1
|
Fadaei F, Tortora M, Gessini A, Masciovecchio C, Vigna J, Mancini I, Mele A, Vacek J, Minofar B, Rossi B. Local and cooperative structural transitions of double-stranded DNA in choline-based deep eutectic solvents. Int J Biol Macromol 2024; 256:128443. [PMID: 38035952 DOI: 10.1016/j.ijbiomac.2023.128443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
The possibility of using deep eutectic solvents (DESs) as co-solvents for stabilizing and preserving the native structure of DNA provides an attractive opportunity in the field of DNA biotechnology. The rationale of this work is a systematic investigation of the effect of hydrated choline-based DES on the structural stability of a 30-base-pair double-stranded DNA model via a combination of spectroscopic experiments and MD simulations. UV absorption and CD experiments provide evidence of a significant contribution of DESs to the stabilization of the double-stranded canonical (B-form) DNA structure. Multi-wavelength synchrotron UV Resonance Raman (UVRR) measurements indicate that the hydration shell of adenine-thymine pairs is strongly perturbed in the presence of DESs and that the preferential interaction between H-bond sites of guanine residues and DESs is significantly involved in the stabilization of the dsDNA. Finally, MD calculations show that the minor groove of DNA is significantly selective for the choline part of the investigated DESs compared to the major groove. This finding is likely to have a significant impact not only in terms of thermal stability but also in the modulation of ligand-DNA interactions.
Collapse
Affiliation(s)
- Fatemeh Fadaei
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1645/31A, 37005 České Budějovice, Czech Republic
| | - Mariagrazia Tortora
- Area Science Park, Padriciano, 99, 34149 Trieste, Italy; Elettra-Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy
| | - Alessandro Gessini
- Elettra-Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy
| | | | - Jacopo Vigna
- Laboratory of Bioorganic Chemistry, Department of Physics, University of Trento, Via Sommarive, 14, 38123 Povo Trento, Italy
| | - Ines Mancini
- Laboratory of Bioorganic Chemistry, Department of Physics, University of Trento, Via Sommarive, 14, 38123 Povo Trento, Italy
| | - Andrea Mele
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Babak Minofar
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1645/31A, 37005 České Budějovice, Czech Republic.
| | - Barbara Rossi
- Elettra-Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy; Laboratory of Bioorganic Chemistry, Department of Physics, University of Trento, Via Sommarive, 14, 38123 Povo Trento, Italy.
| |
Collapse
|
2
|
Vacek J, Zatloukalova M, Bartheldyova E, Reha D, Minofar B, Bednarova K, Renciuk D, Coufal J, Fojta M, Zadny J, Gessini A, Rossi B, Storch J, Kabelac M. Hexahelicene DNA-binding: Minor groove selectivity, semi-intercalation and chiral recognition. Int J Biol Macromol 2023; 250:125905. [PMID: 37487990 DOI: 10.1016/j.ijbiomac.2023.125905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
In this contribution, we focused on a fundamental study targeting the interaction of water-soluble [6]helicene derivative 1 (1-butyl-3-(2-methyl[6]helicenyl)-imidazolium bromide) with double-stranded (ds) DNA. A synthetic 30-base pair duplex, plasmid, chromosomal calf thymus and salmon DNA were investigated using electrochemistry, electrophoresis and spectroscopic tools supported by molecular dynamics (MD) and quantum mechanical approaches. Both experimental and theoretical work revealed the minor groove binding of 1 to the dsDNA. Both the positively charged imidazole ring and hydrophobic part of the side chain contributed to the accommodation of 1 into the dsDNA structure. Neither intercalation into the duplex DNA nor the stable binding of 1 to single-stranded DNA were found in topoisomerase relaxation experiments with structural components of 1, i.e. [6]helicene (2) and 1-butyl-3-methylimidazolium bromide (3), nor by theoretical calculations. Finally, the binding of optically pure enantiomers (P)-1 and (M)-1 was studied using circular dichroism spectroscopy, isothermal titration calorimetry and UV Resonance Raman (UVRR) methods. Using MD and quantum mechanical methods, minor groove and semi-intercalation were proposed for compound 1 as the predominant binding modes. From the UVRR findings, we also can conclude that 1 tends to preferentially interact with adenine and guanine residues in the structure of dsDNA.
Collapse
Affiliation(s)
- Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic.
| | - Martina Zatloukalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | | | - David Reha
- IT4Innovations, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Babak Minofar
- Department of Chemistry, Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Klara Bednarova
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Daniel Renciuk
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Jan Coufal
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Jaroslav Zadny
- Institute of Chemical Process Fundamentals of the AS CR, v.v.i., Rozvojova 135, 165 02 Prague 6, Czech Republic
| | - Alessandro Gessini
- Elettra Sincrotrone Trieste S.C.p.A., S.S. 14 - Km 163.5, Basovizza, Trieste I-34149, Italy
| | - Barbara Rossi
- Elettra Sincrotrone Trieste S.C.p.A., S.S. 14 - Km 163.5, Basovizza, Trieste I-34149, Italy
| | - Jan Storch
- Institute of Chemical Process Fundamentals of the AS CR, v.v.i., Rozvojova 135, 165 02 Prague 6, Czech Republic.
| | - Martin Kabelac
- Department of Chemistry, Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
| |
Collapse
|
3
|
Fadaei F, Tortora M, Gessini A, Masciovecchio C, Catalini S, Vigna J, Mancini I, Mele A, Vacek J, Reha D, Minofar B, Rossi B. Structural specificity of groove binding mechanism between imidazolium-based ionic liquids and DNA revealed by synchrotron-UV Resonance Raman spectroscopy and molecular dynamics simulations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Rossi B, Tortora M, Catalini S, Vigna J, Mancini I, Gessini A, Masciovecchio C, Mele A. Insight into the thermal stability of DNA in hydrated ionic liquids from multi-wavelength UV resonance Raman experiments. Phys Chem Chem Phys 2021; 23:15980-15988. [PMID: 34313275 DOI: 10.1039/d1cp01970h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The utility of ionic liquids (ILs) as alternative solvents for stabilizing and preserving the native structure of DNA over the long term may be envisaged for biotechnological and biomedical applications in the near future. The delicate balance between the stabilizing and destabilizing effects of IL-mediated interactions with the structure of DNA is complex and is still not well understood. This work reports a fundamental study dealing with the effect exerted by cations and anions in imidazolium-based ILs on the thermal structural stability of large nucleic acid molecules. Multi-wavelength UV resonance Raman spectroscopy is used for selectively detecting heat-induced structural transitions of DNA localized on specific base tracts. Our study reveals the establishment of preferential interactions between the imidazolium cations of ILs and the guanine bases in the DNA groove that lead to more effective stacking between the guanine bases even at high temperatures. Interestingly, we observe that this trend for ILs sharing the same chloride anion is further enhanced as the alkyl chain on the imidazolium cation gets shorter. The results from the present investigation lead to a more comprehensive view of the IL-mediated interactions with A-T and G-C base pairs during thermal unfolding.
Collapse
Affiliation(s)
- Barbara Rossi
- Elettra-Sincrotrone Trieste, S. S. 114 km 163.5, Basovizza, 34149, Trieste, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Bottari C, Catalini S, Foggi P, Mancini I, Mele A, Perinelli DR, Paciaroni A, Gessini A, Masciovecchio C, Rossi B. Base-specific pre-melting and melting transitions of DNA in presence of ionic liquids probed by synchrotron-based UV resonance Raman scattering. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Choi J, Tojo S, Ahn DS, Fujitsuka M, Miyamoto S, Kobayashi K, Ihee H, Majima T. Proton Transfer Accompanied by the Oxidation of Adenosine. Chemistry 2019; 25:7711-7718. [PMID: 30957282 DOI: 10.1002/chem.201900732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/03/2019] [Indexed: 11/07/2022]
Abstract
Despite numerous experimental and theoretical studies, the proton transfer accompanying the oxidation of 2'-deoxyadenosine 5'-monophosphate 2'-deoxyadenosine 5'-monophosphate (5'-dAMP, A) is still under debate. To address this issue, we have investigated the oxidation of A in acidic and neutral solutions by using transient absorption (TA) and time-resolved resonance Raman (TR3 ) spectroscopic methods in combination with pulse radiolysis. The steady-state Raman signal of A was significantly affected by the solution pH, but not by the concentration of adenosine (2-50 mm). More specifically, the A in acidic and neutral solutions exists in its protonated (AH+ (N1+H+ )) and neutral (A) forms, respectively. On the one hand, the TA spectral changes observed at neutral pH revealed that the radical cation (A.+ ) generated by pulse radiolysis is rapidly converted into A. (N6-H) through the loss of an imino proton from N6. In contrast, at acidic pH (<4), AH.2+ (N1+H+ ) generated by pulse radiolysis of AH+ (N1+H+ ) does not undergo the deprotonation process owing to the pKa value of AH.2+ (N1+H+ ), which is higher than the solution pH. Furthermore, the results presented in this study have demonstrated that A, AH+ (N1+H+ ), and their radical species exist as monomers in the concentration range of 2-50 mm. Compared with the Raman bands of AH+ (N1+H+ ), the TR3 bands of AH.2+ (N1+H+ ) are significantly down-shifted, indicating a decrease in the bond order of the pyrimidine and imidazole rings due to the resonance structure of AH.2+ (N1+H+ ). Meanwhile, A. (N6-H) does not show a Raman band corresponding to the pyrimidine+NH2 scissoring vibration due to diprotonation at the N6 position. These results support the final products generated by the oxidation of adenosine in acidic and neutral solutions being AH.2+ (N1+H+ ) and A. (N6-H), respectively.
Collapse
Affiliation(s)
- Jungkweon Choi
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 305-701, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Sachiko Tojo
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Doo-Sik Ahn
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 305-701, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Mamoru Fujitsuka
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Shunichi Miyamoto
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Kazuo Kobayashi
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Hyotcherl Ihee
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 305-701, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Tetsuro Majima
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| |
Collapse
|
7
|
Mondal S, Puranik M. Ultrafast structural dynamics of photoexcited adenine. Phys Chem Chem Phys 2017; 19:20224-20240. [DOI: 10.1039/c7cp03092d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ultraviolet Resonance Raman (UVRR) spectroscopy derives distinct electronic properties of adenine in the La (260 nm) and Bb (210 nm) excited states.
Collapse
Affiliation(s)
- Sayan Mondal
- Indian Institute of Science Education and Research
- Pune – 411008
- India
| | - Mrinalini Puranik
- Indian Institute of Science Education and Research
- Pune – 411008
- India
| |
Collapse
|
8
|
Morla-Folch J, Xie HN, Alvarez-Puebla RA, Guerrini L. Fast Optical Chemical and Structural Classification of RNA. ACS NANO 2016; 10:2834-2842. [PMID: 26831953 DOI: 10.1021/acsnano.5b07966] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
As more biological activities of ribonucleic acids continue to emerge, the development of efficient analytical tools for RNA identification and characterization is necessary to acquire an in-depth understanding of their functions and chemical properties. Herein, we demonstrate the capacity of label-free direct surface-enhanced Raman scattering (SERS) analysis to access highly specific structural information on RNAs at the ultrasensitive level. This includes the recognition of distinctive vibrational features of RNAs organized into a variety of conformations (micro-, fully complementary duplex-, small interfering- and short hairpin-RNAs) or characterized by subtle chemical differences (single-base variances, nucleobase modifications and backbone composition). This method represents a key advance in the ribonucleic acid analysis and will have a direct impact in a wide range of different fields, including medical diagnosis, drug design, and biotechnology, by enabling the rapid, high-throughput, simple, and low-cost identification and classification of structurally similar RNAs.
Collapse
Affiliation(s)
- Judit Morla-Folch
- Medcom Advance , Viladecans Business Park, Edificio Brasil, Bertran i Musitu 83-85, 08840 Viladecans, Barcelona, Spain
- Universitat Rovira i Virgili and Centro Tecnológico de la Química de Catalunya , Carrer de Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Hai-nan Xie
- Medcom Advance , Viladecans Business Park, Edificio Brasil, Bertran i Musitu 83-85, 08840 Viladecans, Barcelona, Spain
| | - Ramon A Alvarez-Puebla
- Medcom Advance , Viladecans Business Park, Edificio Brasil, Bertran i Musitu 83-85, 08840 Viladecans, Barcelona, Spain
- Universitat Rovira i Virgili and Centro Tecnológico de la Química de Catalunya , Carrer de Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- ICREA , Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Luca Guerrini
- Medcom Advance , Viladecans Business Park, Edificio Brasil, Bertran i Musitu 83-85, 08840 Viladecans, Barcelona, Spain
| |
Collapse
|
9
|
Hui-Bon-Hoa G, Kaddour H, Vergne J, Kruglik SG, Maurel MC. Raman characterization of Avocado Sunblotch viroid and its response to external perturbations and self-cleavage. BMC BIOPHYSICS 2014; 7:2. [PMID: 24655924 PMCID: PMC3994434 DOI: 10.1186/2046-1682-7-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 02/10/2014] [Indexed: 11/24/2022]
Abstract
Background Viroids are the smallest pathogens of plants. To date the structural and conformational details of the cleavage of Avocado sunblotch viroid (ASBVd) and the catalytic role of Mg2+ ions in efficient self-cleavage are of crucial interest. Results We report the first Raman characterization of the structure and activity of ASBVd, for plus and minus viroid strands. Both strands exhibit a typical A-type RNA conformation with an ordered double-helical content and a C3′-endo/anti sugar pucker configuration, although small but specific differences are found in the sugar puckering and base-stacking regions. The ASBVd(-) is shown to self-cleave 3.5 times more actively than ASBVd(+). Deuteration and temperature increase perturb differently the double-helical content and the phosphodiester conformation, as revealed by corresponding characteristic Raman spectral changes. Our data suggest that the structure rigidity and stability are higher and the D2O accessibility to H-bonding network is lower for ASBVd(+) than for ASBVd(-). Remarkably, the Mg2+-activated self-cleavage of the viroid does not induce any significant alterations of the secondary viroid structure, as evidenced from the absence of intensity changes of Raman marker bands that, however exhibit small but noticeable frequency downshifts suggesting several minor changes in phosphodioxy, internal loops and hairpins of the cleaved viroids. Conclusions Our results demonstrate the sensitivity of Raman spectroscopy in monitoring structural and conformational changes of the viroid and constitute the basis for further studies of its interactions with therapeutic agents and cell membranes.
Collapse
Affiliation(s)
- Gaston Hui-Bon-Hoa
- Unité 779, INSERM, 78 rue du Général Leclerc, 94276 Le Kremlin Bicêtre, France.
| | | | | | | | | |
Collapse
|
10
|
Lakka A, Tsakalof A. Molecular Imprinting of Tri-O-Acetyladenosine for the Synthetic Imitation of an ATP-Binding Cleft in Protein Kinases. Chempluschem 2013; 78:808-815. [PMID: 31986680 DOI: 10.1002/cplu.201300101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Indexed: 12/21/2022]
Abstract
A number of diseases, including cancer, diabetes, and inflammation, are linked to deregulation of cell signaling pathways controlled by protein kinases. Inhibition of the kinases involved can interrupt aberrant signaling and have a specific therapeutic effect. Protein kinases are recognized as validated therapeutic targets for the treatment of a number of diseases and there are considerable efforts to discover new kinase inhibitors suitable for drug development. The main goal of this study was to fabricate the synthetic imitations of the adenosine triphosphate (ATP) binding cleft in protein kinases and thus produce polymers suitable for screening and isolation of new protein kinase ATP-mimetic inhibitors from different sources. Such polymers were created by the imprinting of tri-O-acetyladenosine in acrylic polymer matrix with the use of methacrylic acid (MAA) or 3-vinylbenzoic acid (VBA) as a functional monomer and ethylene glycol dimethacrylate as a cross-linking agent. The imprints prepared with the use of VBA demonstrate substantially better binding efficiency than that with MAA and particularly high affinity to the initial template (Kd as low as 1.2 μM), sufficient concentration of binding sites N (up to 32 μmol g-1 ), and pronounced specificity (imprinting factor up to 11). Under flow conditions, the fabricated polymers also demonstrate high capacity and template affinity. The produced imprints reproduce spatially noncovalent interactions present in the ATP binding site of protein kinases and can be anticipated as approximate synthetic imitations of the binding cleft.
Collapse
Affiliation(s)
- Achillia Lakka
- Faculty of Medicine, University of Thessaly, Biopolis, 41110 Larisa (Greece)
| | - Andreas Tsakalof
- Laboratory of Chemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41110 Larisa (Greece), Fax: (+30) 2410-685545
| |
Collapse
|
11
|
|
12
|
The Study of Doxorubicin and its Complex with DNA by SERS and UV-resonance Raman Spectroscopy. B KOREAN CHEM SOC 2004. [DOI: 10.5012/bkcs.2004.25.8.1211] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Beyere L, Arboleda P, Monga V, Loppnow GR. The dependence of thymine and thymidine Raman spectra on solvent. CAN J CHEM 2004. [DOI: 10.1139/v04-052] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent work has focused on developing Raman spectroscopy as a noninvasive probe of DNA interactions with solvents, intercalants, proteins, and other ligands. Here, we report the Raman spectra of thymine in eight solvents and thymidine in nine solvents obtained with visible excitation. Raman spectra under acidic, neutral, and basic conditions were also obtained of both thymine and thymidine. Changes in both the frequencies and intensities of several of the vibrational bands in the 8001800 cm1 region are observed. No evidence of deprotonation in the different solvents is observed for either thymine or thymidine. Correlations of the observed frequency shifts of specific vibrational modes with characteristic properties of the solvent for both thymine and thymidine show a significant correlation with acceptor and donor numbers, measures of the hydrogen-bonding ability of the solvent, in both thymine and thymidine. These results are interpreted in terms of hydrogen-bonding interactions between the N-H protons of the thymine base and lone pairs of electrons on the solvent molecules and between the solvent hydrogens and lone pairs on C=O sites. The solvent-dependent intensity in vibrational bands of thymine between 1500 and 1800 cm1 indicates a strong interaction between thymine and solvent at the C=O and N-H sites that leads to separation of the C=O stretches from the C=C stretch. The intensity variations with solvent were much smaller for thymidine than for thymine, perhaps as a result of replacing the N1 proton by the sugar. These results suggest that Raman spectroscopy is uniquely sensitive to specific interactions of thymine and thymidine with their environment.Key words: Raman spectroscopy, thymine, thymidine, solvent effects, hydrogen bonding.
Collapse
|
14
|
Kang JS, Park EJ, Kim JH, Han MJ. Monolayer studies of sugar- and nucleoside-terminated dendrimers at the air–water interface. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2004. [DOI: 10.1016/j.msec.2003.09.141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Starikov E. Quantum chemistry of nucleic acids: how it could help and when it is necessary. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2002. [DOI: 10.1016/s1389-5567(02)00024-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Fujimoto N, Toyama A, Takeuchi H. Binding modes of cyclic AMP and environments of tryptophan residues in 1:1 and 1:2 complexes of cyclic AMP receptor protein and cyclic AMP. Biopolymers 2002; 67:186-96. [PMID: 11979597 DOI: 10.1002/bip.10081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cyclic AMP (cAMP) receptor protein (CRP) forms 1:1 and 1:2 complexes with cAMP, and the former complex is considered to be the most active form of CRP in binding to specific DNA sequences and in modulating gene transcription by RNA polymerases. We examine the cAMP binding modes and structural changes of CRP upon cAMP binding by UV resonance Raman spectroscopy. The Raman spectra of CRP-(cAMP)(1) and CRP-(cAMP)(2) extracted from those of CRP-cAMP mixtures at varied mixing ratios clearly show that the hydrogen bonding state and the conformation of cAMP in both complexes in solution are very similar to those found in the X-ray crystal structure of CRP-(cAMP)(2), which is evidence that the cAMP binding mode does not differ between the two complexes. The environmental hydrophobicity of Trp85 monitored by UV resonance Raman intensity shows a significant decrease upon binding of the first cAMP molecule, whereas no further change occurs in the second cAMP binding step. The environmental change of Trp85 suggests an opening of the cleft between the N-terminal cAMP and C-terminal DNA binding domains in the process of CRP activation by binding of a single cAMP molecule.
Collapse
Affiliation(s)
- Naoko Fujimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980-8578, Japan
| | | | | |
Collapse
|
17
|
Movileanu L, Benevides JM, Thomas GJ. Temperature dependence of the Raman spectrum of DNA. II. Raman signatures of premelting and melting transitions of poly(dA).poly(dT) and comparison with poly(dA-dT).poly(dA-dT). Biopolymers 2002; 63:181-94. [PMID: 11787006 DOI: 10.1002/bip.10022] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The temperature dependence of the Raman spectrum of poly(dA).poly(dT) (dA: deoxyadenosine; dT: thymidine), a model for DNA containing consecutive adenine.thymine (A.T) pairs, has been analyzed using a spectrometer of high spectral precision and sensitivity. Three temperature intervals are distinguished: (a) premelting (10 < t < 70 degrees C), in which the native double helix is structurally altered but not dissociated into single strands; (b) melting (70 < t < 80 degrees C), in which the duplex is dissociated into single strands; and (c) postmelting (80 < t degrees C), in which no significant structural change can be detected. The distinctive Raman difference signatures observed between 10 and 70 degrees C and between 70 and 80 degrees C are interpreted in terms of the structural changes specific to premelting and melting transitions, respectively. Premelting alters the low-temperature conformation of the deoxyribose-phosphate backbone and eliminates base hydrogen bonding that is distinct from canonical Watson-Crick hydrogen bonding; these premelting perturbations occur without disruption of base stacking. Conversely, melting eliminates canonical Watson-Crick pairing and base stacking. The results are compared with those reported previously on poly(dA-dT).poly(dA-dT), the DNA structure consisting of alternating A.T and T.A pairs (L. Movileanu, J. M. Benevides, and G. J. Thomas, Jr. Journal of Raman Spectroscopy, 1999, Vol. 30, pp. 637-649). Poly(dA).poly(dT) and poly(dA-dT).poly(dA-dT) exhibit strikingly dissimilar temperature-dependent Raman profiles prior to the onset of melting. However, the two duplexes exhibit very similar melting transitions, including the same Raman indicators of ruptured Watson-Crick pairing, base unstacking and collapse of backbone order. A detailed analysis of the data provides a comprehensive Raman assignment scheme for adenosine and thymidine residues of B-DNA, delineates Raman markers diagnostic of consecutive A.T and alternating A.T/T.A tracts of DNA, and identifies the distinct Raman difference signatures for premelting and melting transitions in the two types of sequences.
Collapse
Affiliation(s)
- Liviu Movileanu
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
18
|
Toyama A, Miyagawa Y, Yoshimura A, Fujimoto N, Takeuchi H. Characterization of individual adenine residues in DNA by a combination of site-selective C8-deuteration and UV resonance Raman difference spectroscopy. J Mol Struct 2001. [DOI: 10.1016/s0022-2860(01)00808-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Staničová J, Fabriciová G, Chinsky L, Šutiak V, Miškovský P. Amantadine–DNA interaction as studied by classical and resonance Raman spectroscopy. J Mol Struct 1999. [DOI: 10.1016/s0022-2860(98)00659-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|