: 01/08/2023] Open
Abstract
Objective Basic parameters commonly used to describe genomes including length, weight and relative guanine-cytosine (GC) content are widely cited in absence of a primary source. By using updated data and original software we determined these values to the best of our knowledge as standard reference for the whole human nuclear genome, for each chromosome and for mitochondrial DNA. We also devised a method to calculate the relative GC content in the whole messenger RNA sequence set and in transcriptomes by multiplying the GC content of each gene by its mean expression level. Results The male nuclear diploid genome extends for 6.27 Gigabase pairs (Gbp), is 205.00 cm (cm) long and weighs 6.41 picograms (pg). Female values are 6.37 Gbp, 208.23 cm, 6.51 pg. The individual variability and the implication for the DNA informational density in terms of bits/volume were discussed. The genomic GC content is 40.9%. Following analysis in different transcriptomes and species, we showed that the greatest deviation was observed in the pathological condition analysed (trisomy 21 leukaemic cells) and in Caenorhabditis elegans. Our results may represent a solid basis for further investigation on human structural and functional genomics while also providing a framework for other genome comparative analysis. Electronic supplementary material The online version of this article (10.1186/s13104-019-4137-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Allison Piovesan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Maria Chiara Pelleri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Francesca Antonaros
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Pierluigi Strippoli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Maria Caracausi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy.
| | - Lorenza Vitale
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| |
Collapse
|
20
|
Abstract
Microbiomes on Earth are often considered the most heterogeneous biological entities, but their vital roles in driving global biogeochemical cycles often remain elusive. DNA-based stable isotope probing (DNA-SIP) provides a powerful means to establish a direct link between biogeochemical processes and the taxonomic identities of active microorganisms involved in the processes. Combined with high-throughput sequencing, it significantly aids in deciphering ecophysiological functions of active microorganisms at the level of microbial communities. DNA-SIP relies solely on the propagation of targeted microbial communities, during which the entire genomes of daughter cells are synthesized and increasingly 13C-labeled. This growth on 13C-labeled substrate in association with cell division provides solid evidence for the functional importance and metabolic potential of targeted microorganisms. The essential prerequisite for a successful DNA-SIP experiment is the identification, with confidence, of isotopically enriched 13C-DNA, of which the amount is generally too low to allow for the direct measurement of 13C atomic percent of nucleic acid. The 13C labeling can be readily identified in the fractionated DNA by quantification of functional genes specific to the known targeted microorganisms, and by high-throughput sequencing of the total microbial communities via 16S rRNA genes without prior knowledge of which microorganisms are 13C-labeled (i.e., highly enriched in the heavy fractions relative to 12C (natural isotope abundance) control treatments). In this chapter, the protocol for obtaining DNA highly enriched in heavy isotope is presented using diazotrophic methanotrophs in a paddy soil as a case study.
Collapse
Affiliation(s)
- Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, People's Republic of China.
| | - Weiwei Cao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, People's Republic of China
| | | |
Collapse
|
21
|
Li W, Thanos D, Provata A. Quantifying local randomness in human DNA and RNA sequences using Erdös motifs. J Theor Biol 2018; 461:41-50. [PMID: 30336158 DOI: 10.1016/j.jtbi.2018.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/14/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
Abstract
In 1932, Paul Erdös asked whether a random walk constructed from a binary sequence can achieve the lowest possible deviation (lowest discrepancy), for the sequence itself and for all its subsequences formed by homogeneous arithmetic progressions. Although avoiding low discrepancy is impossible for infinite sequences, as recently proven by Terence Tao, attempts were made to construct such sequences with finite lengths. We recognize that such constructed sequences (we call these "Erdös sequences") exhibit certain hallmarks of randomness at the local level: they show roughly equal frequencies of short subsequences, and at the same time exclude trivial periodic patterns. For the human DNA we examine the frequency of a set of Erdös motifs of length-10 using three nucleotides-to-binary mappings. The particular length-10 Erdös sequence is derived from the length-11 Mathias sequence and is identical with the first 10 digits of the Thue-Morse sequence, underscoring the fact that both are deficient in periodicities. Our calculations indicate that: (1) the purine(A and G)/pyridimine(C and T) based Erdös motifs are greatly underrepresented in the human genome, (2) the strong(G and C)/weak(A and T) based Erdös motifs are slightly overrepresented, (3) the densities of the two are negatively correlated, (4) the Erdös motifs based on all three mappings being combined are slightly underrepresented, and (5) the strong/weak based Erdös motifs are greatly overrepresented in the human messenger RNA sequences.
Collapse
Affiliation(s)
- Wentian Li
- The Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA.
| | - Dimitrios Thanos
- Department of Mathematics, National and Kapodistrian University of Athens, Athens GR-15784, Greece; Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Athens GR-15341, Greece
| | - Astero Provata
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Athens GR-15341, Greece
| |
Collapse
|
22
|
Affiliation(s)
- C. P. Kurtzman
- Northern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois 61604
| |
Collapse
|
23
|
Affiliation(s)
- S. K. Dutta
- Department of Botany, Howard University, Washington, D. C. 20059
| |
Collapse
|
24
|
Kurtzman CP, Smiley MJ. Taxonomy ofPichia Carsoniiand its SynonymsP. ViniandP. ViniVar.Melibiosi: Comparison by DNA Reassociation. Mycologia 2018. [DOI: 10.1080/00275514.1979.12021054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- C. P. Kurtzman
- Northern Regional Research Center, Agricultural Research, Science and Education Administration, U. S. Department of Agriculture, Peoria, Illinois 61604
| | - M. J. Smiley
- Northern Regional Research Center, Agricultural Research, Science and Education Administration, U. S. Department of Agriculture, Peoria, Illinois 61604
| |
Collapse
|
25
|
Kurtzman CP, Smiley MJ, Robnett CJ, Wicklow DT. Dna Relatedness Among Wild and Domesticated Species in theAspergillus FlavusGroup. Mycologia 2018. [DOI: 10.1080/00275514.1986.12025355] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- C. P. Kurtzman
- Northern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois 61604
| | - M. J. Smiley
- Northern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois 61604
| | - C. J. Robnett
- Northern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois 61604
| | - D. T. Wicklow
- Northern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois 61604
| |
Collapse
|
26
|
Ellis JJ. Species and Varieties in theRhizopus Arrhizus-Rhizopus OryzaeGroup as Indicated by Their DNA Complementarity. Mycologia 2018. [DOI: 10.1080/00275514.1985.12025091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- J. J. Ellis
- Northern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois 61604
| |
Collapse
|
27
|
Storck R, Nobles MK, Alexopoulos CJ. The Nucleotide Composition of Deoxyribonucleic Acid of Some Species of Hymenochaetaceae and Polyporaceae. Mycologia 2018. [DOI: 10.1080/00275514.1971.12019080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Roger Storck
- Department of Biology, Rice University, Houston, Texas 77001
| | - Mildred K. Nobles
- Plant Research Institute, Canada Department of Agriculture, Ottawa 3, Ontario, Canada
| | | |
Collapse
|
28
|
Kurtzman CP, Johnson CJ, Smiley MJ. Determination of Conspecificity ofCandida UtilisandHansenula JadiniiThrough DNA Reassociation. Mycologia 2018. [DOI: 10.1080/00275514.1979.12021081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- C. P. Kurtzman
- Northern Regional Research Center, Agricultural Research, Science and Education Administration, U. S. Department of Agriculture, Peoria, Illinois 61604
| | - C. J. Johnson
- Northern Regional Research Center, Agricultural Research, Science and Education Administration, U. S. Department of Agriculture, Peoria, Illinois 61604
| | - M. J. Smiley
- Northern Regional Research Center, Agricultural Research, Science and Education Administration, U. S. Department of Agriculture, Peoria, Illinois 61604
| |
Collapse
|
29
|
Affiliation(s)
- Norma P. Williams
- Department of Botany, Howard University, Washington, District of Columbia 20059
| | - Inamul Sheikh
- Department of Botany, Howard University, Washington, District of Columbia 20059
| | - S. K. Dutta
- Department of Botany, Howard University, Washington, District of Columbia 20059
| |
Collapse
|
30
|
Fell JW, Kurtzman CP, Tallman AS, Buck JD. Rhodosporidium Fluviale Sp. Nov., a Homokaryotic Red Yeast from a Subtropical Brackish Environment. Mycologia 2018. [DOI: 10.1080/00275514.1988.12025578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- J. W. Fell
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida 33149
| | - C. P. Kurtzman
- Northern Regional Research Center, ARS, USDA, Peoria, Illinois 61604
| | - A. S. Tallman
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida 33149
| | - J. D. Buck
- Institute of Marine Science, University of Connecticut, Noank, Connecticut
| |
Collapse
|
31
|
Starr EP, Shi S, Blazewicz SJ, Probst AJ, Herman DJ, Firestone MK, Banfield JF. Stable isotope informed genome-resolved metagenomics reveals that Saccharibacteria utilize microbially-processed plant-derived carbon. MICROBIOME 2018; 6:122. [PMID: 29970182 PMCID: PMC6031116 DOI: 10.1186/s40168-018-0499-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/11/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND The transformation of plant photosynthate into soil organic carbon and its recycling to CO2 by soil microorganisms is one of the central components of the terrestrial carbon cycle. There are currently large knowledge gaps related to which soil-associated microorganisms take up plant carbon in the rhizosphere and the fate of that carbon. RESULTS We conducted an experiment in which common wild oats (Avena fatua) were grown in a 13CO2 atmosphere and the rhizosphere and non-rhizosphere soil was sampled for genomic analyses. Density gradient centrifugation of DNA extracted from soil samples enabled distinction of microbes that did and did not incorporate the 13C into their DNA. A 1.45-Mbp genome of a Saccharibacteria (TM7) was identified and, despite the microbial complexity of rhizosphere soil, curated to completion. The genome lacks many biosynthetic pathways, including genes required to synthesize DNA de novo. Rather, it requires externally derived nucleotides for DNA and RNA synthesis. Given this, we conclude that rhizosphere-associated Saccharibacteria recycle DNA from bacteria that live off plant exudates and/or phage that acquired 13C because they preyed upon these bacteria and/or directly from the labeled plant DNA. Isotopic labeling indicates that the population was replicating during the 6-week period of plant growth. Interestingly, the genome is ~ 30% larger than other complete Saccharibacteria genomes from non-soil environments, largely due to more genes for complex carbon utilization and amino acid metabolism. Given the ability to degrade cellulose, hemicellulose, pectin, starch, and 1,3-β-glucan, we predict that this Saccharibacteria generates energy by fermentation of soil necromass and plant root exudates to acetate and lactate. The genome also encodes a linear electron transport chain featuring a terminal oxidase, suggesting that this Saccharibacteria may respire aerobically. The genome encodes a hydrolase that could breakdown salicylic acid, a plant defense signaling molecule, and genes to interconvert a variety of isoprenoids, including the plant hormone zeatin. CONCLUSIONS Rhizosphere Saccharibacteria likely depend on other bacteria for basic cellular building blocks. We propose that isotopically labeled CO2 is incorporated into plant-derived carbon and then into the DNA of rhizosphere organisms capable of nucleotide synthesis, and the nucleotides are recycled into Saccharibacterial genomes.
Collapse
Affiliation(s)
- Evan P. Starr
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Shengjing Shi
- Lincoln Science Centre, AgResearch Ltd, Christchurch, 8140 New Zealand
| | - Steven J. Blazewicz
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, 94550 USA
| | | | - Donald J. Herman
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720 USA
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94704 USA
| | - Mary K. Firestone
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720 USA
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94704 USA
| | - Jillian F. Banfield
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720 USA
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94704 USA
- Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
32
|
Youngblut ND, Barnett SE, Buckley DH. SIPSim: A Modeling Toolkit to Predict Accuracy and Aid Design of DNA-SIP Experiments. Front Microbiol 2018; 9:570. [PMID: 29643843 PMCID: PMC5882788 DOI: 10.3389/fmicb.2018.00570] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/13/2018] [Indexed: 11/13/2022] Open
Abstract
DNA Stable isotope probing (DNA-SIP) is a powerful method that links identity to function within microbial communities. The combination of DNA-SIP with multiplexed high throughput DNA sequencing enables simultaneous mapping of in situ assimilation dynamics for thousands of microbial taxonomic units. Hence, high throughput sequencing enabled SIP has enormous potential to reveal patterns of carbon and nitrogen exchange within microbial food webs. There are several different methods for analyzing DNA-SIP data and despite the power of SIP experiments, it remains difficult to comprehensively evaluate method accuracy across a wide range of experimental parameters. We have developed a toolset (SIPSim) that simulates DNA-SIP data, and we use this toolset to systematically evaluate different methods for analyzing DNA-SIP data. Specifically, we employ SIPSim to evaluate the effects that key experimental parameters (e.g., level of isotopic enrichment, number of labeled taxa, relative abundance of labeled taxa, community richness, community evenness, and beta-diversity) have on the specificity, sensitivity, and balanced accuracy (defined as the product of specificity and sensitivity) of DNA-SIP analyses. Furthermore, SIPSim can predict analytical accuracy and power as a function of experimental design and community characteristics, and thus should be of great use in the design and interpretation of DNA-SIP experiments.
Collapse
Affiliation(s)
- Nicholas D Youngblut
- School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Samuel E Barnett
- School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Daniel H Buckley
- School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
33
|
Starmer WT, Ganter PF, Phaff HJ. QUANTUM AND CONTINUOUS EVOLUTION OF DNA BASE COMPOSITION IN THE YEAST GENUS PICHIA. Evolution 2017; 40:1263-1274. [PMID: 28563510 DOI: 10.1111/j.1558-5646.1986.tb05750.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/1985] [Accepted: 07/07/1986] [Indexed: 11/29/2022]
Abstract
This paper investigates the noncontinuous nature and evolution of the base composition of nuclear DNA (expressed as mol% guanine + cytosine) in species of the yeast genus Pichia (sensu Kurtzman, 1984b). The pattern of change in the G + C contents in species of this genus, which range from about 27 to 52 mol%, was evaluated. When specifically those species of Pichia were analyzed that have evolved in necroses of cactus species and associated Drosophila, a periodic change in the G + C contents of approximately 3.0-3.2 mol% was detected by a "bootstrapping" method, Fourier analysis, and a nonlinear trigonometric model. Pichia species occurring in exudates of broad-leaved deciduous trees or associated Drosophila and substrates such as soil and water ("other") showed a periodicity of 2.5-2.6 mol%, whereas species associated with conifers and associated bark beetles showed no significant periodicity. Periodicity in the most recent association (cactus and resident Drosophila) as compared to the lack of periodicity in the oldest association (conifer-beetle) may indicate mixed evolutionary processes. Low mol% G + C values appear more frequently in the relatively recent cactus and Drosophila-associated yeast species. In addition, low mol% G + C species do not display the ancestral bud-meiosis mode of sexual reproduction which occurs frequently in medium to high mol% G + C yeasts. It was found that the mol% G + C content of the Drosophila- and cactus-associated Pichia species is positively correlated with the number of compounds fermented or respired by these yeast species. Possible reasons for the periodic changes in mol% G + C content accompanying speciation include aneuploidy, allopolyploidy, the presence of nuclear plasmids, and regular differences in moderately repetitive portions of DNA. Since significant DNA complementarity is virtually limited to species within a relatively narrow G + C group, this suggests that there are at least two processes which alter the G + C content between species, one saltational and one continuous.
Collapse
Affiliation(s)
| | - Philip F Ganter
- Biology Department, Syracuse University, Syracuse, NY, 13210
| | - Herman J Phaff
- Department of Food Science and Technology, University of California, Davis, Davis, CA, 95616
| |
Collapse
|
34
|
Schwartz E, Hayer M, Hungate BA, Koch BJ, McHugh TA, Mercurio W, Morrissey EM, Soldanova K. Stable isotope probing with 18O-water to investigate microbial growth and death in environmental samples. Curr Opin Biotechnol 2016; 41:14-18. [DOI: 10.1016/j.copbio.2016.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/27/2016] [Accepted: 03/01/2016] [Indexed: 11/17/2022]
|
35
|
Brady AL, Sharp CE, Grasby SE, Dunfield PF. Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing. Front Microbiol 2015; 6:897. [PMID: 26388850 PMCID: PMC4555085 DOI: 10.3389/fmicb.2015.00897] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/17/2015] [Indexed: 12/25/2022] Open
Abstract
Carbon monoxide (CO) is a potential energy and carbon source for thermophilic bacteria in geothermal environments. Geothermal sites ranging in temperature from 45 to 65°C were investigated for the presence and activity of anaerobic CO-oxidizing bacteria. Anaerobic CO oxidation potentials were measured at up to 48.9 μmoles CO g−1 (wet weight) day−1 within five selected sites. Active anaerobic carboxydotrophic bacteria were identified using 13CO DNA stable isotope probing (SIP) combined with pyrosequencing of 16S rRNA genes amplified from labeled DNA. Bacterial communities identified in heavy DNA fractions were predominated by Firmicutes, which comprised up to 95% of all sequences in 13CO incubations. The predominant bacteria that assimilated 13C derived from CO were closely related (>98% 16S rRNA gene sequence identity) to genera of known carboxydotrophs including Thermincola, Desulfotomaculum, Thermolithobacter, and Carboxydocella, although a few species with lower similarity to known bacteria were also found that may represent previously unconfirmed CO-oxidizers. While the distribution was variable, many of the same OTUs were identified across sample sites from different temperature regimes. These results show that bacteria capable of using CO as a carbon source are common in geothermal springs, and that thermophilic carboxydotrophs are probably already quite well known from cultivation studies.
Collapse
Affiliation(s)
- Allyson L Brady
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Christine E Sharp
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | | | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| |
Collapse
|
36
|
Quantitative microbial ecology through stable isotope probing. Appl Environ Microbiol 2015; 81:7570-81. [PMID: 26296731 DOI: 10.1128/aem.02280-15] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/17/2015] [Indexed: 12/26/2022] Open
Abstract
Bacteria grow and transform elements at different rates, and as yet, quantifying this variation in the environment is difficult. Determining isotope enrichment with fine taxonomic resolution after exposure to isotope tracers could help, but there are few suitable techniques. We propose a modification to stable isotope probing (SIP) that enables the isotopic composition of DNA from individual bacterial taxa after exposure to isotope tracers to be determined. In our modification, after isopycnic centrifugation, DNA is collected in multiple density fractions, and each fraction is sequenced separately. Taxon-specific density curves are produced for labeled and nonlabeled treatments, from which the shift in density for each individual taxon in response to isotope labeling is calculated. Expressing each taxon's density shift relative to that taxon's density measured without isotope enrichment accounts for the influence of nucleic acid composition on density and isolates the influence of isotope tracer assimilation. The shift in density translates quantitatively to isotopic enrichment. Because this revision to SIP allows quantitative measurements of isotope enrichment, we propose to call it quantitative stable isotope probing (qSIP). We demonstrated qSIP using soil incubations, in which soil bacteria exhibited strong taxonomic variations in (18)O and (13)C composition after exposure to [(18)O]water or [(13)C]glucose. The addition of glucose increased the assimilation of (18)O into DNA from [(18)O]water. However, the increase in (18)O assimilation was greater than expected based on utilization of glucose-derived carbon alone, because the addition of glucose indirectly stimulated bacteria to utilize other substrates for growth. This example illustrates the benefit of a quantitative approach to stable isotope probing.
Collapse
|
37
|
Stam WT, Venema G. THE USE OF DNA-DNA HYBRIDIZATION FOR DETERMINATION OF THE RELATIONSHIP BETWEEN SOME BLUE-GREEN ALGAE (CYANOPHYCEAE). ACTA ACUST UNITED AC 2015. [DOI: 10.1111/j.1438-8677.1977.tb01123.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- W. T. Stam
- Biologisch Centrum, afd. plantensystematiek en genetisch instituut, Rijksuniversiteit; Groningen
| | - G. Venema
- Biologisch Centrum, afd. plantensystematiek en genetisch instituut, Rijksuniversiteit; Groningen
| |
Collapse
|
38
|
Kim M, Park SC, Baek I, Chun J. Large-scale evaluation of experimentally determined DNA G+C contents with whole genome sequences of prokaryotes. Syst Appl Microbiol 2014; 38:79-83. [PMID: 25564067 DOI: 10.1016/j.syapm.2014.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/18/2014] [Accepted: 11/24/2014] [Indexed: 11/30/2022]
Abstract
Historically, DNA G+C content has played a critical role in the description of bacterial and archaeal species. Despite its importance in prokaryote taxonomy, its accuracy has been questioned due to methodological heterogeneity and measurement errors of conventional methods. Here we investigated the extent of accuracy of experimentally determined DNA G+C contents by comparing the reference values calculated from whole genome sequences. The large-scale comparison revealed that G+C contents determined by high-performance liquid chromatography and buoyant density centrifugation methods were more similar to the genome-derived reference values than those generated by thermal denaturation method. However, there was a substantial degree of discrepancy in DNA G+C contents between values obtained by conventional methods and genome-derived reference values. The majority of the differences between them fell out of the acceptable range (i.e. 1 mol% G+C content difference) for species delimitation of prokaryotes. In contrast, when average nucleotide identity (ANI) was correlated to G+C difference among genomes, most G+C difference was confined to less than 1% within species. Therefore, erroneous conventional methods are not meaningful in the description of bacterial and archaeal species. For taxonomic purposes, DNA G+C content should be determined by calculating directly from high-quality genome sequences with at least 16× or higher sequencing depth of coverage.
Collapse
Affiliation(s)
- Mincheol Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Republic of Korea
| | - Sang-Cheol Park
- Interdisciplinary Program in Bioinformatics and Bioinformatics Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Inwoo Baek
- School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jongsik Chun
- School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea; Interdisciplinary Program in Bioinformatics and Bioinformatics Institute, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
39
|
Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352-356. [PMID: 24505073 DOI: 10.1099/ijs.0.056994-0] [Citation(s) in RCA: 460] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The G+C content of a genome is frequently used in taxonomic descriptions of species and genera. In the past it has been determined using conventional, indirect methods, but it is nowadays reasonable to calculate the DNA G+C content directly from the increasingly available and affordable genome sequences. The expected increase in accuracy, however, might alter the way in which the G+C content is used for drawing taxonomic conclusions. We here re-estimate the literature assumption that the G+C content can vary up to 3-5 % within species using genomic datasets. The resulting G+C content differences are compared with DNA-DNA hybridization (DDH) similarities calculated in silico using the GGDC web server, with 70% similarity as the gold standard threshold for species boundaries. The results indicate that the G+C content, if computed from genome sequences, varies no more than 1% within species. Statistical models based on larger differences alone can reject the hypothesis that two strains belong to the same species. Because DDH similarities between two non-type strains occur in the genomic datasets, we also examine to what extent and under which conditions such a similarity could be <70% even though the similarity of either strain to a type strain was ≥ 70%. In theory, their similarity could be as low as 50%, whereas empirical data suggest a boundary closer (but not identical) to 70%. However, it is shown that using a 50% boundary would not affect the conclusions regarding the DNA G+C content. Hence, we suggest that discrepancies between G+C content data provided in species descriptions on the one hand and those recalculated after genome sequencing on the other hand ≥ 1% are due to significant inaccuracies of the applied conventional methods and accordingly call for emendations of species descriptions.
Collapse
Affiliation(s)
- Jan P Meier-Kolthoff
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Hans-Peter Klenk
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| |
Collapse
|
40
|
Lemieux C, Turmel M, Lee RW. Characterization of chloroplast DNA in Chlamydomonas eugametos and C. moewusii and its inheritance in hybrid progeny. Curr Genet 2013; 2:139-47. [PMID: 24189805 DOI: 10.1007/bf00420626] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/1980] [Indexed: 10/26/2022]
Abstract
The density, molecular weight, and cellular repetition of DNA molecules associated with the β-DNA satellite of the interfertile algae Chlamydomonas eugametos and C. moewusii are reported. The similarities between these values and those for the chloroplast DNA (cpDNA) in the related alga Chlamydomonas reinhardtii indicate that these satellites represent cpDNA. The buoyant densities of C. eugametos and C. moewusii cpDNAs are indistinguishable from one another, as are those of their respective nuclear DNAs. These densities differ slightly from the densities of the homologous components of C. reinhardtii whole cell DNA. All three species differ with respect to additional minor satellite DNAs and low molecular weight DNAs of unknown cellular location.Differences in the Aval and Smal restriction endonuclease fragmentation patterns of C. eugametos and C. moewusii cpDNAs were employed to study the inheritance of cpDNA in an F1 hybrid which had inherited a non-Mendelian streptomycin resistance marker (sr-2) from the C. eugametos mating-type plus (mt (+)) parent and in two homoplasmic mitotic segregants from a B 1 hybrid (F1 × C. moewusii) which had been initially heteroplasmic for the resistance marker. Although the cpDNA patterns in the F1 hybrid were similar to those of the C. eugametos ml (1) parent, important differences were noted which suggest that recombination between C. eugametos and C. moewusii cpDNA had occurred. Homoplasmic streptomycin resistant and sensitive mitotic segregants recovered from the B1 hybrid product reveal Aval restriction patterns similar to those of the respective resistant and sensitive parents. These data are consistent with the hypothesis that the sr-2 marker is located in cpDNA and that C. eugametos and C. moewusii cpDNA sequences can coexist in the same chloroplast and, at least sometimes, segregate without extensive recombination. The transmission of low molecular weight DNAs characteristic of C. moewusii but of unknown cellular origin shows no direct correlation with the transmission of the sr-2 marker.
Collapse
Affiliation(s)
- C Lemieux
- Department of Biology, Dalhousie University, B3H 4J1, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
41
|
Dispersive labelling of Chlamydomonas chloroplast DNA in (15)N- (14)N density transfer experiments. Curr Genet 2013; 4:91-7. [PMID: 24185954 DOI: 10.1007/bf00365687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/1981] [Indexed: 10/26/2022]
Abstract
(15)N-(14)N density transfer experiments with synchronized vegetative cultures of Chlamydomonas reinhardtii revealed a dispersive labelling of chloroplast DNA (cpDNA) while the labelling of nuclear DNA was consistent with semiconservative replication. The dispersive labelling of cpDNA was progressive and extensive as after less than two net doublings of this DNA in (14)N-medium no significant amount of fully heavy, (15)N-strands could be detected in denatured cpDNA preparations; the average size of DNA in these preparations corresponded to 6% of the intact chloroplast genome or about 12 kbp. The density shifts of native cpDNA samples were found to be consistent with the net amounts of cpDNA synthesized. This observation indicates that essentially all (15)N atoms incorporated prior to the transfer were conserved and that metabolic turnover of cpDNA was probably absent. Our results are best explained by the exchange of homologous single-stranded segments between cpDNA molecules to form heteroduplex regions and by each DNA molecule undergoing several rounds of heteroduplex formation.
Collapse
|
42
|
Lee SY, Madee MS, Jangaard NO, Horiuchi EK. PECTINATUS, A NEW GENUS OF BACTERIA CAPABLE OF GROWTH IN HOPPED BEER. JOURNAL OF THE INSTITUTE OF BREWING 2013. [DOI: 10.1002/j.2050-0416.1980.tb03951.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Tran-Nguyen LTT, Schneider B. Cesium chloride-bisbenzimide gradients for separation of phytoplasma and plant DNA. Methods Mol Biol 2013; 938:381-393. [PMID: 22987432 DOI: 10.1007/978-1-62703-089-2_32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CsCl-bisbezimide gradient centrifugation is a method to separate phytoplasma from host plant DNA. Bisbenzimide forms a complex with A + T-rich DNA thereby lowering its relative density. During centrifugation the A + T-rich phytoplasma DNA is spatially separated from the less A + T-rich host plant DNA. The difference in buoyant density between phytoplasma DNA and plant DNA varies according to the host-pathogen combination. The phytoplasma DNA forms a distinct band above the host plant DNA and can be collected. Depending on the phytoplasma titer and the scale of extraction, highly purified DNA is obtained in sufficient quantities for the construction of a genomic library, a sequencing project or hybridization studies.
Collapse
|
44
|
Auclair J, Lépine F, Villemur R. A liquid chromatography - mass spectrometry method to measure ¹³C-isotope enrichment for DNA stable-isotope probing. Can J Microbiol 2012; 58:287-92. [PMID: 22356592 DOI: 10.1139/w11-133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA stable-isotope probing (DNA-SIP) is a cultivation-independent technique that makes it possible to associate metabolic function and taxonomic identity in a wide range of terrestrial and aquatic environments. In DNA-SIP, DNA is labeled via the assimilation of a labeled growth substrate that is subsequently used to identify microorganisms involved in assimilation of the substrate. However, the labeling time has to be sufficient to obtain labeled DNA but not so long such that cross-feeding of ¹³C-labeled metabolites from the primary consumers to nontarget species can occur. Confirmation that the DNA is isotopically labeled in DNA-SIP assays can be achieved using an isotope ratio mass spectrometer. In this study, we describe the development of a method using liquid chromatography (HPLC) coupled to a quadrupole mass spectrometer (QMS) to measure the ¹³C enrichment of thymine incorporated into DNA in Escherichia coli cultures fed with [¹³C]acetate. The method involved the hydrolysis of DNA extracted from the cultures that released the nucleotides, followed by the separation of the thymine by HPLC on a reverse-phase C₈ column in isocratic elution mode and the detection and quantification of ¹³C-labeled thymine by QMS. To mimic a DNA-SIP assay, a DNA mixture was made using ¹³C-labeled E. coli DNA with DNA extracted from five bacterial species. The HPLC-MS method was able to measure the correct proportion of ¹³C-DNA in the mix. This method can then be used as an alternative to the use of isotope ratio mass spectrometry in DNA-SIP assays.
Collapse
Affiliation(s)
- Julie Auclair
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | | | | |
Collapse
|
45
|
Mounolou JC, Lacroute F. Mitochondrial DNA: an advance in eukaryotic cell biology in the 1960s. Biol Cell 2012; 97:743-8. [PMID: 16104841 DOI: 10.1042/bc20040128] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Between 1950 and 1960 mitochondria were recognized as well-characterized organelles of animal and fungal cells. They shared more functional autonomy than other cellular structures. The transmission of some mitochondrial characteristics did not obey Mendelian rules and followed cytoplasmic inheritance patterns. Was this situation a consequence of still unknown complexities? We present a personal account on how approaches were set up to test very different hypotheses. In the end, it was shown that mitochondria had their own DNA, mitochondrial DNA, and that this molecule carried information specific to these organelles.
Collapse
|
46
|
CHRISTENSEN JENSJØRGEN. Moraxella (Branhamella) catarrhalis: Clinical, microbiological and immunological features in lower respiratory tract infections. APMIS 2011. [DOI: 10.1111/j.1600-0463.1999.tb05670.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
|
48
|
Ikegami M, Haber S, Goodman RM. Isolation and characterization of virus-specific double-stranded DNA from tissues infected by bean golden mosaic virus. Proc Natl Acad Sci U S A 2010; 78:4102-6. [PMID: 16593050 PMCID: PMC319734 DOI: 10.1073/pnas.78.7.4102] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A double-stranded (ds) DNA which may be a replication intermediate was isolated from bean (Phaseolus vulgaris L. "Top Crop") leaves systemically infected with bean golden mosaic virus, a whitefly-transmitted plant virus with a genome of circular single-stranded (ss) DNA. The isolation method used phenol/chloroform extraction, hydroxyapatite column chromatography, and rate-zonal centrifugation. The dsDNA had sequences complementary to those of viral DNA. The guanine-plus-cytosine content was 35%, and the sedimentation coefficient in alkaline sucrose density gradients was similar to that of viral ssDNA. Digestion of the dsDNA by Hha I endonuclease produced fragments that corresponded exactly in number and size with those produced by complete digestion of circular viral ssDNA by Hha I, when the fragments were denatured and analyzed on polyacrylamide gels. The dsDNA molecule was a circular structure with one discontinuity in one strand; hybridization results suggest that some of a the dsDNA has a discontinuity in the viral strand and some has a discontinuity in the nonviral strand. On the basis of these structures for the dsDNA, a preliminary model for replication of viral DNA is discussed.
Collapse
Affiliation(s)
- M Ikegami
- Department of Plant Pathology, University of Illinois, Urbana, Illinois 61801
| | | | | |
Collapse
|
49
|
Huang YS, Hedberg M, Kawanishi CY. Characterization of the DNA of a Nonoccluded Baculovirus, Hz-1V. J Virol 2010; 43:174-81. [PMID: 16789226 PMCID: PMC256108 DOI: 10.1128/jvi.43.1.174-181.1982] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DNA of the nonoccluded baculovirus (Hz-1V) obtained from the IMC-Hz-1 cell line was characterized by physicochemical and restriction endonuclease techniques. Hz-1V DNA isolated from purified virus had buoyant densities of 1.58 and 1.54 g/ml in CsCl-ethidium bromide density gradients, which corresponded to supercoiled and to relaxed circular and linear DNA, respectively. Neutral CsCl equilibrium centrifugation indicated that the Hz-1V DNA had a buoyant density of 1.7024 g/ml, which corresponded to a guanine-plus-cytosine (G+C) content of 43%. Thermal denaturation indicated a high G+C domain(s) in the Hz-1V genomic DNA. The domain(s), which included about 11% of the total genomic DNA, exhibited a T(m) of 97 degrees C. The remaining portion (89%) of the DNA had a T(m) of 86.5 degrees C. The T(m)s corresponded to G+C contents of 42 and 67%, respectively. The mean genetic complexity of Hz-1V DNA determined by DNA reassociation kinetic analysis was found to be 152 x 10(6). A possible rapidly reassociating component comprising approximately 13% of the genome was observed. The mean molecular weights from restriction endonuclease digests were 159 x 10(6) for both HindIII and EcoRI. Genomic heterogeneity was found in both the wild-type Hz-1V stock and in two plaque isolates. Of 12 single-plaque isolates, 3 basic restriction endonuclease DNA fragment patterns were observed. The molecular size estimates from electron microscopic contour lengths of uncloned viral DNA ranged from 70 to 158 megadaltons, and the mode was the 130- to 140-megadalton class.
Collapse
Affiliation(s)
- Y S Huang
- Health Effects Research Laboratory (MD67), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | | | | |
Collapse
|
50
|
Kroon AM, Borst P, Bruggen EF, Ruttenberg GJ. Mitochondrial DNA from sheep heart. Proc Natl Acad Sci U S A 2010; 56:1836-43. [PMID: 16591428 PMCID: PMC220193 DOI: 10.1073/pnas.56.6.1836] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|