1
|
Lyu H, Na Q, Wang L, Li Y, Zheng Z, Wu Y, Li Y, Hang G, Zhu X, Ji R, Guo F, Ming L. Effects of Muscle Type and Aging on Glycolysis and Physicochemical Quality Properties of Bactrian camel ( Camelus bactrianus) Meat. Animals (Basel) 2024; 14:611. [PMID: 38396579 PMCID: PMC10886407 DOI: 10.3390/ani14040611] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Poor tenderness of camel meat has seriously hampered the development of the camel meat industry. This study investigated the effects of muscle fiber composition and ageing time on meat quality, glycolytic potential, and glycolysis-related enzyme activities. Muscle samples of the longissimus thoracis (LT), psoas major (PM), and semitendinosus (ST) were collected from eight 8-10 year old Sonid Bactrian camels (females). Muscle fiber composition was examined by ATPase staining and immunohistochemistry. Meat quality indexes, glycolytic potential, and activities of major glycolytic enzymes were examined at 4 °C aging for 1, 6, 24, 72, and 120 h. The results showed that LT was mainly composed of type IIb muscle fibers, whereas PM and ST were mainly composed of type I muscle fibers. The PCR results of the myosin heavy chain (MyHC) were consistent with the ATPase staining results. During aging, the shear force of LT muscle was always greater than that of PM and ST, and its glycolysis was the strongest; type IIa, IIb, and IIx muscle fibers were positively correlated with muscle shear force and glycolysis rate, and type I muscle fibers were significantly and negatively correlated with the activities of the key enzymes of glycolysis within 6 h. The results showed that the muscle fibers of LT muscle had the greatest glycolysis capacity. These results suggest that an excessive type IIb muscle fiber number percentage and area in camel meat accelerated the glycolysis process, but seriously affected the sensory profile of the camel meat. The results of this study provide directions for the camel industry when addressing the poor tenderness of camel meat.
Collapse
Affiliation(s)
- Haodi Lyu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.L.); (Q.N.); (L.W.); (Y.L.); (Z.Z.); (Y.W.); (Y.L.); (G.H.); (X.Z.)
| | - Qin Na
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.L.); (Q.N.); (L.W.); (Y.L.); (Z.Z.); (Y.W.); (Y.L.); (G.H.); (X.Z.)
| | - Linlin Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.L.); (Q.N.); (L.W.); (Y.L.); (Z.Z.); (Y.W.); (Y.L.); (G.H.); (X.Z.)
| | - Yafei Li
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.L.); (Q.N.); (L.W.); (Y.L.); (Z.Z.); (Y.W.); (Y.L.); (G.H.); (X.Z.)
| | - Zengtuo Zheng
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.L.); (Q.N.); (L.W.); (Y.L.); (Z.Z.); (Y.W.); (Y.L.); (G.H.); (X.Z.)
| | - Yinga Wu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.L.); (Q.N.); (L.W.); (Y.L.); (Z.Z.); (Y.W.); (Y.L.); (G.H.); (X.Z.)
| | - Yuanyuan Li
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.L.); (Q.N.); (L.W.); (Y.L.); (Z.Z.); (Y.W.); (Y.L.); (G.H.); (X.Z.)
| | - Gai Hang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.L.); (Q.N.); (L.W.); (Y.L.); (Z.Z.); (Y.W.); (Y.L.); (G.H.); (X.Z.)
| | - Xiangwei Zhu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.L.); (Q.N.); (L.W.); (Y.L.); (Z.Z.); (Y.W.); (Y.L.); (G.H.); (X.Z.)
| | - Rimutu Ji
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.L.); (Q.N.); (L.W.); (Y.L.); (Z.Z.); (Y.W.); (Y.L.); (G.H.); (X.Z.)
- Inner Mongolia Institute of Camel Research, Alxa 737300, China
| | - Fucheng Guo
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Liang Ming
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.L.); (Q.N.); (L.W.); (Y.L.); (Z.Z.); (Y.W.); (Y.L.); (G.H.); (X.Z.)
| |
Collapse
|
2
|
Luther PK, Morris EP, Parry DAD, Taylor KA. John Squire: a leader and seminal contributor to experimental and theoretical muscle research for over 50 years. J Muscle Res Cell Motil 2023; 44:123-124. [PMID: 37740044 DOI: 10.1007/s10974-023-09659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Affiliation(s)
- Pradeep K Luther
- Cardiac Function Section, National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| | - Edward P Morris
- School of Molecular Biosciences, University of Glasgow, Garscube Campus, Jarrett Building, 351, Bearsden Road, Glasgow, G61 1QH, UK
| | - David A D Parry
- School of Natural Sciences, Massey University, Private Bag, 11‑222, Palmerston North 4442, Palmerston North, New Zealand
| | - Kenneth A Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
| |
Collapse
|
3
|
Morris EP, Knupp C, Luther PK. Obituary: Professor John Michael Squire. J Muscle Res Cell Motil 2023; 44:125-132. [PMID: 37665489 DOI: 10.1007/s10974-023-09656-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023]
Affiliation(s)
- Edward P Morris
- School of Molecular Biosciences, University of Glasgow, Garscube Campus, Jarrett Building, 351, Bearsden Road, Glasgow, G61 1QH, UK
| | - Carlo Knupp
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF10 3AT, UK
| | - Pradeep K Luther
- Cardiac Function Section NHLI, Imperial College London, Hammersmith Campus ICTEM Building, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
4
|
Lloyd EM, Pinniger GJ, Murphy RM, Grounds MD. Slow or fast: Implications of myofibre type and associated differences for manifestation of neuromuscular disorders. Acta Physiol (Oxf) 2023; 238:e14012. [PMID: 37306196 DOI: 10.1111/apha.14012] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Many neuromuscular disorders can have a differential impact on a specific myofibre type, forming the central premise of this review. The many different skeletal muscles in mammals contain a spectrum of slow- to fast-twitch myofibres with varying levels of protein isoforms that determine their distinctive contractile, metabolic, and other properties. The variations in functional properties across the range of classic 'slow' to 'fast' myofibres are outlined, combined with exemplars of the predominantly slow-twitch soleus and fast-twitch extensor digitorum longus muscles, species comparisons, and techniques used to study these properties. Other intrinsic and extrinsic differences are discussed in the context of slow and fast myofibres. These include inherent susceptibility to damage, myonecrosis, and regeneration, plus extrinsic nerves, extracellular matrix, and vasculature, examined in the context of growth, ageing, metabolic syndrome, and sexual dimorphism. These many differences emphasise the importance of carefully considering the influence of myofibre-type composition on manifestation of various neuromuscular disorders across the lifespan for both sexes. Equally, understanding the different responses of slow and fast myofibres due to intrinsic and extrinsic factors can provide deep insight into the precise molecular mechanisms that initiate and exacerbate various neuromuscular disorders. This focus on the influence of different myofibre types is of fundamental importance to enhance translation for clinical management and therapies for many skeletal muscle disorders.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Gavin J Pinniger
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
5
|
Nelson S, Beck-Previs S, Sadayappan S, Tong C, Warshaw DM. Myosin-binding protein C stabilizes, but is not the sole determinant of SRX myosin in cardiac muscle. J Gen Physiol 2023; 155:e202213276. [PMID: 36688870 PMCID: PMC9884578 DOI: 10.1085/jgp.202213276] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/08/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
The myosin super-relaxed (SRX) state is central to striated muscle metabolic and functional regulation. In skeletal muscle, SRX myosin are predominantly colocalized with myosin-binding protein C (MyBP-C) in the sarcomere C-zone. To define how cardiac MyBP-C (cMyBP-C) and its specific domains contribute to stabilizing the SRX state in cardiac muscle, we took advantage of transgenic cMyBP-C null mice and those expressing cMyBP-C with a 271-residue N-terminal truncation. Utilizing super-resolution microscopy, we determined the lifetime and subsarcomeric location of individual fluorescent-ATP turnover events within isolated cardiac myofibrils. The proportion of SRX myosin demonstrated a gradient along the half-thick filament, highest in the P- and C-zones (72 ± 9% and 71 ± 6%, respectively) and lower in the D-zone (45 ± 10%), which lies farther from the sarcomere center and lacks cMyBP-C, suggesting a possible role for cMyBP-C in stabilizing the SRX. However, myofibrils from cMyBP-C null mice demonstrated an ∼40% SRX reduction, not only within the now cMyBP-C-free C-zone (49 ± 9% SRX), but also within the D-zone (22 ± 5% SRX). These data suggest that the influence of cMyBP-C on the SRX state is not limited to the C-zone but extends along the thick filament. Interestingly, myofibrils with N-terminal truncated cMyBP-C had an SRX content and spatial gradient similar to the cMyBP-C null, indicating that the N terminus of cMyBP-C is necessary for cMyBP-C's role in enhancing the SRX gradient along the entire thick filament. Given that SRX myosin exist as a gradient along the thick filament that is highest in the C-zone, even in the absence of cMyBP-C or its N-terminus, an inherent bias must exist in the structure of the thick filament to stabilize the SRX state.
Collapse
Affiliation(s)
- Shane Nelson
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - Samantha Beck-Previs
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Carl Tong
- Department of Medical Physiology, Texas A&M University, Bryan, TX, USA
| | - David M. Warshaw
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| |
Collapse
|
6
|
Lamber EP, Guicheney P, Pinotsis N. The role of the M-band myomesin proteins in muscle integrity and cardiac disease. J Biomed Sci 2022; 29:18. [PMID: 35255917 PMCID: PMC8900313 DOI: 10.1186/s12929-022-00801-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
Transversal structural elements in cross-striated muscles, such as the M-band or the Z-disc, anchor and mechanically stabilize the contractile apparatus and its minimal unit—the sarcomere. The ability of proteins to target and interact with these structural sarcomeric elements is an inevitable necessity for the correct assembly and functionality of the myofibrillar apparatus. Specifically, the M-band is a well-recognized mechanical and signaling hub dealing with active forces during contraction, while impairment of its function leads to disease and death. Research on the M-band architecture is focusing on the assembly and interactions of the three major filamentous proteins in the region, mainly the three myomesin proteins including their embryonic heart (EH) isoform, titin and obscurin. These proteins form the basic filamentous network of the M-band, interacting with each other as also with additional proteins in the region that are involved in signaling, energetic or mechanosensitive processes. While myomesin-1, titin and obscurin are found in every muscle, the expression levels of myomesin-2 (also known as M-protein) and myomesin-3 are tissue specific: myomesin-2 is mainly expressed in the cardiac and fast skeletal muscles, while myomesin-3 is mainly expressed in intermediate muscles and specific regions of the cardiac muscle. Furthermore, EH-myomesin apart from its role during embryonic stages, is present in adults with specific cardiac diseases. The current work in structural, molecular, and cellular biology as well as in animal models, provides important details about the assembly of myomesin-1, obscurin and titin, the information however about the myomesin-2 and -3, such as their interactions, localization and structural details remain very limited. Remarkably, an increasing number of reports is linking all three myomesin proteins and particularly myomesin-2 to serious cardiovascular diseases suggesting that this protein family could be more important than originally thought. In this review we will focus on the myomesin protein family, the myomesin interactions and structural differences between isoforms and we will provide the most recent evidence why the structurally and biophysically unexplored myomesin-2 and myomesin-3 are emerging as hot targets for understanding muscle function and disease.
Collapse
|
7
|
Squire JM, Knupp C. Analysis methods and quality criteria for investigating muscle physiology using x-ray diffraction. J Gen Physiol 2021; 153:212538. [PMID: 34351359 PMCID: PMC8348228 DOI: 10.1085/jgp.202012778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/23/2020] [Accepted: 07/12/2021] [Indexed: 12/20/2022] Open
Abstract
X-ray diffraction studies of muscle have been tremendously powerful in providing fundamental insights into the structures of, for example, the myosin and actin filaments in a variety of muscles and the physiology of the cross-bridge mechanism during the contractile cycle. However, interpretation of x-ray diffraction patterns is far from trivial, and if modeling of the observed diffraction intensities is required it needs to be performed carefully with full knowledge of the possible pitfalls. Here, we discuss (1) how x-ray diffraction can be used as a tool to monitor various specific muscle properties and (2) how to get the most out of the rest of the observed muscle x-ray diffraction patterns by modeling where the reliability of the modeling conclusions can be objectively tested. In other x-ray diffraction methods, such as protein crystallography, the reliability of every step of the process is estimated and quoted in published papers. In this way, the quality of the structure determination can be properly assessed. To be honest with ourselves in the muscle field, we need to do as near to the same as we can, within the limitations of the techniques that we are using. We discuss how this can be done. We also use test cases to reveal the dos and don’ts of using x-ray diffraction to study muscle physiology.
Collapse
Affiliation(s)
- John M Squire
- Muscle Contraction Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK.,Faculty of Medicine, Imperial College, London, UK
| | - Carlo Knupp
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
8
|
Squire JM, Knupp C. The muscle M3 x-ray diffraction peak and sarcomere length: No evidence for disordered myosin heads out of actin overlap. J Gen Physiol 2021; 153:212534. [PMID: 34347004 PMCID: PMC8348229 DOI: 10.1085/jgp.202012859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
X-ray diffraction studies of muscle have provided a wealth of information on muscle structure and physiology, and the meridian of the diffraction pattern is particularly informative. Reconditi et al. (2014. J. Physiol.https://doi.org/10.1113/jphysiol.2013.267849) performed superb experiments on changes to the M3 meridional peak as a function of sarcomere length (SL). They found that the M3 intensity dropped almost linearly as sarcomere length increased at least to about SL = 3.0 µm, and that it followed the same track as tension, pointing toward zero at the end of overlap at ∼3.6 µm. They concluded that, just as tension could only be generated by overlapped myosin heads, so ordered myosin heads contributing to the M3 intensity could only occur in the overlap region of the A-band, and that nonoverlapped heads must be highly disordered. Here we show that this conclusion is not consistent with x-ray diffraction theory; it would not explain their observations. We discuss one possible reason for the change in M3 intensity with increasing sarcomere length in terms of increasing axial misalignment of the myosin filaments that at longer sarcomere lengths is limited by the elastic stretching of the M-band and titin.
Collapse
Affiliation(s)
- John M Squire
- Muscle Contraction Group, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK.,Faculty of Medicine, Imperial College London, London, UK
| | - Carlo Knupp
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
9
|
Bennett P, Rees M, Gautel M. The Axial Alignment of Titin on the Muscle Thick Filament Supports Its Role as a Molecular Ruler. J Mol Biol 2020; 432:4815-4829. [PMID: 32619437 PMCID: PMC7427331 DOI: 10.1016/j.jmb.2020.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/04/2023]
Abstract
The giant protein titin is expressed in vertebrate striated muscle where it spans half a sarcomere from the Z-disc to the M-band and is essential for muscle organisation, activity and health. The C-terminal portion of titin is closely associated with the thick, myosin-containing filament and exhibits a complex pattern of immunoglobulin and fibronectin domains. This pattern reflects features of the filament organisation suggesting that it acts as a molecular ruler and template, but the exact axial disposition of the molecule has not been determined. Here, we present data that allow us to precisely locate titin domains axially along the thick filament from its tip to the edge of the bare zone. We find that the domains are regularly distributed along the filament at 4-nm intervals and we can determine the domains that associate with features of the filament, such as the 11 stripes of accessory proteins. We confirm that the nine stripes ascribed to myosin binding protein-C are not related to the titin sequence previously assumed; rather, they relate to positions approximately 18 domains further towards the C terminus along titin. This disposition also allows a subgroup of titin domains comprising two or three fibronectin domains to associate with each of the 49 levels of myosin heads in each half filament. The results strongly support the role of titin as a blueprint for the thick filament and the arrangement of the myosin motor domains.
Collapse
Affiliation(s)
- Pauline Bennett
- The Randall Centre for Cell & Molecular Biophysics, School of Basic and Medical Biosciences, New Hunt's House, Guy's Campus, King's College London, London, UK.
| | - Martin Rees
- The Randall Centre for Cell & Molecular Biophysics, School of Basic and Medical Biosciences, New Hunt's House, Guy's Campus, King's College London, London, UK.
| | - Mathias Gautel
- The Randall Centre for Cell & Molecular Biophysics, School of Basic and Medical Biosciences, New Hunt's House, Guy's Campus, King's College London, London, UK.
| |
Collapse
|
10
|
Berciano MT, Castillo-Iglesias MS, Val-Bernal JF, Lafarga V, Rodriguez-Rey JC, Lafarga M, Tapia O. Mislocalization of SMN from the I-band and M-band in human skeletal myofibers in spinal muscular atrophy associates with primary structural alterations of the sarcomere. Cell Tissue Res 2020; 381:461-478. [PMID: 32676861 DOI: 10.1007/s00441-020-03236-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/05/2020] [Indexed: 12/22/2022]
Abstract
Spinal muscular atrophy (SMA) is caused by a deletion or mutation of the survival motor neuron 1 (SMN1) gene. Reduced SMN levels lead to motor neuron degeneration and muscular atrophy. SMN protein localizes to the cytoplasm and Cajal bodies. Moreover, in myofibrils from Drosophila and mice, SMN is a sarcomeric protein localized to the Z-disc. Although SMN participates in multiple functions, including the biogenesis of spliceosomal small nuclear ribonucleoproteins, its role in the sarcomere is unclear. Here, we analyzed the sarcomeric organization of SMN in human control and type I SMA skeletal myofibers. In control sarcomeres, we demonstrate that human SMN is localized to the titin-positive M-band and actin-positive I-band, and to SMN-positive granules that flanked the Z-discs. Co-immunoprecipitation assays revealed that SMN interacts with the sarcomeric protein actin, α-actinin, titin, and profilin2. In the type I SMA muscle, SMN levels were reduced, and atrophic (denervated) and hypertrophic (nondenervated) myofibers coexisted. The hypertrophied myofibers, which are potential primary targets of SMN deficiency, exhibited sites of focal or segmental alterations of the actin cytoskeleton, where the SMN immunostaining pattern was altered. Moreover, SMN was relocalized to the Z-disc in overcontracted minisarcomeres from hypertrophic myofibers. We propose that SMN could have an integrating role in the molecular components of the sarcomere. Consequently, low SMN levels might impact the normal sarcomeric architecture, resulting in the disruption of myofibrils found in SMA muscle. This primary effect might be independent of the neurogenic myopathy produced by denervation and contribute to pathophysiology of the SMA myopathy.
Collapse
Affiliation(s)
- María T Berciano
- Departamento de Biología Molecular, Universidad de Cantabria-IDIVAL, Santander, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain
| | | | - J Fernando Val-Bernal
- Unidad de Patología, Departamento de Ciencias Médicas y Quirúrgicas, Universidad de Cantabria-IDIVAL, Santander, Spain
| | - Vanesa Lafarga
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - José C Rodriguez-Rey
- Departamento de Biología Molecular, Universidad de Cantabria-IDIVAL, Santander, Spain
| | - Miguel Lafarga
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain.
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria-IDIVAL, Santander, Spain.
| | - Olga Tapia
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain.
- Universidad Europea del Atlántico, Santander, Spain.
| |
Collapse
|
11
|
Lange S, Pinotsis N, Agarkova I, Ehler E. The M-band: The underestimated part of the sarcomere. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118440. [PMID: 30738787 PMCID: PMC7023976 DOI: 10.1016/j.bbamcr.2019.02.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/16/2019] [Accepted: 02/05/2019] [Indexed: 12/20/2022]
Abstract
The sarcomere is the basic unit of the myofibrils, which mediate skeletal and cardiac Muscle contraction. Two transverse structures, the Z-disc and the M-band, anchor the thin (actin and associated proteins) and thick (myosin and associated proteins) filaments to the elastic filament system composed of titin. A plethora of proteins are known to be integral or associated proteins of the Z-disc and its structural and signalling role in muscle is better understood, while the molecular constituents of the M-band and its function are less well defined. Evidence discussed here suggests that the M-band is important for managing force imbalances during active muscle contraction. Its molecular composition is fine-tuned, especially as far as the structural linkers encoded by members of the myomesin family are concerned and depends on the specific mechanical characteristics of each particular muscle fibre type. Muscle activity signals from the M-band to the nucleus and affects transcription of sarcomeric genes, especially via serum response factor (SRF). Due to its important role as shock absorber in contracting muscle, the M-band is also more and more recognised as a contributor to muscle disease.
Collapse
Affiliation(s)
- Stephan Lange
- Biomedical Research Facility 2, School of Medicine, University of California, San Diego, Medical Sciences Research Bldg, 9500 Gilman Drive, La Jolla, CA 92093-0613C, USA; University of Gothenburg, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Irina Agarkova
- InSphero, Wagistrasse 27, CH-8952 Schlieren, Switzerland
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK; School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
12
|
Myosin Cross-Bridge Behaviour in Contracting Muscle-The T 1 Curve of Huxley and Simmons (1971) Revisited. Int J Mol Sci 2019; 20:ijms20194892. [PMID: 31581677 PMCID: PMC6801930 DOI: 10.3390/ijms20194892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 12/19/2022] Open
Abstract
The stiffness of the myosin cross-bridges is a key factor in analysing possible scenarios to explain myosin head changes during force generation in active muscles. The seminal study of Huxley and Simmons (1971: Nature233: 533) suggested that most of the observed half-sarcomere instantaneous compliance (=1/stiffness) resides in the myosin heads. They showed with a so-called T1 plot that, after a very fast release, the half-sarcomere tension reduced to zero after a step size of about 60Å (later with improved experiments reduced to 40Å). However, later X-ray diffraction studies showed that myosin and actin filaments themselves stretch slightly under tension, which means that most (at least two-thirds) of the half sarcomere compliance comes from the filaments and not from cross-bridges. Here we have used a different approach, namely to model the compliances in a virtual half sarcomere structure in silico. We confirm that the T1 curve comes almost entirely from length changes in the myosin and actin filaments, because the calculated cross-bridge stiffness (probably greater than 0.4 pN/Å) is higher than previous studies have suggested. Our model demonstrates that the formulations produced by previous authors give very similar results to our model if the same starting parameters are used. However, we find that it is necessary to model the X-ray diffraction data as well as mechanics data to get a reliable estimate of the cross-bridge stiffness. In the light of the high cross-bridge stiffness found in the present study, we present a plausible modified scenario to describe aspects of the myosin cross-bridge cycle in active muscle. In particular, we suggest that, apart from the filament compliances, most of the cross-bridge contribution to the instantaneous T1 response may come from weakly-bound myosin heads, not myosin heads in strongly attached states. The strongly attached heads would still contribute to the T1 curve, but only in a very minor way, with a stiffness that we postulate could be around 0.1 pN/Å, a value which would generate a working stroke close to 100 Å from the hydrolysis of one ATP molecule. The new model can serve as a tool to calculate sarcomere elastic properties for any vertebrate striated muscle once various parameters have been determined (e.g., tension, T1 intercept, temperature, X-ray diffraction spacing results).
Collapse
|
13
|
Charton K, Suel L, Henriques SF, Moussu JP, Bovolenta M, Taillepierre M, Becker C, Lipson K, Richard I. Exploiting the CRISPR/Cas9 system to study alternative splicing in vivo: application to titin. Hum Mol Genet 2018; 25:4518-4532. [PMID: 28173117 DOI: 10.1093/hmg/ddw280] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/29/2016] [Accepted: 08/18/2016] [Indexed: 11/12/2022] Open
Abstract
The giant protein titin is the third most abundant protein in striated muscle. Mutations in its gene are responsible for diseases affecting the cardiac and/or the skeletal muscle. Titin has been reported to be expressed in multiple isoforms with considerable variability in the I-band, ensuring the modulation of the passive mechanical properties of the sarcomere. In the M-line, only the penultimate Mex5 exon coding for the specific is7 domain has been reported to be subjected to alternative splicing. Using the CRISPR-Cas9 editing technology, we generated a mouse model where we stably prevent the expression of alternative spliced variant(s) carrying the corresponding domain. Interestingly, the suppression of the domain induces a phenotype mostly in tissues usually expressing the isoform that has been suppressed, indicating that it fulfills (a) specific function(s) in these tissues allowing a perfect adaptation of the M-line to physiological demands of different muscles.
Collapse
Affiliation(s)
- Karine Charton
- INSERM, U951, INTEGRARE research unit Evry, France,Généthon, Evry, France
| | - Laurence Suel
- INSERM, U951, INTEGRARE research unit Evry, France,Généthon, Evry, France
| | - Sara F Henriques
- INSERM, U951, INTEGRARE research unit Evry, France,Généthon, Evry, France,University of Evry-Val-D’Essone, Evry, France
| | - Jean-Paul Moussu
- SEAT - SErvice des Animaux Transgéniques CNRS -TAAM -phenomin UPS44 Bâtiment G 7, rue Guy Môquet 94800 Villejuif, France
| | - Matteo Bovolenta
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Miguel Taillepierre
- SEAT - SErvice des Animaux Transgéniques CNRS -TAAM -phenomin UPS44 Bâtiment G 7, rue Guy Môquet 94800 Villejuif, France
| | - Céline Becker
- SEAT - SErvice des Animaux Transgéniques CNRS -TAAM -phenomin UPS44 Bâtiment G 7, rue Guy Môquet 94800 Villejuif, France
| | - Karelia Lipson
- SEAT - SErvice des Animaux Transgéniques CNRS -TAAM -phenomin UPS44 Bâtiment G 7, rue Guy Môquet 94800 Villejuif, France
| | - Isabelle Richard
- INSERM, U951, INTEGRARE research unit Evry, France,Généthon, Evry, France
| |
Collapse
|
14
|
Abstract
In the last decade, improvements in electron microscopy and image processing have permitted significantly higher resolutions to be achieved (sometimes <1 nm) when studying isolated actin and myosin filaments. In the case of actin filaments the changing structure when troponin binds calcium ions can be followed using electron microscopy and single particle analysis to reveal what happens on each of the seven non-equivalent pseudo-repeats of the tropomyosin α-helical coiled-coil. In the case of the known family of myosin filaments not only are the myosin head arrangements under relaxing conditions being defined, but the latest analysis, also using single particle methods, is starting to reveal the way that the α-helical coiled-coil myosin rods are packed to give the filament backbones.
Collapse
Affiliation(s)
- John M Squire
- Muscle Contraction Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| | - Danielle M Paul
- Muscle Contraction Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Edward P Morris
- Division of Structural Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| |
Collapse
|
15
|
Abstract
In this review we discuss the history and the current state of ideas related to the mechanism of size regulation of the thick (myosin) and thin (actin) filaments in vertebrate striated muscles. Various hypotheses have been considered during of more than half century of research, recently mostly involving titin and nebulin acting as templates or 'molecular rulers', terminating exact assembly. These two giant, single-polypeptide, filamentous proteins are bound in situ along the thick and thin filaments, respectively, with an almost perfect match in the respective lengths and structural periodicities. However, evidence still questions the possibility that the proteins function as templates, or scaffolds, on which the thin and thick filaments could be assembled. In addition, the progress in muscle research during the last decades highlighted a number of other factors that could potentially be involved in the mechanism of length regulation: molecular chaperones that may guide folding and assembly of actin and myosin; capping proteins that can influence the rates of assembly-disassembly of the myofilaments; Ca2+ transients that can activate or deactivate protein interactions, etc. The entire mechanism of sarcomere assembly appears complex and highly dynamic. This mechanism is also capable of producing filaments of about the correct size without titin and nebulin. What then is the role of these proteins? Evidence points to titin and nebulin stabilizing structures of the respective filaments. This stabilizing effect, based on linear proteins of a fixed size, implies that titin and nebulin are indeed molecular rulers of the filaments. Although the proteins may not function as templates in the assembly of the filaments, they measure and stabilize exactly the same size of the functionally important for the muscles segments in each of the respective filaments.
Collapse
|
16
|
Squire JM. Muscle contraction: Sliding filament history, sarcomere dynamics and the two Huxleys. Glob Cardiol Sci Pract 2016; 2016:e201611. [PMID: 29043260 PMCID: PMC5642817 DOI: 10.21542/gcsp.2016.11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/08/2016] [Indexed: 11/05/2022] Open
Abstract
Despite having all the evidence needed to come to the right conclusions in the middle of the 1800s, it was not until the 1950s that it was realised by two unrelated Huxleys and their collaborators that striated muscle sarcomeres contain overlapping sets of filaments which do not change much in length and which slide past each other when the muscle sarcomere shortens. It then took quite a while to convince others that this was the case, but now the idea of sliding filaments is fundamental to our understanding of how any muscle works. Here a brief overview of the history of the discovery of sliding filaments and the factors that were missed in the 1800s is followed by an analysis of the more recent experiments which have added to the conviction that all muscles operate on the same guiding principles; two sets of sliding filaments, independent force generators and a mechanism of protein rowing that makes the filaments slide.
Collapse
Affiliation(s)
- John M Squire
- Muscle Contraction Group, School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK
- Division of Computational and Systems Medicine, Faculty of Medicine, Imperial College, Exhibition Road, London SW7 1AZ
| |
Collapse
|
17
|
Thornell LE, Carlsson L, Eriksson PO, Liu JX, Österlund C, Stål P, Pedrosa-Domellöf F. Fibre typing of intrafusal fibres. J Anat 2015; 227:136-56. [PMID: 26179023 PMCID: PMC4523317 DOI: 10.1111/joa.12338] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2015] [Indexed: 12/23/2022] Open
Abstract
The first descriptions of muscle spindles with intrafusal fibres containing striated myofibrils and nervous elements were given approximately 150 years ago. It took, however, another 100 years to establish the presence of two types of intrafusal muscle fibres: nuclear bag and nuclear chain fibres. The present paper highlights primarily the contribution of Robert Banks in fibre typing of intrafusal fibres: the confirmation of the principle of two types of nuclear bag fibres in mammalian spindles and the variation in occurrence of a dense M-band along the fibres. Furthermore, this paper summarizes how studies from the Umeå University group (Laboratory of Muscle Biology in the Department of Integrative Medical Biology) on fibre typing and the structure and composition of M-bands have contributed to the current understanding of muscle spindle complexity in adult humans as well as to muscle spindle development and effects of ageing. The variable molecular composition of the intrafusal sarcomeres with respect to myosin heavy chains and M-band proteins gives new perspectives on the role of the intrafusal myofibrils as stretch-activated sensors influencing tension/stiffness and signalling to nuclei.
Collapse
Affiliation(s)
- Lars-Eric Thornell
- Department of Integrative Medical Biology, Laboratory of Muscle Biology, Umeå UniversityUmeå, Sweden
| | - Lena Carlsson
- Department of Integrative Medical Biology, Laboratory of Muscle Biology, Umeå UniversityUmeå, Sweden
| | - Per-Olof Eriksson
- Department of Odontology, Clinical Oral Physiology, Umeå UniversityUmeå, Sweden
| | - Jing-Xia Liu
- Department of Integrative Medical Biology, Laboratory of Muscle Biology, Umeå UniversityUmeå, Sweden
| | - Catharina Österlund
- Department of Odontology, Clinical Oral Physiology, Umeå UniversityUmeå, Sweden
| | - Per Stål
- Department of Integrative Medical Biology, Laboratory of Muscle Biology, Umeå UniversityUmeå, Sweden
| | - Fatima Pedrosa-Domellöf
- Department of Integrative Medical Biology, Laboratory of Muscle Biology, Umeå UniversityUmeå, Sweden
- Department of Clinical Sciences, Ophthalmology, Umeå UniversityUmeå, Sweden
| |
Collapse
|
18
|
Luther PK, Squire JM. The intriguing dual lattices of the Myosin filaments in vertebrate striated muscles: evolution and advantage. BIOLOGY 2014; 3:846-65. [PMID: 25478994 PMCID: PMC4280514 DOI: 10.3390/biology3040846] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 11/16/2022]
Abstract
Myosin filaments in vertebrate striated muscle have a long roughly cylindrical backbone with cross-bridge projections on the surfaces of both halves except for a short central bare zone. In the middle of this central region the filaments are cross-linked by the M-band which holds them in a well-defined hexagonal lattice in the muscle A-band. During muscular contraction the M-band-defined rotation of the myosin filaments around their long axes influences the interactions that the cross-bridges can make with the neighbouring actin filaments. We can visualise this filament rotation by electron microscopy of thin cross-sections in the bare-region immediately adjacent to the M-band where the filament profiles are distinctly triangular. In the muscles of teleost fishes, the thick filament triangular profiles have a single orientation giving what we call the simple lattice. In other vertebrates, for example all the tetrapods, the thick filaments have one of two orientations where the triangles point in opposite directions (they are rotated by 60° or 180°) according to set rules. Such a distribution cannot be developed in an ordered fashion across a large 2D lattice, but there are small domains of superlattice such that the next-nearest neighbouring thick filaments often have the same orientation. We believe that this difference in the lattice forms can lead to different contractile behaviours. Here we provide a historical review, and when appropriate cite recent work related to the emergence of the simple and superlattice forms by examining the muscles of several species ranging back to primitive vertebrates and we discuss the functional differences that the two lattice forms may have.
Collapse
Affiliation(s)
- Pradeep K Luther
- Molecular Medicine Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
| | - John M Squire
- Muscle Contraction Group, School of Physiology & Pharmacology, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
19
|
Luther PK, Craig R. Modulation of striated muscle contraction by binding of myosin binding protein C to actin. BIOARCHITECTURE 2014; 1:277-283. [PMID: 22545180 PMCID: PMC3337130 DOI: 10.4161/bioa.1.6.19341] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Myosin binding protein C (MyBP-C or C-protein) is a protein of the thick (myosin-containing) filaments of striated muscle thought to be involved in the modulation of cardiac contraction in response to β-adrenergic stimulation. The mechanism of this modulation is unknown, but one possibility is through transient binding of the N-terminal end of MyBP-C to the thin (actin-containing) filaments. While such binding has been demonstrated in vitro, it was not known until recently whether such a link between thick and thin filaments also occurred in vivo. Here we review a recent paper in which electron microscopy (EM) is used to directly demonstrate MyBP-C links between myosin and actin filaments in the intact sarcomere, suggesting a possible physical mechanism for modulating filament sliding. Molecular details of MyBP-C binding to actin have recently been elucidated by EM of isolated filaments: the results suggest that MyBP-C might contribute to the modulation of contraction in part by competing with tropomyosin for binding sites on actin. New results on the structure and dynamics of the MyBP-C molecule provide additional insights into the function of this enigmatic molecule.
Collapse
|
20
|
Zhang XL, De S, McIntosh LP, Paetzel M. Structural Characterization of the C3 Domain of Cardiac Myosin Binding Protein C and Its Hypertrophic Cardiomyopathy-Related R502W Mutant. Biochemistry 2014; 53:5332-42. [DOI: 10.1021/bi500784g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaolu Linda Zhang
- Department
of Molecular Biology and Biochemistry, Simon Fraser University, South
Science Building, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Soumya De
- Department
of Biochemistry and Molecular Biology, Department of Chemistry, and
The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Lawrence P. McIntosh
- Department
of Biochemistry and Molecular Biology, Department of Chemistry, and
The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Mark Paetzel
- Department
of Molecular Biology and Biochemistry, Simon Fraser University, South
Science Building, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
21
|
Oshima K, Sugimoto Y, Irving TC, Wakabayashi K. Head-head interactions of resting myosin crossbridges in intact frog skeletal muscles, revealed by synchrotron x-ray fiber diffraction. PLoS One 2012; 7:e52421. [PMID: 23285033 PMCID: PMC3527512 DOI: 10.1371/journal.pone.0052421] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 11/14/2012] [Indexed: 11/23/2022] Open
Abstract
The intensities of the myosin-based layer lines in the x-ray diffraction patterns from live resting frog skeletal muscles with full thick-thin filament overlap from which partial lattice sampling effects had been removed were analyzed to elucidate the configurations of myosin crossbridges around the thick filament backbone to nanometer resolution. The repeat of myosin binding protein C (C-protein) molecules on the thick filaments was determined to be 45.33 nm, slightly longer than that of myosin crossbridges. With the inclusion of structural information for C-proteins and a pre-powerstroke head shape, modeling in terms of a mixed population of regular and perturbed regions of myosin crown repeats along the filament revealed that the myosin filament had azimuthal perturbations of crossbridges in addition to axial perturbations in the perturbed region, producing pseudo-six-fold rotational symmetry in the structure projected down the filament axis. Myosin crossbridges had a different organization about the filament axis in each of the regular and perturbed regions. In the regular region that lacks C-proteins, there were inter-molecular interactions between the myosin heads in axially adjacent crown levels. In the perturbed region that contains C-proteins, in addition to inter-molecular interactions between the myosin heads in the closest adjacent crown levels, there were also intra-molecular interactions between the paired heads on the same crown level. Common features of the interactions in both regions were interactions between a portion of the 50-kDa-domain and part of the converter domain of the myosin heads, similar to those found in the phosphorylation-regulated invertebrate myosin. These interactions are primarily electrostatic and the converter domain is responsible for the head-head interactions. Thus multiple head-head interactions of myosin crossbridges also characterize the switched-off state and have an important role in the regulation or other functions of myosin in thin filament-regulated muscles as well as in the thick filament-regulated muscles.
Collapse
Affiliation(s)
- Kanji Oshima
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Yasunobu Sugimoto
- Division of Biophysical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Thomas C. Irving
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, Illinois, United States of America
| | - Katsuzo Wakabayashi
- Division of Biophysical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
22
|
Suzuki M, Ishiwata S. Quasiperiodic distribution of rigor cross-bridges along a reconstituted thin filament in a skeletal myofibril. Biophys J 2012; 101:2740-8. [PMID: 22261063 DOI: 10.1016/j.bpj.2011.10.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 10/05/2011] [Accepted: 10/25/2011] [Indexed: 11/19/2022] Open
Abstract
Electron microscopy has shown that cross-bridges (CBs) are formed at the target zone that is periodically distributed on the thin filament in striated muscle. Here, by manipulating a single bead-tailed actin filament with optical tweezers, we measured the unbinding events of rigor CBs one by one on the surface of the A-band in rabbit skeletal myofibrils. We found that the spacings between adjacent CBs were not always the same, and instead were 36, 72, or 108 nm. Tropomyosin and troponin did not affect the CB spacing except for a relative increase in the appearance of longer spacing in the presence of Ca(2+). In addition, in an in vitro assay where myosin molecules were randomly distributed, were obtained the same spacing, i.e., a multiple of 36 nm. These results indicate that the one-dimensional distribution of CBs matches with the 36-nm half pitch of a long helical structure of actin filaments. A stereospecific model composed of three actin protomers per target zone was shown to explain the experimental results. Additionally, the unbinding force (i.e., the binding affinity) of CBs for the reconstituted thin filaments was found to be larger and smaller relative to that for actin filaments with and without Ca(2+), respectively.
Collapse
Affiliation(s)
- Madoka Suzuki
- Waseda Bioscience Research Institute in Singapore, Singapore
| | | |
Collapse
|
23
|
Toth MJ, Miller MS, VanBuren P, Bedrin NG, LeWinter MM, Ades PA, Palmer BM. Resistance training alters skeletal muscle structure and function in human heart failure: effects at the tissue, cellular and molecular levels. J Physiol 2011; 590:1243-59. [PMID: 22199163 DOI: 10.1113/jphysiol.2011.219659] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Reduced skeletal muscle function in heart failure (HF) patients may be partially explained by altered myofilament protein content and function. Resistance training increases muscle function, although whether these improvements are achieved by correction of myofilament deficits is not known. To address this question, we examined 10 HF patients and 14 controls prior to and following an 18 week high-intensity resistance training programme. Evaluations of whole muscle size and strength, single muscle fibre size, ultrastructure and tension and myosin-actin cross-bridge mechanics and kinetics were performed. Training improved whole muscle isometric torque in both groups, although there were no alterations in whole muscle size or single fibre cross-sectional area or isometric tension.Unexpectedly, training reduced the myofibril fractional area of muscle fibres in both groups. This structural change manifested functionally as a reduction in the number of strongly bound myosin-actin cross-bridges during Ca²⁺ activation. When post-training single fibre tension data were corrected for the loss of myofibril fractional area, we observed an increase in tension with resistance training. Additionally, training corrected alterations in cross-bridge kinetics (e.g. myosin attachment time) in HF patients back to levels observed in untrained controls. Collectively, our results indicate that improvements in myofilament function in sedentary elderly with and without HF may contribute to increased whole muscle function with resistance training. More broadly, these data highlight novel cellular and molecular adaptations in muscle structure and function that contribute to the resistance-trained phenotype.
Collapse
Affiliation(s)
- Michael J Toth
- Health Science Research Facility 126B, 149 Beaumont Ave, University of Vermont, Burlington, VT 05405, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Craig R. Isolation, electron microscopy and 3D reconstruction of invertebrate muscle myofilaments. Methods 2011; 56:33-43. [PMID: 22155190 DOI: 10.1016/j.ymeth.2011.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/22/2011] [Accepted: 11/26/2011] [Indexed: 10/14/2022] Open
Abstract
Understanding the molecular mechanism of muscle contraction and its regulation has been greatly influenced and aided by studies of myofilament structure in invertebrate muscles. Invertebrates are easily obtained and cover a broad spectrum of species and functional specializations. The thick (myosin-containing) filaments from some invertebrates are especially stable and simple in structure and thus much more amenable to structural analysis than those of vertebrates. Comparative studies of invertebrate filaments by electron microscopy and image processing have provided important generalizations of muscle molecular structure and function. This article reviews methods for preparing thick and thin filaments from invertebrate muscle, for imaging filaments by electron microscopy, and for determining their three dimensional structure by image processing. It also highlights some of the key insights into filament function that have come from these studies.
Collapse
Affiliation(s)
- Roger Craig
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| |
Collapse
|
25
|
Abstract
Mammalian skeletal muscle comprises different fiber types, whose identity is first established during embryonic development by intrinsic myogenic control mechanisms and is later modulated by neural and hormonal factors. The relative proportion of the different fiber types varies strikingly between species, and in humans shows significant variability between individuals. Myosin heavy chain isoforms, whose complete inventory and expression pattern are now available, provide a useful marker for fiber types, both for the four major forms present in trunk and limb muscles and the minor forms present in head and neck muscles. However, muscle fiber diversity involves all functional muscle cell compartments, including membrane excitation, excitation-contraction coupling, contractile machinery, cytoskeleton scaffold, and energy supply systems. Variations within each compartment are limited by the need of matching fiber type properties between different compartments. Nerve activity is a major control mechanism of the fiber type profile, and multiple signaling pathways are implicated in activity-dependent changes of muscle fibers. The characterization of these pathways is raising increasing interest in clinical medicine, given the potentially beneficial effects of muscle fiber type switching in the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Stefano Schiaffino
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Consiglio Nazionale delle Ricerche Institute of Neurosciences, and Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| | - Carlo Reggiani
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Consiglio Nazionale delle Ricerche Institute of Neurosciences, and Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| |
Collapse
|
26
|
|
27
|
Direct visualization of myosin-binding protein C bridging myosin and actin filaments in intact muscle. Proc Natl Acad Sci U S A 2011; 108:11423-8. [PMID: 21705660 DOI: 10.1073/pnas.1103216108] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosin-binding protein C (MyBP-C) is a thick filament protein playing an essential role in muscle contraction, and MyBP-C mutations cause heart and skeletal muscle disease in millions worldwide. Despite its discovery 40 y ago, the mechanism of MyBP-C function remains unknown. In vitro studies suggest that MyBP-C could regulate contraction in a unique way--by bridging thick and thin filaments--but there has been no evidence for this in vivo. Here we use electron tomography of exceptionally well preserved muscle to demonstrate that MyBP-C does indeed bind to actin in intact muscle. This binding implies a physical mechanism for communicating the relative sliding between thick and thin filaments that does not involve myosin and which could modulate the contractile process.
Collapse
|
28
|
Ibanez-Garcia D, Requejo-Isidro J, Webb MR, West TG, French P, Ferenczi M. Fluorescence lifetime imaging reveals that the environment of the ATP binding site of myosin in muscle senses force. Biophys J 2010; 99:2163-9. [PMID: 20923650 PMCID: PMC3042588 DOI: 10.1016/j.bpj.2010.07.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 07/06/2010] [Accepted: 07/27/2010] [Indexed: 10/19/2022] Open
Abstract
Fluorescence lifetime imaging microscopy is used to demonstrate that different loads applied to a muscle fiber change the microenvironment of the nucleotide binding pocket of myosin. Permeabilized skeletal muscle fibers in rigor were labeled with a fluorescent ATP analog, 3'-DEAC-propylenediamine (pda)-ATP (3'-O-{N-[3-(7-diethylaminocoumarin-3-carboxamido)propyl]carbamoyl}ATP), which was hydrolyzed to the diphosphate. Cycles of small-amplitude stretches and releases (<1% of muscle segment length) were synchronized with fluorescence lifetime imaging and force measurements to correlate the effect of force on the lifetime of the ATP analog bound to the actomyosin complex. Analysis of the fluorescence decay resolved two lifetimes, corresponding to the free nucleotide DEAC-pda-ATP (τ(1) = 0.47 ± 0.03 ns; mean ± SD) and nucleotide bound to the actomyosin complex (τ(2) = 2.21 ± 0.06 ns at low strain). Whereas τ(1) did not change with force, τ(2) showed a linear dependence with the force applied to the muscle of 0.43 ± 0.05 ps/kPa. Hence, the molecular environment of the nucleotide binding pocket of myosin is directly affected by a change of length applied at the ends of the fiber segments. These changes may help explain how force modulates the actomyosin ATPase cycle and thus the physiology and energetics of contraction.
Collapse
Affiliation(s)
- Delisa Ibanez-Garcia
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jose Requejo-Isidro
- Photonics Group, Physics Department, Imperial College London, London, United Kingdom
- Unidad de Biofisica, Consejo Superior de Investigaciones Científicas, University of the Basque Country, Leioa, Spain
| | - Martin R. Webb
- Medical Research Council, National Institute for Medical Research, London, United Kingdom
| | - Timothy G. West
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Paul French
- Photonics Group, Physics Department, Imperial College London, London, United Kingdom
| | - Michael A. Ferenczi
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
29
|
Al-Khayat HA, Kensler RW, Morris EP, Squire JM. Three-dimensional structure of the M-region (bare zone) of vertebrate striated muscle myosin filaments by single-particle analysis. J Mol Biol 2010; 403:763-76. [PMID: 20851129 PMCID: PMC3314970 DOI: 10.1016/j.jmb.2010.09.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 09/01/2010] [Accepted: 09/09/2010] [Indexed: 01/22/2023]
Abstract
The rods of anti-parallel myosin molecules overlap at the centre of bipolar myosin filaments to produce an M-region (bare zone) that is free of myosin heads. Beyond the M-region edges, myosin molecules aggregate in a parallel fashion to yield the bridge regions of the myosin filaments. Adjacent myosin filaments in striated muscle A-bands are cross-linked by the M-band. Vertebrate striated muscle myosin filaments have a 3-fold rotational symmetry around their long axes. In addition, at the centre of the M-region, there are three 2-fold axes perpendicular to the filament long axis, giving the whole filament dihedral 32-point group symmetry. Here we describe the three-dimensional structure obtained by a single-particle analysis of the M-region of myosin filaments from goldfish skeletal muscle under relaxing conditions and as viewed in negative stain. This is the first single-particle reconstruction of isolated M-regions. The resulting three-dimensional reconstruction reveals details to about 55 Å resolution of the density distribution in the five main nonmyosin densities in the M-band (M6′, M4′, M1, M4 and M6) and in the myosin head crowns (P1, P2 and P3) at the M-region edges. The outermost crowns in the reconstruction were identified specifically by their close similarity to the corresponding crown levels in our previously published bridge region reconstructions. The packing of myosin molecules into the M-region structure is discussed, and some unidentified densities are highlighted.
Collapse
Affiliation(s)
- Hind A Al-Khayat
- Institute of Biomedical Engineering, Imperial College London, Bessemer Building, London, UK.
| | | | | | | |
Collapse
|
30
|
Titin diversity--alternative splicing gone wild. J Biomed Biotechnol 2010; 2010:753675. [PMID: 20339475 PMCID: PMC2843904 DOI: 10.1155/2010/753675] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 01/13/2010] [Indexed: 12/02/2022] Open
Abstract
Titin is an extremely large protein found in highest concentrations in heart and skeletal muscle. The single mammalian gene is expressed in multiple isoforms as a result of alternative splicing. Although titin isoform expression is controlled developmentally and in a tissue specific manner, the vast number of potential splicing pathways far exceeds those described in any other alternatively spliced gene. Over 1 million human splice pathways for a single individual can be potentially derived from the PEVK region alone. A new splicing pattern for the human cardiac N2BA isoform type has been found in which the PEVK region includes only the N2B type exons. The alterations in splicing and titin isoform expression in human heart disease provide impetus for future detailed study of the splicing mechanisms for this giant protein.
Collapse
|
31
|
Squire JM. Muscle myosin filaments: cores, crowns and couplings. Biophys Rev 2009; 1:149. [PMID: 28509995 PMCID: PMC5418396 DOI: 10.1007/s12551-009-0017-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 08/16/2009] [Indexed: 12/01/2022] Open
Abstract
Myosin filaments in muscle, carrying the ATPase myosin heads that interact with actin filaments to produce force and movement, come in multiple varieties depending on species and functional need, but most are based on a common structural theme. The now successful journeys to solve the ultrastructures of many of these myosin filaments, at least at modest resolution, have not been without their false starts and erroneous sidetracks, but the picture now emerging is of both diversity in the rotational symmetries of different filaments and a degree of commonality in the way the myosin heads are organised in resting muscle. Some of the remaining differences may be associated with how the muscle is regulated. Several proteins in cardiac muscle myosin filaments can carry mutations associated with heart disease, so the elucidation of myosin filament structure to understand the effects of these mutations has a clear and topical clinical relevance.
Collapse
Affiliation(s)
- John M Squire
- Muscle Contraction Group, Department of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
32
|
|
33
|
Luther PK, Bennett PM, Knupp C, Craig R, Padrón R, Harris SP, Patel J, Moss RL. Understanding the organisation and role of myosin binding protein C in normal striated muscle by comparison with MyBP-C knockout cardiac muscle. J Mol Biol 2008; 384:60-72. [PMID: 18817784 PMCID: PMC2593797 DOI: 10.1016/j.jmb.2008.09.013] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 08/27/2008] [Accepted: 09/08/2008] [Indexed: 11/16/2022]
Abstract
Myosin binding protein C (MyBP-C) is a component of the thick filament of striated muscle. The importance of this protein is revealed by recent evidence that mutations in the cardiac gene are a major cause of familial hypertrophic cardiomyopathy. Here we investigate the distribution of MyBP-C in the A-bands of cardiac and skeletal muscles and compare this to the A-band structure in cardiac muscle of MyBP-C-deficient mice. We have used a novel averaging technique to obtain the axial density distribution of A-bands in electron micrographs of well-preserved specimens. We show that cardiac and skeletal A-bands are very similar, with a length of 1.58 ± 0.01 μm. In normal cardiac and skeletal muscle, the distributions are very similar, showing clearly the series of 11 prominent accessory protein stripes in each half of the A-band spaced axially at 43-nm intervals and starting at the edge of the bare zone. We show by antibody labelling that in cardiac muscle the distal nine stripes are the location of MyBP-C. These stripes are considerably suppressed in the knockout mouse hearts as expected. Myosin heads on the surface of the thick filament in relaxed muscle are thought to be arranged in a three-stranded quasi-helix with a mean 14.3-nm axial cross bridge spacing and a 43 nm helix repeat. Extra “forbidden” meridional reflections, at orders of 43 nm, in X-ray diffraction patterns of muscle have been interpreted as due to an axial perturbation of some levels of myosin heads. However, in the MyBP-C-deficient hearts these extra meridional reflections are weak or absent, suggesting that they are due to MyBP-C itself or to MyBP-C in combination with a head perturbation brought about by the presence of MyBP-C.
Collapse
Affiliation(s)
- Pradeep K Luther
- Molecular Medicine Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW72AZ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Al-Khayat HA, Morris EP, Kensler RW, Squire JM. Myosin filament 3D structure in mammalian cardiac muscle. J Struct Biol 2008; 163:117-26. [PMID: 18472277 PMCID: PMC2531245 DOI: 10.1016/j.jsb.2008.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 03/19/2008] [Accepted: 03/20/2008] [Indexed: 11/18/2022]
Abstract
A number of cardiac myopathies (e.g. familial hypertrophic cardiomyopathy and dilated cardiomyopathy) are linked to mutations in cardiac muscle myosin filament proteins, including myosin and myosin binding protein C (MyBP-C). To understand the myopathies it is necessary to know the normal 3D structure of these filaments. We have carried out 3D single particle analysis of electron micrograph images of negatively stained isolated myosin filaments from rabbit cardiac muscle. Single filament images were aligned and divided into segments about 2x430A long, each of which was treated as an independent 'particle'. The resulting 40A resolution 3D reconstruction showed both axial and azimuthal (no radial) myosin head perturbations within the 430A repeat, with successive crown rotations of approximately 60 degrees , 60 degrees and 0 degrees , rather than the regular 40 degrees for an unperturbed helix. However, it is shown that the projecting density peaks appear to start at low radius from origins closer to those expected for an unperturbed helical filament, and that the azimuthal perturbation especially increases with radius. The head arrangements in rabbit cardiac myosin filaments are very similar to those in fish skeletal muscle myosin filaments, suggesting a possible general structural theme for myosin filaments in all vertebrate striated muscles (skeletal and cardiac).
Collapse
Affiliation(s)
- Hind A Al-Khayat
- Institute of Biomedical Engineering, Imperial College London, Bessemer Building, London SW7 2AZ, UK.
| | | | | | | |
Collapse
|
35
|
Al-Khayat HA, Morris EP, Kensler RW, Squire JM. 3D structure of relaxed fish muscle myosin filaments by single particle analysis. J Struct Biol 2006; 155:202-17. [PMID: 16731006 DOI: 10.1016/j.jsb.2006.01.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 01/16/2006] [Indexed: 11/30/2022]
Abstract
To understand the structural changes involved in the force-producing myosin cross-bridge cycle in vertebrate muscle it is necessary to know the arrangement and conformation of the myosin heads at the start of the cycle (i.e. the relaxed state). Myosin filaments isolated from goldfish muscle under relaxing conditions and viewed in negative stain by electron microscopy (EM) were divided into segments and subjected to three-dimensional (3D) single particle analysis without imposing helical symmetry. This allowed the known systematic departure from helicity characteristic of vertebrate striated muscle myosin filaments to be preserved and visualised. The resulting 3D reconstruction reveals details to about 55 A resolution of the myosin head density distribution in the three non-equivalent head 'crowns' in the 429 A myosin filament repeat. The analysis maintained the well-documented axial perturbations of the myosin head crowns and revealed substantial azimuthal perturbations between crowns with relatively little radial perturbation. Azimuthal rotations between crowns were approximately 60 degrees , 60 degrees and 0 degrees , rather than the regular 40 degrees characteristic of an unperturbed helix. The new density map correlates quite well with the head conformations analysed in other EM studies and in the relaxed fish muscle myosin filament structure modelled from X-ray fibre diffraction data. The reconstruction provides information on the polarity of the myosin head array in the A-band, important in understanding the geometry of the myosin head interaction with actin during the cross-bridge cycle, and supports a number of conclusions previously inferred by other methods. The observed azimuthal head perturbations are consistent with the X-ray modelling results from intact muscle, indicating that the observed perturbations are an intrinsic property of the myosin filaments and are not induced by the proximity of actin filaments in the muscle A-band lattice. Comparison of the axial density profile derived in this study with the axial density profile of the X-ray model of the fish myosin filaments which was restricted to contributions from the myosin heads allows the identification of a non-myosin density peak associated with the azimuthally perturbed head crown which can be interpreted as a possible location for C-protein or X-protein (MyBP-C or -X). This position for C-protein is also consistent with the C-zone interference function deduced from previous analysis of the meridional X-ray pattern from frog muscle. It appears that, along with other functions, C-(X-) protein may have the role of slewing the heads of one crown so that they do not clash with the neighbouring actin filaments, but are readily available to interact with actin when the muscle is activated.
Collapse
Affiliation(s)
- Hind A Al-Khayat
- Biological Structure and Function Section, Biomedical Sciences Division, Imperial College London, London SW7 2AZ, UK.
| | | | | | | |
Collapse
|
36
|
Kensler RW. The mammalian cardiac muscle thick filament: crossbridge arrangement. J Struct Biol 2005; 149:303-12. [PMID: 15721584 DOI: 10.1016/j.jsb.2004.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 12/06/2004] [Indexed: 11/21/2022]
Abstract
Although skeletal muscle thick filaments have been extensively studied, information on the structure of cardiac thick filaments is limited. Since cardiac muscle differs in many physiological properties from skeletal muscle it is important to elucidate the structure of the cardiac thick filament. The structure of isolated and negatively stained rabbit cardiac thick filaments has been analyzed from computed Fourier transforms and image analysis. The transforms are detailed, showing a strong set of layer lines corresponding to a 42.9 nm quasi-helical repeat. The presence of relatively strong "forbidden" meridional reflections not expected from ideal helical symmetry on the second, fourth, fifth, seventh, eighth, and tenth layer lines suggest that the crossbridge array is perturbed from ideal helical symmetry. Analysis of the phase differences for the primary reflections on the first layer line of transforms from 15 filaments showed an average difference of 170 degrees, close to the value of 180 degrees expected for an odd-stranded structure. Computer-filtered images of the isolated thick filaments unequivocally demonstrate a three-stranded arrangement of the crossbridges on the filaments and provide evidence that the crossbridge arrangement is axially perturbed from ideal helical symmetry.
Collapse
Affiliation(s)
- Robert W Kensler
- Department of Anatomy, University of Puerto Rico Medical School, Medical Sciences Campus, P.O. Box 365067, San Juan 00936-5067, Puerto Rico.
| |
Collapse
|
37
|
Al-Khayat HA, Morris EP, Squire JM. Single particle analysis: a new approach to solving the 3D structure of myosin filaments. J Muscle Res Cell Motil 2005; 25:635-44. [PMID: 15750848 DOI: 10.1007/s10974-004-5333-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Accepted: 10/20/2004] [Indexed: 11/25/2022]
Abstract
Knowledge of the structure of muscle myosin filaments is essential for a proper understanding of sarcomere structure and how myosin heads interact with the actin filaments to produce force and movement. Two principal methods have been used to define the myosin head arrays in filaments in the relaxed state, namely modelling from low-angle X-ray diffraction data and image processing of electron micrographs of isolated filaments. Analysis of filament images by 3D helical reconstruction, which imposes total helical symmetry on the structure, is very effective in some cases, but it relies on the existence of very highly ordered preparations of straight filaments. Resolutions achieved to date are about 70 angstroms. Modelling of X-ray diffraction data recorded from whole relaxed fish or insect muscles has also been used as an independent method. Although the resolution of the diffraction data is often also about 70 angstroms, the effective resolution of the modelling is very much higher than this because additional very high resolution data (e.g. from protein crystallography) is included in the analysis. However, the X-ray diffraction method has to date provided only limited data on non-myosin thick filament proteins such as C-protein and titin and it cannot provide the polarity of the myosin head arrangement. Both the helical reconstruction and X-ray diffraction techniques have advantages and disadvantages, but their disadvantages are avoided in the new approach of single particle analysis of electron micrograph data. Even using the same micrographs as for helical reconstruction, the resolution can be extended by this method to about 50 angstroms or better. In addition, it is not necessary to assume that the myosin filaments are helical; a significant advantage in the case of vertebrate myosin filaments where there is a known crossbridge perturbation. Here we describe the principles of all these approaches, but particularly that of single particle analysis. We outline the application of single particle analysis to myosin filaments from vertebrate skeletal and insect flight (IFM) muscle myosin filaments.
Collapse
Affiliation(s)
- Hind A Al-Khayat
- Biological Structure and Function Section, Biomedical Sciences Division, Imperial College London, SW7 2AZ, London, UK.
| | | | | |
Collapse
|
38
|
Agarkova I, Ehler E, Lange S, Schoenauer R, Perriard JC. M-band: a safeguard for sarcomere stability? J Muscle Res Cell Motil 2004; 24:191-203. [PMID: 14609030 DOI: 10.1023/a:1026094924677] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The sarcomere of striated muscle is a very efficient machine transforming chemical energy into movement. However, a wrong distribution of the generated forces may lead to self-destruction of the engine itself. A well-known example for this is eccentric contraction (elongation of the sarcomere in the activated state), which damages sarcomeric structure and leads to a reduced muscle performance. The goal of this review is to discuss the involvement of different cytoskeletal systems, in particular the M-band filaments, in the mechanisms that provide stability during sarcomeric contraction. The M-band is the transverse structure in the center of the sarcomeric A-band, which is responsible both for the regular packing of thick filaments and for the uniform distribution of the tension over the myosin filament lattice in the activated sarcomere. Although some proteins from the Ig-superfamily, like myomesin and M-protein, are the major candidates for the role of M-band bridges, the exact molecular organisation of the M-band is not clear. However, the protein composition of the M-band seems to modulate the mechanical characteristics of the thick filament lattice, in particular its stiffness, adjusting it to the specific demands in different muscle types. The special M-band design in slow fibers might be part of structural adaptations, favouring sarcomere stability for a continuous contractile activity over a broad working range. In conclusion, we discuss why the interference with M-band structure might have fatal consequences for the integrity of the working sarcomere.
Collapse
Affiliation(s)
- Irina Agarkova
- Institute of Cell Biology, ETH-Zurich Hoenggerberg, CH-8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
39
|
Squire JM, Luther PK, Knupp C. Structural evidence for the interaction of C-protein (MyBP-C) with actin and sequence identification of a possible actin-binding domain. J Mol Biol 2003; 331:713-24. [PMID: 12899839 DOI: 10.1016/s0022-2836(03)00781-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
C-protein (MyBP-C) is a myosin-binding protein that is usually seen in two sets of seven to nine positions in the C-zones in each half of the vertebrate striated muscle A-band. Skeletal muscle C-protein is a modular structure containing ten sub-domains (C1 to C10) of which seven are immunoglobulin-type domains and three (C6, C7 and C9) are fibronectin-like domains. Cardiac muscle C-protein has an extra N-terminal domain (C0) and also some sequence insertions, one of which provides phosphorylation sites. It is conceivable that C-protein has both a structural and regulatory role within the sarcomere. The precise mode of binding of C-protein to the myosin filament has not been determined. However, detailed ultrastructural studies have suggested that C-protein, which binds to myosin, can give rise to a longer periodicity (about 435A) than the intrinsic myosin filament repeat of 429A. The reason for this has remained a puzzle for over 25 years. Here we show by modelling and computation that the presence of this longer periodicity could be explained if the myosin-binding part of C-protein binds to myosin with the expected 429A repeat, but if there are systematic interactions of the N-terminal end of C-protein with the neighbouring actin filaments in the hexagonal lattice of filaments in the A-band. We also show that if they occur these interactions would probably only arise in defined muscle states. Further analysis of the MyBP-C sequence identifies a possible actin-binding domain in the Pro-Ala-rich sequence found at the N terminus of skeletal MyBP-C and between domains C0 and C1 in the cardiac sequence.
Collapse
Affiliation(s)
- John M Squire
- Biological Structure and Function Section, Biomedical Sciences Division, Imperial College London, Fleming Building, London SW7 2AZ, UK.
| | | | | |
Collapse
|
40
|
Abstract
Cryoelectron microscopy makes it possible to record high-resolution detail from large and complex structures. However, its application to understanding cellular structure is limited by the requirement that samples should be no thicker than approximately 0.5-1 microm. Therefore it is important to develop the ability to section biological material so that it can be imaged in its native frozen state. Here we have adapted standard methods of preparing cryosections so that they can be imaged by cryoelectron microscopy. As used for immunolabeling, cryosections of chemically fixed, cryoprotected frozen rat cardiac muscle were thawed, applied to carbon-coated grids, and rinsed on a drop of buffer. The special step here is that the cryosections were then refrozen by being plunged into liquid ethane and imaged at approximately -180 degrees C in a 200-kV field-emission gun electron microscope. The unstained cryosections have good contrast, allowing the identification of optimum regions of the sample. Considerable fine detail is observed within the substructure of the sarcomere A-band and I-band. Fourier transform analysis of the micrographs shows that this method preserves high structural order, hence these sections are well-suited to 3D reconstruction. We conclude that this approach has considerable potential for obtaining intermediate- and high-resolution structural detail from bulk tissue.
Collapse
Affiliation(s)
- Pradeep K Luther
- Biological Structure & Function Section, Biomedical Sciences Division, Faculty of Medicine, Imperial College, Exhibition Road, London SW7 2AZ, UK.
| | | |
Collapse
|
41
|
Piazzesi G, Reconditi M, Linari M, Lucii L, Sun YB, Narayanan T, Boesecke P, Lombardi V, Irving M. Mechanism of force generation by myosin heads in skeletal muscle. Nature 2002; 415:659-62. [PMID: 11832949 DOI: 10.1038/415659a] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Muscles generate force and shortening in a cyclical interaction between the myosin head domains projecting from the myosin filaments and the adjacent actin filaments. Although many features of the dynamic performance of muscle are determined by the rates of attachment and detachment of myosin and actin, the primary event in force generation is thought to be a conformational change or 'working stroke' in the actin-bound myosin head. According to this hypothesis, the working stroke is much faster than attachment or detachment, but can be observed directly in the rapid force transients that follow step displacement of the filaments. Although many studies of the mechanism of muscle contraction have been based on this hypothesis, the alternative view-that the fast force transients are caused by fast components of attachment and detachment--has not been excluded definitively. Here we show that measurements of the axial motions of the myosin heads at ångström resolution by a new X-ray interference technique rule out the rapid attachment/detachment hypothesis, and provide compelling support for the working stroke model of force generation.
Collapse
|
42
|
Grazi E, Cintio O. Thermodynamic features of myosin filament suspensions: implications for the modeling of muscle contraction. Biophys J 2001; 81:313-20. [PMID: 11423416 PMCID: PMC1301513 DOI: 10.1016/s0006-3495(01)75701-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The analysis of myosin filament suspensions shows that these solutions are characterized by highly nonideal behavior. From these data a model is constructed that allows us to predict that 1) when subjected to an increasing protein osmotic pressure, myosin filaments experience an elastic deformation, which is not linearly related to the acting force; and 2) at constant protein osmotic pressure, when the cross-bridges of the myosin filaments are subjected to an external, nonosmotic force parallel to the filament axis, they are deformed and the water activity coefficient is altered. As a consequence, in muscle, passive and active shortening of the sarcomere is expected to promote the change of the water-water and of the water-protein interactions. We thus propose to depict muscle contraction as a chemo-osmoelastic transduction, where the analysis of the energy partition during the power stroke requires consideration of the osmotic factor in addition to the chemoelastic ones.
Collapse
Affiliation(s)
- E Grazi
- Dipartimento di Biochimica e Biologia Molecolare, Università di Ferrara, 44100 Ferrara, Italy.
| | | |
Collapse
|
43
|
Cantino ME, Brown LD, Chew M, Luther PK, Squire JM. A-band architecture in vertebrate skeletal muscle: polarity of the myosin head array. J Muscle Res Cell Motil 2001; 21:681-90. [PMID: 11227795 DOI: 10.1023/a:1005661123914] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Despite extensive knowledge of many muscle A-band proteins (myosin molecules, titin, C-protein (MyBP-C)), details of the organization of these molecules to form myosin filaments remain unclear. Recently the myosin head (crossbridge) configuration in a relaxed vertebrate muscle was determined from low-angle X-ray diffraction (Hudson et al. (1997), J Mol Biol 273: 440-455). This showed that, even without C-protein, the myosin head array displays a characteristic polar pattern with every third 143 A-spaced crossbridge level particularly prominent. However, X-ray diffraction cannot determine the polarity of the crossbridge array relative to the neighbouring actin filaments; information crucial to a proper understanding of the contractile event. Here, electron micrographs of negatively-stained goldfish A-segments and of fast-frozen, freeze-fractured plaice A-bands have been used to determine the resting myosin head polarity relative to the M-band. In agreement with the X-ray data, the prominent 429 A-spaced striations are seen outside the C-zone, where no non-myosin proteins apart from titin are thought to be located. The head orientation is with the concave side of the curved myosin heads (containing the entrance to the ATP-binding site) facing towards the M-band and the convex surface (containing the actin-binding region at one end) facing away from the M-band.
Collapse
Affiliation(s)
- M E Cantino
- Department of Physiology and Neurobiology, University of Connecticut, Storrs 06269-2131, USA.
| | | | | | | | | |
Collapse
|
44
|
Linari M, Piazzesi G, Dobbie I, Koubassova N, Reconditi M, Narayanan T, Diat O, Irving M, Lombardi V. Interference fine structure and sarcomere length dependence of the axial x-ray pattern from active single muscle fibers. Proc Natl Acad Sci U S A 2000; 97:7226-31. [PMID: 10860988 PMCID: PMC16527 DOI: 10.1073/pnas.97.13.7226] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Axial x-ray diffraction patterns from single intact fibers of frog skeletal muscle were recorded by using a highly collimated x-ray beam at the European Synchrotron Radiation Facility. During isometric contraction at sarcomere lengths 2.2-3.2 microm, the M3 x-ray reflection, associated with the repeat of myosin heads along the filaments, was resolved into two peaks. The total M3 intensity decreased linearly with increasing sarcomere length and was directly proportional to the degree of overlap between myosin and actin filaments, showing that it comes from myosin heads in the overlap region. The separation between the M3 peaks was smaller at longer sarcomere length and was quantitatively explained by x-ray interference between myosin heads in the two overlap regions of each sarcomere. The relative intensity of the M3 peaks was independent of sarcomere length, showing that the axial periodicities of the nonoverlap and overlap regions of the myosin filament have the same value, 14.57 nm, during active contraction. In resting fibers the periodicity is 14.34 nm, so muscle activation produces a change in myosin filament structure in the nonoverlap as well as the overlap part of the filament. The results establish x-ray interferometry as a new tool for studying the motions of myosin heads during muscle contraction with unprecedented spatial resolution.
Collapse
Affiliation(s)
- M Linari
- Dipartimento di Scienze Fisiologiche, Universitá di Firenze, Viale G. B. Morgagni 63, I-50134 Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hornemann T, Stolz M, Wallimann T. Isoenzyme-specific interaction of muscle-type creatine kinase with the sarcomeric M-line is mediated by NH(2)-terminal lysine charge-clamps. J Cell Biol 2000; 149:1225-34. [PMID: 10851020 PMCID: PMC2175123 DOI: 10.1083/jcb.149.6.1225] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/1999] [Accepted: 05/03/2000] [Indexed: 11/22/2022] Open
Abstract
Creatine kinase (CK) is located in an isoenzyme-specific manner at subcellular sites of energy production and consumption. In muscle cells, the muscle-type CK isoform (MM-CK) specifically interacts with the sarcomeric M-line, while the highly homologous brain-type CK isoform (BB-CK) does not share this property. Sequence comparison revealed two pairs of lysine residues that are highly conserved in M-CK but are not present in B-CK. The role of these lysines in mediating M-line interaction was tested with a set of M-CK and B-CK point mutants and chimeras. We found that all four lysine residues are involved in the isoenzyme-specific M-line interaction, acting pair-wise as strong (K104/K115) and weak interaction sites (K8/K24). An exchange of these lysines in MM-CK led to a loss of M-line binding, whereas the introduction of the very same lysines into BB-CK led to a gain of function by transforming BB-CK into a fully competent M-line-binding protein. The role of the four lysines in MM-CK is discussed within the context of the recently solved x-ray structures of MM-CK and BB-CK.
Collapse
Affiliation(s)
- T Hornemann
- Swiss Federal Institute of Technology, Institute of Cell Biology, Eidenössisch Technische Hochschule Zürich Hönggerberg, 8093 Zürich, Switzerland.
| | | | | |
Collapse
|
46
|
Gautel M, Mues A, Young P. Control of sarcomeric assembly: the flow of information on titin. Rev Physiol Biochem Pharmacol 1999; 138:97-137. [PMID: 10396139 DOI: 10.1007/bfb0119625] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- M Gautel
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
47
|
Bennett PM, Fürst DO, Gautel M. The C-protein (myosin binding protein C) family: regulators of contraction and sarcomere formation? Rev Physiol Biochem Pharmacol 1999; 138:203-34. [PMID: 10396142 DOI: 10.1007/bfb0119628] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- P M Bennett
- Randall Institute, King's College London, UK
| | | | | |
Collapse
|
48
|
Kolmerer B, Witt CC, Freiburg A, Millevoi S, Stier G, Sorimachi H, Pelin K, Carrier L, Schwartz K, Labeit D, Gregorio CC, Linke WA, Labeit S. The titin cDNA sequence and partial genomic sequences: insights into the molecular genetics, cell biology and physiology of the titin filament system. Rev Physiol Biochem Pharmacol 1999; 138:19-55. [PMID: 10396137 DOI: 10.1007/bfb0119623] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
49
|
Fürst DO, Obermann WM, van der Ven PF. Structure and assembly of the sarcomeric M band. Rev Physiol Biochem Pharmacol 1999; 138:163-202. [PMID: 10396141 DOI: 10.1007/bfb0119627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- D O Fürst
- Department of Cell Biology, University of Potsdam, Germany
| | | | | |
Collapse
|
50
|
Abstract
Myosin binding protein C (MyBP-C) is one of a group of myosin binding proteins that are present in the myofibrils of all striated muscle. The protein is found at 43-nm repeats along 7 to 9 transverse lines in a portion of the A band where crossbridges are found (C zone). MyBP-C contains myosin and titin binding sites at the C terminus of the molecule in all 3 of the isoforms (slow skeletal, fast skeletal, and cardiac). The cardiac isoform also includes a series of residues that contain 3 phosphorylatable sites and an additional immunoglobulin module at the N terminus that are not present in skeletal isoforms. The following 2 major functions of MyBP-C have been suggested: (1) a role in the formation of the sarcomeric myofibril as a result of binding to myosin and titin and (2) in the case of the cardiac isoform, regulation of contraction through phosphorylation. The first is supported by the demonstrated effect of MyBP-C on the packing of myosin in the thick filament, the coincidence of appearance of sarcomeres and MyBP-C during myofibrillogenesis, and the defective formation of sarcomeres when the titin and/or myosin binding sites of MyBP-C are missing. The second is supported by the specific phosphorylation sites in cardiac MyBP-C, the presence in the thick filament of an enzyme specific for MyBP-C phosphorylation, the alteration of thick filament structure by MyBP-C phosphorylation, and the accompaniment of MyBP-C phosphorylation with all major physiological mechanisms of modulation of inotropy in the heart.
Collapse
Affiliation(s)
- S Winegrad
- Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.
| |
Collapse
|