1
|
Stevens BA, Flynn PJ, Wilson GA, Hames BD. Control elements of Dictyostelium discoideum prespore specific gene 3B. Differentiation 2001; 68:92-105. [PMID: 11686239 DOI: 10.1046/j.1432-0436.2001.680203.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of the prespore-specific gene 3B in Dictyostelium discoideum Ax-2 cells is first detectable late in development with 3B mRNA levels peaking at 18 h (Corney et al., 1990). Sequence analysis of 3B cDNA and genomic clones revealed two exons, 319bp and 341bp long, separated by an 82bp intron, which encode a 219 residue protein with no significant similarity to any other reported gene product. Transcription starts at an A residue 45bp upstream from the translation initiation codon, preceded by a TATA-like sequence and an oligo-dT stretch. The 5' flanking sequence of the 3B gene is extremely A + T rich but contains five G/C rich stretches, each approximately 7bp long, which have strong sequence similarity to the G boxes found upstream of other developmentally regulated Dictyostelium genes. Analysis of both 3B promoter-CAT reporter gene and 3B promoter-lacZ reporter gene constructs showed that 908bp of 5' flanking sequence is sufficient to confer correct developmental and cell-type specific regulation. Sequential 5' deletion analysis revealed that positive elements lie upstream of position -304 and that negative element(s) lie between positions -264 and -241. Nevertheless, a 286bp promoter fragment containing only sequence located downstream of position -241 directed essentially correct reporter gene expression. Point mutation analysis identified cis-acting elements within this 'sufficient' promoter fragment which activate transcription (G box V and psp-AT type sequences). A short (56bp) region of the 3B promoter sequence containing both G box IV and the psp-AT type element binds two types of nuclear factor, one present in cells throughout development and a second that appears only in late development with a time course comparable to 3B gene induction.
Collapse
Affiliation(s)
- B A Stevens
- School of Biochemistry and Molecular Biology, University of Leeds, UK
| | | | | | | |
Collapse
|
2
|
Rivero F, Kuspa A, Brokamp R, Matzner M, Noegel AA. Interaptin, an actin-binding protein of the alpha-actinin superfamily in Dictyostelium discoideum, is developmentally and cAMP-regulated and associates with intracellular membrane compartments. J Biophys Biochem Cytol 1998; 142:735-50. [PMID: 9700162 PMCID: PMC2148174 DOI: 10.1083/jcb.142.3.735] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In a search for novel members of the alpha-actinin superfamily, a Dictyostelium discoideum genomic library in yeast artificial chromosomes (YAC) was screened under low stringency conditions using the acting-binding domain of the gelation factor as probe. A new locus was identified and 8.6 kb of genomic DNA were sequenced that encompassed the whole abpD gene. The DNA sequence predicts a protein, interaptin, with a calculated molecular mass of 204,300 D that is constituted by an actin-binding domain, a central coiled-coil rod domain and a membrane-associated domain. In Northern blot analyses a cAMP-stimulated transcript of 5.8 kb is expressed at the stage when cell differentiation occurs. Monoclonal antibodies raised against bacterially expressed interaptin polypeptides recognized a 200-kD developmentally and cAMP-regulated protein and a 160-kD constitutively expressed protein in Western blots. In multicellular structures, interaptin appears to be enriched in anterior-like cells which sort to the upper and lower cups during culmination. The protein is located at the nuclear envelope and ER. In mutants deficient in interaptin development is delayed, but the morphology of the mature fruiting bodies appears normal. When starved in suspension abpD- cells form EDTA-stable aggregates, which, in contrast to wild type, dissociate. Based on its domains and location, interaptin constitutes a potential link between intracellular membrane compartments and the actin cytoskeleton.
Collapse
Affiliation(s)
- F Rivero
- Max-Planck-Institut für Biochemie, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
3
|
Abstract
Analysis of Dictyostelium development and cell biology has suffered from the lack of an ordinary genetic system whereby genes can be arranged in new combinations. Genetic exchange between two long ignored strains, A2Cycr and WS205 is here reexamined. Alleles which differ in size or restriction sites between these two strains were found for seven genes. Six of these are in two clusters on chromosome 2. Frequencies of recombinant progeny indicate that the genetic map of the two mating strains is colinear with the physical map recently worked out for the standard nonsexual strain, NC4. The rate of recombination is high, about 0.1% per kilobase in three different regions of chromosome 2. This value is comparable to rates found in yeast, and will permit fine dissection of the genome.
Collapse
Affiliation(s)
- D Francis
- Department of Biological Sciences, University of Delaware, Newark 19716, USA.
| |
Collapse
|
4
|
Pérez DG, Gómez C, López-Bayghen E, Tannich E, Orozco E. Transcriptional analysis of the EhPgp5 promoter of Entamoeba histolytica multidrug-resistant mutant. J Biol Chem 1998; 273:7285-92. [PMID: 9516422 DOI: 10.1074/jbc.273.13.7285] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report here the cloning and transcriptional characterization of the EhPgp5 multidrug resistance gene promoter isolated from the drug-resistant clone C2 of Entamoeba histolytica. The EhPgp5 promoter has the TATA-like motif at -31 base pairs; transcription initiates three nucleotides upstream from the ATG in trophozoites grown in 225 microM emetine (clone C2(225)), whereas in those grown without the drug (clone C2) a product with no open reading frame was detected. The promoter was active in transfected clone C2 trophozoites, its activity increased when trophozoites were cultured in 40 microM emetine, while it was turned off in the drug-sensitive clone A. The first -235 base pair kept full promoter activity, suggesting that it has important drug responsive elements. Gel shift assays detected the complex Ib in clone C2, which was augmented in clone C2(225). Competition experiments suggested that complex Ib may be constituted by HOX and AP-1 like factors in clone C2, whereas in clone C2(225), complex Ib was only competed by the HOX sequence. Complexes Ie, detected in clones A and C2 but not in C2(225), and Ia, present in all clones, were competed by the TATA box oligonucleotide. Our results suggest that proteins forming complexes Ib and Ie may be participating in the regulation of the EhPgp5 gene expression.
Collapse
Affiliation(s)
- D G Pérez
- Department of Patología Experimental, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV Instituto Politecnico Nacional AP 14-740, México 07300, D.F. México
| | | | | | | | | |
Collapse
|
5
|
Gómez C, Pérez DG, López-Bayghen E, Orozco E. Transcriptional analysis of the EhPgp1 promoter of Entamoeba histolytica multidrug-resistant mutant. J Biol Chem 1998; 273:7277-84. [PMID: 9516421 DOI: 10.1074/jbc.273.13.7277] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We present here the cloning and characterization of the EhPgp1 multidrug resistance gene promoter isolated from the Entamoeba histolytica drug-resistant mutant clone C2. The EhPgp1 promoter lacks the typical TATA box and the transcriptional initiation sequences described for other E. histolytica promoters. The major transcription initiation site of the EhPgp1 gene was located at the ATG start codon. The EhPgp1 core promoter located within the first 244 base pairs showed a higher chloramphenicol acetyltransferase expression in the transfected trophozoites of clone C2 than in those of the sensitive clone A. Gel shift assays revealed three specific DNA-protein complexes (Ia, IIa, and IIIc) using nuclear extracts from clone C2, whereas three main complexes (If, IIf, and IIg) were limited to clone A. Competition assays suggested the presence of C/EBP-like and OCT-like proteins in complexes Ia and IIa, respectively, probably involved in the expression of the EhPgp1 gene, whereas complex IIIc was competed by GATA-1, C/EBP, OCT, and HOX oligonucleotides. Thus, differential DNA-protein complexes may be formed by transcriptional factors involved in the regulation of the EhPgp1 gene expression.
Collapse
Affiliation(s)
- C Gómez
- Department of Patología Experimental, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV Instituto Politecnico Nacional, AP 14-740, Mexico 07300, Mexico
| | | | | | | |
Collapse
|
6
|
Miller C, McDonald J, Francis D. Evolution of promoter sequences: elements of a canonical promoter for prespore genes of Dictyostelium. J Mol Evol 1996; 43:185-93. [PMID: 8703084 DOI: 10.1007/bf02338826] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An attempt is made to define a minimal prespore promoter which contains all elements essential for correct regulation of expression of a prespore gene. The prespore genes of Dictyostelium are coregulated during development. Most begin transcription at the same early stage, and activity of all is restricted to prespore tissue during the later slug stage. Sequences 5' to the coding sequences of eight prespore genes were searched for all elements proposed to control transcription and for new elements. The meaningfulness of occurrences of elements and pairs of elements in prespore promoters was evaluated by comparison with frequencies of occurrences in promoters of other, nonprespore genes. These comparisons resulted in definition of a canonical prespore promoter, a stretch of about 200 nucleotides containing at least one of each of three elements. Certain limitations were found on the spacing of elements. Orientation of elements with respect to each other appeared unrestricted. All elements often occurred in multiple copies. This structure suggests that individual copies of each element are not conserved during evolution, but instead continually appear and disappear.
Collapse
Affiliation(s)
- C Miller
- Biology Department, University of Oregon, Eugene 97403, USA
| | | | | |
Collapse
|
7
|
Siderovski DP, Heximer SP, Forsdyke DR. A human gene encoding a putative basic helix-loop-helix phosphoprotein whose mRNA increases rapidly in cycloheximide-treated blood mononuclear cells. DNA Cell Biol 1994; 13:125-47. [PMID: 8179820 DOI: 10.1089/dna.1994.13.125] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
G0S8 is a member of a set of putative G0/G1 switch regulatory genes (G0S genes) selected by screening cDNA libraries prepared from blood mononuclear cells cultured for 2 hr with lectin and cycloheximide. Comparison of a full-length cDNA sequence with the corresponding genomic sequence reveals an open reading frame of 211 amino acids, distributed across 5 exons. The 24-kD protein has a basic domain preceding a potential helix-loop-helix domain which contains a QTK motif found about 60 amino acids from the carboxyl terminus in the loop region of several helix-loop-helix proteins. There are potential phosphorylation sites for protein kinase C, creatine kinase II, and protein tyrosine kinases and regions of sequence similarity to helix-loop-helix proteins, tyrosine phosphatases, and RNA and DNA polymerases. The genomic sequence contains a CpG island, suggesting expression in the germ line. Potential binding sites for transcription factors are present in the 5' flank and introns; these include Zif268/NGFI-A/EGR1/G0S30, NGFI-B, Ap1, and factors that react with retroviral long terminal repeats (LTRs). There are several potential interferon response elements and a serum response element in the 3' flank overlapping a region of similarity to a cytomegalovirus immediate-early gene enhancer. Many of these motifs are found in immediate-early G0/G1 switch genes; however, we were unable to demonstrate an increase in G0S8 mRNA in response to lectin alone. Sequence similarities are noted between G0S8 and a variety of genes involved in the immune system, in the regulation of retroviruses, and in the cell cycle.
Collapse
Affiliation(s)
- D P Siderovski
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
8
|
Blusch J, Morandini P, Nellen W. Transcriptional regulation by folate: inducible gene expression in Dictyostelium transformants during growth and early development. Nucleic Acids Res 1992; 20:6235-8. [PMID: 1475184 PMCID: PMC334510 DOI: 10.1093/nar/20.23.6235] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Dictyostelium discoidin genes are induced in bacteria-grown cells shortly before the onset of development but are also highly expressed during growth in axenic medium. We here show that axenically growing cells strongly respond to the extracellular signal folate by suppressing discoidin synthesis while cell growth and development is not substantially affected. Repression occurs via two previously identified promoter elements, the dIE and the dAXE. Removal of the signal molecules or setting cells up for development results in rapid reactivation of the promoter. Based on this observation, we constructed the transformation vector pVEII and describe a convenient method which allows for controlled expression of a gene of interest in growing cells and also for external modulation in early development. Deletion constructs of the discoidin promoter can be used in addition to vary transcriptional activity over about one order of magnitude.
Collapse
Affiliation(s)
- J Blusch
- Max-Planck-Institut für Biochemie, Abt. Zellbiologie, Martinsried, Germany
| | | | | |
Collapse
|
9
|
Identification of a unique cAMP-response element in the gene encoding the cell adhesion molecule gp80 in Dictyostelium discoideum. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41825-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
10
|
Kuspa A, Maghakian D, Bergesch P, Loomis WF. Physical mapping of genes to specific chromosomes in Dictyostelium discoideum. Genomics 1992; 13:49-61. [PMID: 1577493 DOI: 10.1016/0888-7543(92)90201-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cloned genes were used to probe a highly redundant library of large cloned fragments of the Dictyostelium discoideum genome carried in yeast artificial chromosomes (YACs). Each gene recognized several independent YAC clones, thereby grouping them into a contig. Individual YACs were arranged within the contig by positioning genes relative to rare restriction sites and the YAC ends. Genes that had been previously assigned to one of the six linkage groups by parasexual genetics were used to establish physically mapped regions on specific chromosomes. Previously unmapped genes were assigned to specific chromosomes when they recognized members of a mapped contig. Linkage was confirmed by congruence of large-scale restriction maps centered on either the previously mapped or the newly mapped genes. At present, the chromosome-assigned map segments comprise approximately 50% of the genome. About half of each map segment is covered by overlapping YACs.
Collapse
Affiliation(s)
- A Kuspa
- Department of Biology, University of California, San Diego, La Jolla 92093-0322
| | | | | | | |
Collapse
|
11
|
The cyclic nucleotide phosphodiesterase gene of Dictyostelium discoideum utilizes alternate promoters and splicing for the synthesis of multiple mRNAs. Mol Cell Biol 1989. [PMID: 2779573 DOI: 10.1128/mcb.9.9.3938] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cyclic nucleotide phosphodiesterase (phosphodiesterase) gene plays essential roles in the development of Dictyostelium discoideum during cellular aggregation and postaggregation morphogenesis. Genomic clones spanning the gene were isolated and used to determine the sequence and structure of the phosphodiesterase gene. We found an unusually complex organization for a gene of D. discoideum. Two transcripts of 2.4 and 1.9 kilobases (kb) were synthesized from start sites separated by 1.1 kb. A developmentally regulated promoter was utilized for the 2.4-kb mRNA, and a constitutive promoter regulated synthesis of the 1.9-kb transcript. The gene was found to be divided into four exons that are alternately spliced to give rise to the two mRNAs. The precursor of the 2.4-kb mRNA contained a 2.3-kb intron, whereas the precursor of the constitutive transcript was synthesized with a 1.7-kb intron. The two transcripts contained identical protein-coding regions and 400-nucleotide 3' untranslated sequences. The 2.4-kb developmentally regulated mRNA was distinguished by a long 5' untranslated leader of 666 nucleotides. The complex structure of the gene may allow multiple levels of control of the expression of the phosphodiesterase during development.
Collapse
|
12
|
Podgorski GJ, Franke J, Faure M, Kessin RH. The cyclic nucleotide phosphodiesterase gene of Dictyostelium discoideum utilizes alternate promoters and splicing for the synthesis of multiple mRNAs. Mol Cell Biol 1989; 9:3938-50. [PMID: 2779573 PMCID: PMC362456 DOI: 10.1128/mcb.9.9.3938-3950.1989] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The cyclic nucleotide phosphodiesterase (phosphodiesterase) gene plays essential roles in the development of Dictyostelium discoideum during cellular aggregation and postaggregation morphogenesis. Genomic clones spanning the gene were isolated and used to determine the sequence and structure of the phosphodiesterase gene. We found an unusually complex organization for a gene of D. discoideum. Two transcripts of 2.4 and 1.9 kilobases (kb) were synthesized from start sites separated by 1.1 kb. A developmentally regulated promoter was utilized for the 2.4-kb mRNA, and a constitutive promoter regulated synthesis of the 1.9-kb transcript. The gene was found to be divided into four exons that are alternately spliced to give rise to the two mRNAs. The precursor of the 2.4-kb mRNA contained a 2.3-kb intron, whereas the precursor of the constitutive transcript was synthesized with a 1.7-kb intron. The two transcripts contained identical protein-coding regions and 400-nucleotide 3' untranslated sequences. The 2.4-kb developmentally regulated mRNA was distinguished by a long 5' untranslated leader of 666 nucleotides. The complex structure of the gene may allow multiple levels of control of the expression of the phosphodiesterase during development.
Collapse
Affiliation(s)
- G J Podgorski
- Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | | | | | |
Collapse
|
13
|
Early AE, Williams JG. Identification of sequences regulating the transcription of a Dictyostelium gene selectively expressed in prespore cells. Nucleic Acids Res 1989; 17:6473-84. [PMID: 2550894 PMCID: PMC318342 DOI: 10.1093/nar/17.16.6473] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There has been considerable debate about the relative contributions of transcriptional and post-transcriptional mechanisms to the regulation of prespore gene expression in Dictyostelium. We have determined the DNA sequence upstream of D19, the Dictyostelium gene encoding PsA, a prespore-specific, cell surface protein of unknown function. Our analysis of gene fusions, in which D19 upstream sequences are placed adjacent to a heterologous reporter gene, indicates that transcriptional signals alone are sufficient for the correct temporal and cell-type specific expression of this gene. We also show that the 5' and 3' boundaries of the minimal sequences necessary for correct developmental regulation lie within the region 338 to 122 nucleotides upstream of the start site of transcription but that flanking sequences seem to be necessary for optimal expression.
Collapse
Affiliation(s)
- A E Early
- ICRF, Clare Hall Laboratory, South Mimms, Herts, UK
| | | |
Collapse
|
14
|
Hjorth AL, Khanna NC, Firtel RA. A trans-acting factor required for cAMP-induced gene expression in Dictyostelium is regulated developmentally and induced by cAMP. Genes Dev 1989; 3:747-59. [PMID: 2545528 DOI: 10.1101/gad.3.6.747] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have identified a nuclear activity that binds specifically to a GT-rich sequence or G-box shown previously by use of deletion analysis to be required for cAMP and for developmentally induced expression of the prestalk gene pst-cathepsin (CP2). We show that the insertion of an oligonucleotide that contains the CP2 G-box restores regulated expression whereas the insertion of oligonucleotides that contain mutations in some of the G residues does not. Moreover, the mutant oligonucleotides do not compete for binding of the factor to the wild-type sequence. The activity of the G-box binding factor (GBF) is regulated developmentally with induction of activity occurring at the time of induction of pst-cathepsin expression. In a single-cell culture, GBF activity is inducible by cAMP, and its appearance is inhibited by cycloheximide, which suggests that the factor, or a protein component required for binding of the factor, is directly induced by cAMP and may be the rate-limiting factor required for cAMP induction of pst-cathepsin expression. Models for cAMP induction of prestalk genes are described.
Collapse
Affiliation(s)
- A L Hjorth
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | | | |
Collapse
|
15
|
Pavlovic J, Banz E, Parish RW. The effects of transcription on the nucleosome structure of four Dictyostelium genes. Nucleic Acids Res 1989; 17:2315-32. [PMID: 2704621 PMCID: PMC317598 DOI: 10.1093/nar/17.6.2315] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Micrococcal nuclease digestion of Dictyostelium discoideum nuclei from various developmental stages was used to investigate transcription-related changes in the chromatin structure of the coding region of four genes. Gene activity was determined by Northern blotting and nuclear run on experiments. During strong transcription of the developmentally regulated cysteine proteinase I gene, a smear superimposed on a nucleosomal ladder was observed, indicating perturbation of nucleosomal structure was occurring. However, two other developmentally regulated genes, discoidin I and pSC253, showed only slight nucleosome disruption during high levels of transcription. The chromatin structure of a fourth gene (pCZ22) was disrupted throughout development, even at those stages where transcription was greatly reduced. We suggest that although nucleosome structure can be transiently perturbed by the passage of the transcription complex in vivo, the degree of perturbation and the speed with which nucleosomes reassemble is also influenced by the DNA sequence.
Collapse
Affiliation(s)
- J Pavlovic
- Institut für Immunologie und Virologie, Universität Zürich, Switzerland
| | | | | |
Collapse
|
16
|
Valencia A, Pestaña A, Cano A. Spectroscopical studies on the structural organization of the lectin discoidin I: analysis of sugar- and calcium-binding activities. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 990:93-7. [PMID: 2914150 DOI: 10.1016/s0304-4165(89)80017-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
One of the common characteristics observed in different families of sugar-binding proteins is the presence of aromatic residues in the proximity of the functional sugar-binding site (Quiocho, F. (1986) Annu. Rev. Biochem. 55, 287-315). This general property has made these proteins a very appropriate subject for studies using intrinsic fluorescence assays. In the present report we have studied the sugar binding activity of the lectin discoidin I, using a fluorescence-monitored titration assay. The galactose binding has been estimated, with an affinity constant of 1.8.10(-7) M-1 in the absence of calcium. In the presence of 1 mM Ca2+, the Kd of galactose binding is lowered to 2.7.10(-8) M-1. Calcium binding, by itself, seems to occur as two components with Kd values of 10(-7) and 10(-6) M-1. From these data, and sequence comparison of discoidin I with other lectins, a general model for ligand binding has been proposed in which a sequence from position 176 to 188, together with another region close to an apolar tryptophan residue, most probably Trp-50, would participate in the calcium- and sugar-binding site(s) of this protein.
Collapse
Affiliation(s)
- A Valencia
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
17
|
Pears CJ, Williams JG. Multiple copies of a G-rich element upstream of a cAMP-inducible Dictyostelium gene are necessary but not sufficient for efficient gene expression. Nucleic Acids Res 1988; 16:8467-86. [PMID: 2843819 PMCID: PMC338570 DOI: 10.1093/nar/16.17.8467] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The cysteine proteinase 1 (CP1) and cysteine proteinase 2 (CP2) genes of Dictyostelium discoideum encode co-ordinately expressed mRNA sequences which are inducible by extracellular cAMP. There are short, G-rich sequence elements upstream of both genes and we have previously shown that deletion of these elements from the CP2 gene abolishes cAMP-inducibility. We show here that the G-rich element from the CP1 gene is functionally homologous to that in the CP2 gene by reconstituting cAMP-inducibility in a deletion mutant of the CP2 gene using CP1-derived sequences. Both the CP1 and CP2 genes contain multiple G-rich elements. We show that efficient induction requires at least two copies of the CP1 element and that their relative orientation is unimportant. Two copies of an inverted relative orientation are, however, inactive when moved upstream of their normal position and are incapable of conferring cAMP-inducibility on a heterologous gene. These observations suggest that these sequences are either essential promoter elements, not themselves interacting with the inducer, or that their interaction with a separate class of control sequences is necessary for inducible expression.
Collapse
Affiliation(s)
- C J Pears
- Imperial Cancer Research Fund, Clare Hall Laboratories, Herts, UK
| | | |
Collapse
|
18
|
Ahern KG, Howard PK, Firtel RA. Identification of regions essential for extrachromosomal replication and maintenance of an endogenous plasmid in Dictyostelium. Nucleic Acids Res 1988; 16:6825-37. [PMID: 3405751 PMCID: PMC338336 DOI: 10.1093/nar/16.14.6825] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Initial experiments with the endogenous 12.3 kb Dictyostelium discoideum plasmid Ddp1 led to the generation of a large shuttle vector, Ddp1-20. In addition to Ddp1, this vector contains pBR322 and a gene fusion that confers G418 resistance in Dictyostelium cells. We have shown that Ddp1-20 replicates extrachromosomally in Dictyostelium cells and can be grown in Escherichia coli cells (1). We have now examined deletions within this vector to identify the elements essential for extrachromosomal replication and stable maintenance of the plasmid. We find that a 2.2 kb fragment is sufficient to confer stable, extrachromosomal replication with a reduction in copy number from about 40 to approximately 10-15 copies per cell. Vectors containing additional Ddp1 sequences have a higher copy number. The 2.2 kb region contains none of the complete, previously identified transcription units on Ddp1 expressed during vegetative growth or development. These results suggest that gene products expressed by Ddp1 are not essential for replication, stability, or partitioning of the plasmid between daughter cells. Vectors carrying only the 2.2 kb fragment plus the gene fusion conferring G418 resistance transform Dictyostelium cells with high efficiency using either calcium phosphate mediated transformation or electroporation. Finally, we have examined the relative levels of expression of actin promoters driving neoR genes when in extrachromosomal or integrating vectors.
Collapse
Affiliation(s)
- K G Ahern
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | | | |
Collapse
|
19
|
Driscoll DM, Pears CJ, Williams JG. Characterization of two divergently transcribed Dictyostelium gene pairs and identification of G-rich sequence element lying between them with the characteristics of a basal promoter element. DEVELOPMENTAL GENETICS 1988; 9:455-68. [PMID: 3243028 DOI: 10.1002/dvg.1020090423] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The cysteine proteinase 1 (CP1) and cysteine proteinase 2 (CP2) genes of Dictyostelium discoideum encode coordinately expressed mRNA sequences that are inducible by extracellular cAMP. Both genes form part of divergently transcribed gene pairs. The gene proximal to CP1 is coordinately regulated and encodes a protein containing several potential zinc binding domains of the kind found in DNA binding proteins. The gene proximal to CP2 is a constitutively transcribed gene of unknown function. There are multiple, short, G-rich sequence elements between both gene pairs, and deletion of the pair of elements 200 nucleotides upstream from the CP2 gene abolishes cAMP-inducibility. A synthetic oligonucleotide, containing two copies of the G-rich element from the CP1 gene, will reconstitute cAMP-inducibility in the deletion mutant of the CP2 gene. This shows that the elements in the two genes are functionally homologous. Efficient induction requires at least two copies of the CP1 element, but their relative orientation is unimportant. Two copies in an inverted orientation are, however, inactive when moved upstream of their normal position and are incapable of conferring cAMP-inducibility on a heterologous gene. These observations suggest that these sequences are either essential promoter elements, not themselves interacting with the inducer, or that their interaction with a separate class of control sequences is necessary for inducible expression.
Collapse
Affiliation(s)
- D M Driscoll
- Imperial Cancer Research Fund, Clare Hall Laboratories, Potters Bar, Hertsfordshire, England
| | | | | |
Collapse
|
20
|
Cyclic AMP regulation of early gene expression in Dictyostelium discoideum: mediation via the cell surface cyclic AMP receptor. Mol Cell Biol 1987. [PMID: 3031475 DOI: 10.1128/mcb.7.1.458] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined two sets of genes expressed early in the developmental cycle of Dictyostelium discoideum that appear to be regulated by cyclic AMP (cAMP). The transcripts of both sets of genes were not detectable in vegetative cells. During normal development on filter pads, RNA complementary to these genes could be detected at about 2 h, peaked around 6 to 8 h, and decreased gradually thereafter. Expression of these genes upon starvation in shaking culture was stimulated by pulsing the cells with nanomolar levels of cAMP, a condition that mimics the in vivo pulsing during normal aggregation. Expression was inhibited by caffeine or by continuous levels of cAMP, a condition found later in development when in vivo expression of these genes decreased. The inhibition of caffeine could be overcome by pulsing cells with cAMP. These results suggest that the expression is mediated via the cell surface cAMP receptor, but does not require a rise in intracellular cAMP. mRNA from a gene of the second class was induced upon starvation, peaked by 2.5 h of development, and then declined. In contrast to the other genes, its expression was maintained by continuous levels of cAMP and repressed by cAMP pulses. These and other results on a number of classes of developmentally regulated genes indicates that changing levels of cAMP, acting via the cell surface cAMP receptor, are involved in controlling these groups of genes. We also examined the structure and partial sequence of the cAMP pulse-induced genes. The two tandemly duplicated M3 genes were almost continuously homologous over the sequenced portion of the protein-coding region except for a region near the N-terminal end. The two M3 genes had regions of homology in the 5' flanking sequence and showed slight homology to the same regions in gene D2, another cAMP pulse-induced gene. D2 showed extremely significant homology over its entire sequenced length to an acetylcholinesterase. The results presented here and by others suggest that expression of many early genes in D. discoideum is regulated via the cell surface cAMP receptor. We expect that many of these genes may play essential roles in early Dictyostelium development and could code for elements of the cAMP signal transduction pathway involved in aggregation.
Collapse
|
21
|
Mann SK, Firtel RA. Cyclic AMP regulation of early gene expression in Dictyostelium discoideum: mediation via the cell surface cyclic AMP receptor. Mol Cell Biol 1987; 7:458-69. [PMID: 3031475 PMCID: PMC365089 DOI: 10.1128/mcb.7.1.458-469.1987] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We examined two sets of genes expressed early in the developmental cycle of Dictyostelium discoideum that appear to be regulated by cyclic AMP (cAMP). The transcripts of both sets of genes were not detectable in vegetative cells. During normal development on filter pads, RNA complementary to these genes could be detected at about 2 h, peaked around 6 to 8 h, and decreased gradually thereafter. Expression of these genes upon starvation in shaking culture was stimulated by pulsing the cells with nanomolar levels of cAMP, a condition that mimics the in vivo pulsing during normal aggregation. Expression was inhibited by caffeine or by continuous levels of cAMP, a condition found later in development when in vivo expression of these genes decreased. The inhibition of caffeine could be overcome by pulsing cells with cAMP. These results suggest that the expression is mediated via the cell surface cAMP receptor, but does not require a rise in intracellular cAMP. mRNA from a gene of the second class was induced upon starvation, peaked by 2.5 h of development, and then declined. In contrast to the other genes, its expression was maintained by continuous levels of cAMP and repressed by cAMP pulses. These and other results on a number of classes of developmentally regulated genes indicates that changing levels of cAMP, acting via the cell surface cAMP receptor, are involved in controlling these groups of genes. We also examined the structure and partial sequence of the cAMP pulse-induced genes. The two tandemly duplicated M3 genes were almost continuously homologous over the sequenced portion of the protein-coding region except for a region near the N-terminal end. The two M3 genes had regions of homology in the 5' flanking sequence and showed slight homology to the same regions in gene D2, another cAMP pulse-induced gene. D2 showed extremely significant homology over its entire sequenced length to an acetylcholinesterase. The results presented here and by others suggest that expression of many early genes in D. discoideum is regulated via the cell surface cAMP receptor. We expect that many of these genes may play essential roles in early Dictyostelium development and could code for elements of the cAMP signal transduction pathway involved in aggregation.
Collapse
|
22
|
Crowley TE, Nellen W, Gomer RH, Firtel RA. Phenocopy of discoidin I-minus mutants by antisense transformation in Dictyostelium. Cell 1985; 43:633-41. [PMID: 4075402 DOI: 10.1016/0092-8674(85)90235-1] [Citation(s) in RCA: 178] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Using an antisense construct of the discoidin gene transfected into Dictyostelium, we have repressed the expression of the three endogenous discoidin genes. Transformants exhibit a greater than 90% reduction in accumulated discoidin mRNA and protein. Nuclear run-on assays show that both the endogenous and the antisense genes are transcribed. Since only minor amounts of endogenous gene transcripts and none from the antisense gene can be detected on blots, we suggest that hybrids are formed within the nucleus and are rapidly degraded. Discoidin is believed to play a role in cell-substratum interaction and exhibits homologies to fibronectin. Discoidin-minus mutants exhibit the developmental phenotype of not streaming on a plastic surface. Antisense transformants show a similar phenotype and are thus phenocopies of these mutants.
Collapse
|
23
|
Romans P, Firtel RA. Organization of the actin multigene family of Dictyostelium discoideum and analysis of variability in the protein coding regions. J Mol Biol 1985; 186:321-35. [PMID: 3003365 DOI: 10.1016/0022-2836(85)90108-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There are 17 to 20 actin genes in the genome of the cellular slime mold Dictyostelium discoideum. Genomic clones of 15 of the genes have been isolated. Extensive nucleotide sequence within the protein-coding regions has been determined, including the complete nucleotide sequence of four genes representing the three distinct evolutionary groups of Dictyostelium actin genes. All are similar to mammalian cytoplasmic actins at diagnostic amino acid positions, and there is generally less variability among Dictyostelium actin genes than among Drosophila actin genes. Two genes, Actins 3-sub 1 and 3-sub 2 differ substantially from all the rest in terms of replacement amino acid substitutions and probably encode actin-related proteins rather than bona fide actins. Each contains several amino acid substitutions that should alter the secondary structure of the resulting proteins, and Actin 3-sub 2 encodes four additional amino acids at the C terminus. This gene is as divergent from other Dictyostelium actin genes as is the yeast or a soybean actin gene. At present, evidence suggests that all 15 genes examined are expressed, except the previously identified Actin 2-sub 2. We suggest that Dictyostelium might maintain a high number of functional actin genes for the purpose of regulating the level of actin synthesis within narrow limits, rather than because most genes perform different functions.
Collapse
|
24
|
Romans P, Firtel RA, Saxe CL. Gene-specific expression of the actin multigene family of Dictyostelium discoideum. J Mol Biol 1985; 186:337-55. [PMID: 4087297 DOI: 10.1016/0022-2836(85)90109-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have investigated the expression of 14 cloned genes of the 20-member actin multigene family of Dictyostelium discoideum using gene-specific mRNA complementary probes and an RNase protection assay. Actin gene expression was studied in vegetative cells and in cells at a number of developmental stages chosen to represent the known major shifts in actin mRNA and protein synthesis. At least 13 of these genes are expressed. A few genes are expressed very abundantly at 10% or more of total actin mRNA; however, the majority are maximally expressed at 1 to 5% of actin message. Although all of the genes are transcribed in vegetative cells, most genes appear to be independently regulated. Actin 8 appears to be transcribed at constant, high levels throughout growth and development. Actin 12 mRNA is maximally expressed in vegetative cells but the level is reduced appreciably by the earliest stage of development examined, while Actin 7 mRNA is specifically induced approximately sevenfold at this time. The rest of the genes appear to be induced 1.5 to 2-fold early in development, coincident with the increase in total actin mRNA. Since 12 of the genes code for extremely homologous proteins, it is possible that the large number of actin genes in Dictyostelium is utilized for precise regulation of the amount of actin produced at any stage of development, even though individual gene expression appears in some cases to be very stage-specific. In addition to these 13 actin genes, at least two and possibly four more genes are known to be expressed, because they are represented by complementary DNA clones, and an additional one or two expressed genes are indicated by primer extension experiments. Only one known gene, Actin 2-sub 2, is almost certainly a pseudogene. Thus the vast majority of Dictyostelium actin genes are expressed.
Collapse
|
25
|
Abstract
Transcription of the two unlinked structural genes URA1 and URA3 of Saccharomyces cerevisiae is positively regulated by the gene product PPR1. We have used S1 digestion and primer extension mapping to investigate the RNAs produced in different genetic backgrounds: wild-type, ppr1 deletion mutants, constitutively induced and non-inducible ppr1 mutants. Results show that each structural gene specifies multiple messenger RNA classes with different 5'-terminal sequences. The basal level of these transcripts does not require a functional PPR1 gene. Induction of URA1 results from an even increase of the level of synthesis of all the transcripts in contrast to that of URA3 which is effected by selectively increasing the levels of synthesis of one subset of transcripts. The PPR1-mediated control was also studied in the foreign genetic background of Schizosaccharomyces pombe using autonomously replicating hybrid plasmids carrying the gene URA1 or URA3 along with the regulatory gene PPR1, either in a constitutive or non-inducible allelic form. The 5' ends of the transcripts URA1 and URA3 made in S. pombe map upstream from the initiation sites used in S. cerevisiae. In contrast to S. cerevisiae, in S. pombe the URA3 but not URA1 transcripts respond to the PPR1-induction. We have identified a minimal control region for the PPR1-specific induction of URA1, that includes sequences located between the T-A-T-A box and the translation start codon. This region contains sequence features in common with URA3. There is an extensive alternating Pu:Py region including the T-A-T-A box of both promoters and an eight base-pair exact homology; further downstream, there is another 11 base-pair highly conserved sequence which either overlaps or lies in close proximity to the unregulated start sites of URA1 in S. pombe and of URA3 in S. cerevisiae. A positive regulatory model taking into accounts all these observations is presented.
Collapse
|
26
|
Daubas P, Robert B, Garner I, Buckingham M. A comparison between mammalian and avian fast skeletal muscle alkali myosin light chain genes: regulatory implications. Nucleic Acids Res 1985; 13:4623-43. [PMID: 4022770 PMCID: PMC321816 DOI: 10.1093/nar/13.13.4623] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A single locus in the mouse, rat and chicken encodes both alkali myosin light chains, MLC1F and MLC3F. This gene has two distinct promoters and gives rise to two different primary transcripts, which are processed by alternative and different modes of splicing to form MLC1F and MLC3F mRNAs. The MLC1F/MLC3F gene is very similar between mouse, rat and chicken, in terms of its overall structure, the length and location of the introns, and the splice site consensus sequences. Nucleotide sequences of coding regions are very conserved but 3' and 5' non coding regions of the mRNAs have diverged. In the MLC1F promoter regions, several blocks of nucleotides are highly conserved (more than 70% homology), especially a sequence of about 70 nucleotides, located between positions -80 and -150 relative to the Cap site. Conserved blocks of homology are also found in the MLC3F promoter regions, although the common sequences are shorter. The presence of such highly conserved nucleotide sequences in the 5' flanking regions suggests that these sequences are functionally important in initiation of transcription and regulation of expression of this complex gene. Primer extension experiments indicate multiple cap sites for MLC3F mRNA.
Collapse
|
27
|
Romans P, Firtel RA. Organization of the Dictyostelium discoideum actin multigene family. Flanking sequences show subfamily homologies and unusual dyad symmetries. J Mol Biol 1985; 183:311-26. [PMID: 2991530 DOI: 10.1016/0022-2836(85)90003-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sequences flanking the protein-coding regions of 15 of the 17 to 20 actin genes in the cellular slime mold Dictyostelium discoidium have been determined. Comparison of sequences among genes shows that they contain extensive homologies at both the 5' and 3' ends of the coding regions. On the basis of these homologies, actin genes fall into three groups. Group I consists of Actin 8 alone. Group II consists of the two closely linked genes Actin 3-sub1 and Actin 3-sub2. These two genes differ from all other actin genes in the location of their TATA box and oligo(dT) run, and diverge substantially in their coding sequence as well. Group III contains all the rest of the genes we have studied. Within this group, there are two subgroups of genes, IIIA (Actins 5, 9 and 10) and IIIB (Actins M6, 2-sub1 and 2-sub2, 4, 6, 7, 11 and 12). Two actin cDNA clones, ITL-1 and III-12/A1, which have no cloned genomic counterparts, are members of groups IIIA and IIIB, respectively. Homologies at the 3' ends of genes do not extend beyond a short genomic poly(A) sequence, the probable termination of transcription. Homologies at the 5' ends may extend about 300 base-pairs 5' to the ATG but, in most cases, extend only about 150 base-pairs 5' to the ATG. We have identified a group of short, relatively G + C-rich sequences within the extremely A + T-rich sequence at the 5' ends of actin-coding regions, which are shared among different actin genes. Many of these sequences exhibit dyad symmetry, and their general location and order is conserved among the different actin genes. We suggest that they may have a role in regulation of the transcriptional patterns of individual actin genes.
Collapse
|
28
|
Abstract
We have recently established a DNA-mediated transformation system for Dictyostelium. The vector (pB10) contains the promoter from the Dictyostelium actin 6 gene fused to the NmR gene from Tn5 which confers resistance to antibiotic G418. Dictyostelium cells can be stably transformed and express kanamycin phosphotransferase (APHII). There is an average of three to five copies of vector DNA in transformed populations. We have fused an A + T-rich region containing the 3' end of the Dictyostelium actin (Act) 8 gene to the end of the Act6-NmR fusion. Though the fragment is inserted in reverse orientation, this adds a transcription termination and/or 3' processing site and results in the formation of a discretely sized mRNA from the Act6-NmR gene fusion. Using this vector, the number of transformants increases by approx. 5-10-fold. We also describe conditions that allow for the isolation of transformants having a high copy number of vector DNA per cell (approx. 150 copies/cell). In addition, we show that cells can be co-transformed with the transformation vector and other pBR322 derivatives. Both plasmid DNAs are present in transformed Dictyostelium cells in high-Mr DNA. When cells are grown under selective conditions in the presence of the antibiotic G418, both DNAs are present in high copy number and Dictyostelium genes present on both vectors are transcribed and are properly regulated under the conditions examined. These modifications of the original transformation system should facilitate the introduction of modified genes into Dictyostelium to study gene regulation during development and allow one to examine the effects of high gene dosage.
Collapse
|
29
|
Abstract
This article considers recent evidence concerning the molecular mechanisms involved in the coordinate regulation of gene expression during red blood cell (RBC) differentiation. Contrary to popular belief, recent evidence shows that only a few of the characteristic RBC proteins are restricted to the erythroid lineage: apart from the globins, an RBC lipoxygenase and (possibly) glycophorin are the only examples for which there is reasonably good evidence. In contrast, the proteins forming the RBC cytoskeleton (spectrin, ankyrin, band 4.1, actin and possibly the major anion exchange transmembrane protein by which the cytoskeleton is attached to the plasma membrane) have closely-related variants in other cell types. Yet two beta-spectrin variants are found exclusively in certain terminally differentiated cells, often only in certain specific regions of the cell membrane. Certain RBC isozymes (e.g. for pyruvate kinase and carbonic anhydrase) and an RBC 19 kD protein (ep19) are also expressed only in a subset of other cell types. This illustrates the importance of gene families which are differentially regulated in certain subsets of cell types during differentiation and development. The expression of the globin genes seems to be regulated mainly at the transcriptional level, although transport of these transcripts to the cytoplasm may be controlled by interactions with other RNAs: stabilisation of globin mRNAs by ribonucleoprotein complexes in the cytoplasm may also be important. In fact, the expression of the globin genes involves two distinct phases: first, structural changes occur in the chromatin surrounding the genes (as determined by sensitivity to digestion by nucleases) and these can be maintained independently of any subsequent transcription. In many cases, these nuclease-sensitive sites in the chromatin correspond to low-level transcription initiation sites and to DNA sequences with regulatory functions when the isolated genes are assayed for transcription in vivo after transfection into cells. How the unlinked alpha- and beta-globin genes are coordinately regulated is not yet understood. Indeed, the alpha- and beta-gene promoters have quite different properties as judged by their responses to DNA replication and to factors known to affect viral gene function (e.g. the cis-acting SV40 enhancer elements and the trans-acting adenovirus regulatory protein, Ela). Other evidence shows that a nuclear protein present only in erythroid cells is able to bind to the beta-globin gene precisely in the region that is hypersensitive to nuclease digestion in chromatin from erythroid cells.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|