1
|
Saini AK, Sahoo SK. Fluorescent pH sensing and MnO2 nanosphere directed turn-on sensing of glutathione using pyridoxal 5′-phosphate modified polydopamine nanoparticles. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
2
|
Sequential detection of vitamin B6 cofactors and nitroaromatics by using albumin-stabilized fluorescent copper nanoclusters. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106778] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Mukai M, Takada A, Hamada A, Kajiwara T, Takahara A. Preparation and characterization of an imogolite/chitosan hybrid with pyridoxal-5′-phosphate as an interfacial modifier. RSC Adv 2021; 11:31712-31716. [PMID: 35496855 PMCID: PMC9041438 DOI: 10.1039/d1ra04774d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
Imogolite/chitosan hybrid films were prepared using pyridoxal-5′-phosphate (PLP) as an interfacial modifier. Thermogravimetric analysis and spectroscopic measurements revealed that the phosphate group of PLP was adsorbed on the imogolite. Furthermore, rheological measurements suggested that the PLP-modified imogolites (PLP–imogolite) had strong interactions with chitosan in solution. Moreover, UV absorption of the hybrid film showed that PLP and chitosan formed Schiff base linkages. Therefore, the hybrid films exhibited a significant improvement in their mechanical properties compared to those of pristine chitosan/imogolite hybrid films. An eco-friendly hybrid film of chitosan and imogolite was prepared using pyridoxal-5′-phosphate as a surface modifier.![]()
Collapse
Affiliation(s)
- Masaru Mukai
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akihiko Takada
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ayumi Hamada
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomoko Kajiwara
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Research Center for Negative Emission Technology, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Atsushi Takahara
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Research Center for Negative Emission Technology, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Khorosheva EI, Sharapova SA, Kuramshina GM. Quantum-Chemical Modeling of Interaction between the Most Stable Methylamine-Pyridoxal-5'-Phosphate Tautomers and Water: Structure and Properties of Monohydrates and Dihydrates. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s003602442011014x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Quiñone D, Veiga N, Torres J, Bazzicalupi C, Bianchi A, Kremer C. Self-Assembly of Manganese(II)-Phytate Coordination Polymers: Synthesis, Crystal Structure, and Physicochemical Properties. Chempluschem 2017; 82:721-731. [DOI: 10.1002/cplu.201700027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/14/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Delfina Quiñone
- Departamento Estrella Campos; Facultad de Química; Universidad de la República; General Flores 2124 Montevideo Uruguay
| | - Nicolás Veiga
- Departamento Estrella Campos; Facultad de Química; Universidad de la República; General Flores 2124 Montevideo Uruguay
| | - Julia Torres
- Departamento Estrella Campos; Facultad de Química; Universidad de la República; General Flores 2124 Montevideo Uruguay
| | - Carla Bazzicalupi
- Dipartimento di Chimica “Ugo Schiff”; Universitá degli Studi di Firenze; Via della Lastruccia, 3 50019 Sesto Fiorentino Italy
| | - Antonio Bianchi
- Dipartimento di Chimica “Ugo Schiff”; Universitá degli Studi di Firenze; Via della Lastruccia, 3 50019 Sesto Fiorentino Italy
| | - Carlos Kremer
- Departamento Estrella Campos; Facultad de Química; Universidad de la República; General Flores 2124 Montevideo Uruguay
| |
Collapse
|
6
|
Kwiatek A, Mielke Z. Conformational isomerism of pyridoxal. Infrared matrix isolation and theoretical studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 135:1099-1106. [PMID: 25173527 DOI: 10.1016/j.saa.2014.07.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/08/2014] [Accepted: 07/18/2014] [Indexed: 06/03/2023]
Abstract
A combined matrix isolation FTIR and theoretical DFT/B3LYP/6-311++G(2p,2d) study of pyridoxal was performed. The calculations resulted in five stable PLHB conformers stabilized by intramolecular O-H⋯O bonding between phenolic OH and carbonyl C=O groups and another thirteen conformers in which OH or/and aldehyde groups are rotated by 180° around CO or/and CC bonds leading, respectively, to formation of PLO, PLA and PLOA conformers. The analysis of the spectra of the as-deposited matrix indicated that two most stable PLHB1 and PLHB2 conformers with intramolecular hydrogen bond are present in the matrix. The exposure of the PL/Ar matrix to mercury lamp radiation (λ>345 nm) induced conformational change of PLHB isomers to PLOA ones.
Collapse
Affiliation(s)
- Anna Kwiatek
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Zofia Mielke
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland.
| |
Collapse
|
7
|
Inhibition of radical-induced oxidative DNA damage by antioxidants loaded in electrospun polylactide nanofibers. Macromol Res 2014. [DOI: 10.1007/s13233-014-2053-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Zhao XY, Zhu YJ, Qi C, Chen F, Lu BQ, Zhao J, Wu J. Hierarchical Hollow Hydroxyapatite Microspheres: Microwave-Assisted Rapid Synthesis by Using Pyridoxal-5′-Phosphate as a Phosphorus Source and Application in Drug Delivery. Chem Asian J 2013; 8:1313-20. [DOI: 10.1002/asia.201300142] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Indexed: 11/08/2022]
|
9
|
Jiang W, Yang K, Vachet RW, Xing B. Interaction between oxide nanoparticles and biomolecules of the bacterial cell envelope as examined by infrared spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:18071-18077. [PMID: 21062006 DOI: 10.1021/la103738e] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The effects of Al(2)O(3), TiO(2), and ZnO nanoparticles (NPs) on bacteria cells and bacterial surface biomolecules were studied by Fourier transform infrared (FTIR) spectroscopy. All the examined biomolecules showed IR spectral changes after NP exposure. Lipopolysaccharide and lipoteichoic acid could bind to oxide NPs through hydrogen bonding and ligand exchange, but the cytotoxicity of NPs seemed largely related to the function-involved or devastating changes to proteins and phospholipids of bacteria. The three NPs decreased the intensity ratio of β-sheets/α-helices, indicating protein structure change, which may affect cell physiological activities. The phosphodiester bond of L-α-phosphatidylethanolamine was broken by ZnO NPs, forming phosphate monoesters and resulting in the highly disordered alkyl chain. Such damage to phospholipid molecular structure may lead to membrane rupture and cell leaking, which is consistent with the fact that ZnO is the most toxic of the three NPs. The cell surface biomolecular changes revealed by FTIR spectra provide a better understanding of the cytotoxicity of oxide NPs.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | | | | | | |
Collapse
|
10
|
Torres J, Veiga N, Gancheff JS, Domínguez S, Mederos A, Sundberg M, Sánchez A, Castiglioni J, Díaz A, Kremer C. Interaction of myo-inositol hexakisphosphate with alkali and alkaline earth metal ions: Spectroscopic, potentiometric and theoretical studies. J Mol Struct 2008. [DOI: 10.1016/j.molstruc.2007.03.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Wang ML, Zhang YY, Xie QJ, Yao SZ. In situ FT-IR spectroelectrochemical study of electrooxidation of pyridoxol on a gold electrode. Electrochim Acta 2005. [DOI: 10.1016/j.electacta.2005.05.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Ab initio and DFT theoretical studies of pyridoxal-5′-phosphate methylamine Schiff base isomers. J Mol Struct 2005. [DOI: 10.1016/j.molstruc.2004.11.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Jiang W, Saxena A, Song B, Ward BB, Beveridge TJ, Myneni SCB. Elucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:11433-11442. [PMID: 15595767 DOI: 10.1021/la049043+] [Citation(s) in RCA: 270] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Surface functional group chemistry of intact Gram-positive and Gram-negative bacterial cells and their isolated cell walls was examined as a function of pH, growth phase, and growth media (for intact cells only) using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Infrared spectra of aqueous model organic molecules, representatives of the common functional groups found in bacterial cell walls (i.e., hydroxyl, carboxyl, phosphoryl, and amide groups), were also examined in order to assist the interpretation of the infrared spectra of bacterial samples. The surface sensitivity of the ATR-FTIR spectroscopic technique was evaluated using diatom cells, which possess a several-nanometers-thick layer of glycoprotein on their silica shells. The ATR-FTIR spectra of bacterial surfaces exhibit carboxyl, amide, phosphate, and carbohydrate related features, and these are identical for both Gram-positive and Gram-negative cells. These results provide direct evidence to the previously held conviction that the negative charge of bacterial surfaces is derived from the deprotonation of both carboxylates and phosphates. Variation in solution pH has only a minor effect on the secondary structure of the cell wall proteins. The cell surface functional group chemistry is altered neither by the growth phase nor by the growth medium of bacteria. This study reveals the universality of the functional group chemistry of bacterial cell surfaces.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Salvà A, Frau J, Muñoz F, Vilanova B, Donoso J. FT-IR study of pyridoxamine 5' phosphate. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1647:83-7. [PMID: 12686113 DOI: 10.1016/s1570-9639(03)00061-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Aqueous solutions of pyridoxamine 5' phosphate (PMP) at several pH conditions have been studied using FT-IR spectroscopy using the attenuated total reflection (ATR) technique. In spite of the strong intense OH stretching and bending bands of water, most of the vibrational structure of solute can be observed from 900 to 1500 cm(-1). With increasing pH, very intense changes in the spectra have been observed due to concentration changes of the hydrogen bonded species. Spectra of the different ionic species have been calculated from the mathematical fitting of experimental absorption spectra as a function of pH. Spectra are characterized by the presence of broad band-like structures in the 2400-3500 cm(-1) region, with extended continua that indicate very large proton polarizability of hydrogen bonds. Contributions of the phosphate group to the total absorption have been analyzed by comparison with pyridoxamine spectra.
Collapse
Affiliation(s)
- A Salvà
- Department of Chemistry, Faculty of Sciences, University of the Balearic Islands, Ctra. de Valldemossa km. 7.5, 07071 Palma de Mallorca, Spain
| | | | | | | | | |
Collapse
|
15
|
Kiruba GSM, Wong MW. Tautomeric equilibria of pyridoxal-5'-phosphate (vitamin B6) and 3-hydroxypyridine derivatives: a theoretical study of solvation effects. J Org Chem 2003; 68:2874-81. [PMID: 12662064 DOI: 10.1021/jo0266792] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The tautomeric equilibria of a series of 3-hydroxypyridine derivatives including pyridoxal-5'-phosphate (PLP), the active form of vitamin B(6), have been studied using density functional calculations (B3LYP/6-311+G//B3LYP/6-31G) in the gas phase and in different solvents. Three different approaches, namely continuum, discrete, and hybrid (combined discrete/SCRF), were employed to investigate the effects of solvation on the tautomeric equilibria. In all cases, the neutral hydroxy form is significantly more stable than the zwitterionic oxo form (by 43-56 kJ mol(-)(1)) in the gas phase. The tautomeric energies reduce substantially in the presence of a polarizable dielectric medium. However, the neutral form is calculated to be the dominant form in nonpolar and aprotic polar solvents. On the other hand, a reversal of tautomeric equilibrium, in favor of the zwitterionic form, is predicted in an aqueous medium. This study highlights the role of both water molecules and bulk solvent effect in influencing the tautomeric equilibria of the PLP related compounds. A combination of explicit microsolvation and continuum reaction field is required to account fully for the energetic effect of aqueous solvation. The tautomeric free energy differences (deltaG(298)) of PLP in the gas phase and in aprotic polar (epsilon = 40) and aqueous media are predicted to be 47, 22, and -29 kJ mol(-)(1), respectively.
Collapse
Affiliation(s)
- G S M Kiruba
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | | |
Collapse
|
16
|
Spectroscopic studies of new Schiff and Schiff–Mannich bases of ortho-derivatives of 4-bromophenol. J Mol Struct 2002. [DOI: 10.1016/s0022-2860(02)00412-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|