1
|
Yang Y, Suo D, Xu T, Zhao S, Xu X, Bei HP, Wong KKY, Li Q, Zheng Z, Li B, Zhao X. Sprayable biomimetic double mask with rapid autophasing and hierarchical programming for scarless wound healing. SCIENCE ADVANCES 2024; 10:eado9479. [PMID: 39141725 PMCID: PMC11323895 DOI: 10.1126/sciadv.ado9479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024]
Abstract
Current sprayable hydrogel masks lack the stepwise protection, cleansing, and nourishment of extensive wounds, leading to delayed healing with scarring. Here, we develop a sprayable biomimetic double wound mask (BDM) with rapid autophasing and hierarchical programming for scarless wound healing. The BDMs comprise hydrophobic poly (lactide-co-propylene glycol-co-lactide) dimethacrylate (PLD) as top layer and hydrophilic gelatin methacrylate (GelMA) hydrogel as bottom layer, enabling swift autophasing into bilayered structure. After photocrosslinking, BDMs rapidly solidify with strong interfacial bonding, robust tissue adhesion, and excellent joint adaptiveness. Upon implementation, the bottom GelMA layer could immediately release calcium ion for rapid hemostasis, while the top PLD layer could maintain a moist, breathable, and sterile environment. These traits synergistically suppress the inflammatory tumor necrosis factor-α pathway while coordinating the cyclic guanosine monophosphate/protein kinase G-Wnt/calcium ion signaling pathways to nourish angiogenesis. Collectively, our BDMs with self-regulated construction of bilayered structure could hierarchically program the healing progression with transformative potential for scarless wound healing.
Collapse
Affiliation(s)
- Yuhe Yang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Di Suo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Tianpeng Xu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Shuai Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Xiaoxiao Xu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Ho-Pan Bei
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Kenneth Kak-yuen Wong
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Qibin Li
- Research Center for Intelligent Aesthetic Medicine, PolyU-Hangzhou Technology and Innovation Research Institute, Hangzhou, Zhejiang 310016, China
- Hangzhou Industrial Investment Group Co., Ltd., Hangzhou, Zhejiang, 310025, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Bin Li
- Medical 3D Printing Center, Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xin Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
- Research Center for Intelligent Aesthetic Medicine, PolyU-Hangzhou Technology and Innovation Research Institute, Hangzhou, Zhejiang 310016, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
2
|
Takaya K, Okabe K, Sakai S, Aramaki-Hattori N, Asou T, Kishi K. Salicylate induces epithelial actin reorganization via activation of the AMP-activated protein kinase and promotes wound healing and contraction in mice. Sci Rep 2024; 14:16442. [PMID: 39013997 PMCID: PMC11252334 DOI: 10.1038/s41598-024-67266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Wounds that occur in adults form scars due to fibrosis, whereas those in embryos regenerate. If wound healing in embryos is mimicked in adults, scarring can be reduced. We found that mouse fetuses could regenerate tissues up to embryonic day (E) 13, but visible scars remained thereafter. This regeneration pattern requires actin cable formation at the epithelial wound margin via activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK). Here, we investigated whether the AMPK-activating effect of salicylate, an anti-inflammatory drug, promotes regenerative wound healing. Salicylate administration resulted in actin cable formation and complete wound regeneration in E14 fetuses, in which scarring should have normally occurred, and promoted contraction of the panniculus carnosus muscle, resulting in complete wound regeneration. In vitro, salicylate further induced actin remodeling in mouse epidermal keratinocytes in a manner dependent on cell and substrate target-specific AMPK activation and subsequent regulation of Rac1 signaling. Furthermore, salicylate promoted epithelialization, enhanced panniculus carnosus muscle contraction, and inhibited scar formation in adult mice. Administration of salicylates to wounds immediately after injury may be a novel method for preventing scarring by promoting a wound healing pattern similar to that of embryonic wounds.
Collapse
Affiliation(s)
- Kento Takaya
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Keisuke Okabe
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Shigeki Sakai
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Noriko Aramaki-Hattori
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Toru Asou
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Kazuo Kishi
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
3
|
Kosykh AV, Tereshina MB, Gurskaya NG. Potential Role of AGR2 for Mammalian Skin Wound Healing. Int J Mol Sci 2023; 24:ijms24097895. [PMID: 37175601 PMCID: PMC10178616 DOI: 10.3390/ijms24097895] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The limited ability of mammals to regenerate has garnered significant attention, particularly in regard to skin wound healing (WH), which is a critical step for regeneration. In human adults, skin WH results in the formation of scars following injury or trauma, regardless of severity. This differs significantly from the scarless WH observed in the fetal skin of mammals or anamniotes. This review investigates the role of molecular players involved in scarless WH, which are lost or repressed in adult mammalian WH systems. Specifically, we analyze the physiological role of Anterior Gradient (AGR) family proteins at different stages of the WH regulatory network. AGR is activated in the regeneration of lower vertebrates at the stage of wound closure and, accordingly, is important for WH. Mammalian AGR2 is expressed during scarless WH in embryonic skin, while in adults, the activity of this gene is normally inhibited and is observed only in the mucous epithelium of the digestive tract, which is capable of full regeneration. The combination of AGR2 unique potencies in postnatal mammals makes it possible to consider it as a promising candidate for enhancing WH processes.
Collapse
Affiliation(s)
- Anastasiya V Kosykh
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Maria B Tereshina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Nadya G Gurskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| |
Collapse
|
4
|
Durant F, Whited JL. Finding Solutions for Fibrosis: Understanding the Innate Mechanisms Used by Super-Regenerator Vertebrates to Combat Scarring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100407. [PMID: 34032013 PMCID: PMC8336523 DOI: 10.1002/advs.202100407] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/12/2021] [Indexed: 05/08/2023]
Abstract
Soft tissue fibrosis and cutaneous scarring represent massive clinical burdens to millions of patients per year and the therapeutic options available are currently quite limited. Despite what is known about the process of fibrosis in mammals, novel approaches for combating fibrosis and scarring are necessary. It is hypothesized that scarring has evolved as a solution to maximize healing speed to reduce fluid loss and infection. This hypothesis, however, is complicated by regenerative animals, which have arguably the most remarkable healing abilities and are capable of scar-free healing. This review explores the differences observed between adult mammalian healing that typically results in fibrosis versus healing in regenerative animals that heal scarlessly. Each stage of wound healing is surveyed in depth from the perspective of many regenerative and fibrotic healers so as to identify the most important molecular and physiological variances along the way to disparate injury repair outcomes. Understanding how these powerful model systems accomplish the feat of scar-free healing may provide critical therapeutic approaches to the treatment or prevention of fibrosis.
Collapse
Affiliation(s)
- Fallon Durant
- Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeMA02138USA
| | - Jessica L. Whited
- Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeMA02138USA
- The Harvard Stem Cell InstituteCambridgeMA02138USA
| |
Collapse
|
5
|
Wilgus TA. Inflammation as an orchestrator of cutaneous scar formation: a review of the literature. PLASTIC AND AESTHETIC RESEARCH 2020; 7:54. [PMID: 33123623 PMCID: PMC7592345 DOI: 10.20517/2347-9264.2020.150] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammation is a key phase in the cutaneous wound repair process. The activation of inflammatory cells is critical for preventing infection in contaminated wounds and results in the release of an array of mediators, some of which stimulate the activity of keratinocytes, endothelial cells, and fibroblasts to aid in the repair process. However, there is an abundance of data suggesting that the strength of the inflammatory response early in the healing process correlates directly with the amount of scar tissue that will eventually form. This review will summarize the literature related to inflammation and cutaneous scar formation, highlight recent discoveries, and discuss potential treatment modalities that target inflammation to minimize scarring.
Collapse
Affiliation(s)
- Traci A Wilgus
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Decellularized Fetal Matrix Suppresses Fibrotic Gene Expression and Promotes Myogenesis in a Rat Model of Volumetric Muscle Loss. Plast Reconstr Surg 2020; 146:552-562. [PMID: 32459729 DOI: 10.1097/prs.0000000000007093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Traumatic muscle loss often results in poor functional restoration. Skeletal muscle injuries cannot be repaired without substantial fibrosis and loss of muscle function. Given its regenerative properties, the authors evaluated outcomes of fetal tissue-derived decellularized matrix for skeletal muscle regeneration. The authors hypothesized that fetal matrix would lead to enhanced myogenesis and suppress inflammation and fibrosis. METHODS Composite tissue composed of dermis, subcutaneous tissue, and panniculus carnosus was harvested from the trunk of New Zealand White rabbit fetuses on gestational day 24 and from Sprague-Dawley rats on gestational day 18 and neonatal day 3, and decellularized using a sodium dodecyl sulfate-based negative-pressure protocol. Six, 10-mm-diameter, full-thickness rat latissimus dorsi wounds were created for each treatment, matrix was implanted (excluding the defect groups), and the wounds were allowed to heal for 60 days. Analyses were performed to characterize myogenesis, neovascularization, inflammation, and fibrosis at harvest. RESULTS Significant myocyte ingrowth was visualized in both allogeneic and xenogeneic fetal matrix groups compared to neonatal and defect groups based on myosin heavy chain immunofluorescence staining. Microvascular networks were appreciated within all implanted matrices. At day 60, expression of Ccn2, Col1a1, and Ptgs2 were decreased in fetal matrix groups compared to defect. Neonatal matrix-implanted wounds failed to show decreased expression of Col1a1 or Ptgs2, and demonstrated increased expression of Tnf, but also demonstrated a significant reduction in Ccn2 expression. CONCLUSIONS Initial studies of fetal matrices demonstrate promise for muscle regeneration in a rat latissimus dorsi model. Further research is necessary to evaluate fetal matrix for future translational use and better understand its effects.
Collapse
|
7
|
Lisse TS, Sharma M, Vishlaghi N, Pullagura SR, Braun RE. GDNF promotes hair formation and cutaneous wound healing by targeting bulge stem cells. NPJ Regen Med 2020; 5:13. [PMID: 32566252 PMCID: PMC7293257 DOI: 10.1038/s41536-020-0098-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/10/2020] [Indexed: 12/17/2022] Open
Abstract
Glial-cell-derived neurotrophic factor (GDNF) is a well-studied neuroregenerative factor; however, the degree to which it supports hair formation and skin wound repair is not known. By using a Gfra1 (GDNF family receptor alpha 1) knock-in reporter mouse line, GDNF signaling was found to occur within hair bulge stem cells (BSCs) during the initiation of the hair cycle and early stages of hair formation after depilation. Both recombinant and transgene overexpression of GDNF promoted BSC colony growth, hair formation, and skin repair after wounding through enhanced self-renewal of BSCs and commitment of BSC-derived progenitors into becoming epidermal cells at the injury site. Conditional ablation of Gfra1 among BSCs impaired the onset of the hair cycle, while conditional ablation of the GDNF family member signal transducer, Ret, within BSCs prevented the onset of the hair cycle and depilation-induced anagen development of hair follicles. Our findings reveal that GDNF promotes hair formation and wound repair and that bulge stem cells are critical mediators of both.
Collapse
Affiliation(s)
- Thomas S Lisse
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA.,Department of Biology, The University of Miami, 1301 Memorial Drive, Cox Science Building, Coral Gables, FL 33124 USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33146 USA
| | - Manju Sharma
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Neda Vishlaghi
- Department of Biology, The University of Miami, 1301 Memorial Drive, Cox Science Building, Coral Gables, FL 33124 USA
| | - Sri Ramulu Pullagura
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, 04469 ME USA
| | - Robert E Braun
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, 04469 ME USA
| |
Collapse
|
8
|
Tighe S, Mead OG, Lee A, Tseng SCG. Basic science review of birth tissue uses in ophthalmology. Taiwan J Ophthalmol 2020; 10:3-12. [PMID: 32309118 PMCID: PMC7158924 DOI: 10.4103/tjo.tjo_4_20] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/12/2020] [Indexed: 12/31/2022] Open
Abstract
The birth tissue is predominantly comprised of amniotic membrane (AM) and umbilical cord (UC), which share the same cell origin as the fetus. These versatile biological tissues have been used to treat a wide range of conjunctival and corneal conditions since 1940. The therapeutic benefits of the birth tissue stem from its anti-inflammatory and anti-scarring properties that orchestrate regenerative healing. Although the birth tissue also contains many cytokines, growth factors, and proteins, the heavy chain 1-hyaluronic acid/pentraxin 3 (HC-HA/PTX3) matrix has been identified to be a major active tissue component responsible for AM/UC's multifactorial therapeutic actions. HC-HA/PTX3 complex is abundantly present in fresh and cryopreserved AM/UC, but not in dehydrated tissue. In this review, we discuss the tissue anatomy, the molecular mechanism of action based on HC-HA/ PTX3 to explain their therapeutic potentials, and the various forms available in ophthalmology.
Collapse
Affiliation(s)
- Sean Tighe
- R&D Department, TissueTech Inc., Miami, Florida, USA
- Department of Ophthalmology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Amy Lee
- R&D Department, TissueTech Inc., Miami, Florida, USA
| | - Scheffer C. G. Tseng
- R&D Department, TissueTech Inc., Miami, Florida, USA
- Ocular Surface Center and Ocular Surface Research Education Foundation, Miami, FL, USA
| |
Collapse
|
9
|
Knockout of MicroRNA-155 Ameliorates the Th17/Th9 Immune Response and Promotes Wound Healing. Curr Med Sci 2019; 39:954-964. [PMID: 31845227 DOI: 10.1007/s11596-019-2128-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 10/20/2019] [Indexed: 01/15/2023]
Abstract
MiRNAs are integral for maintaining immune homeostasis and self-tolerance. In this study, qPCR analyses were performed to determine which miRNAs play an important role in wound healing. Next, an experiment in a model of wound healing was performed, and histology, mRNA expression and T-cell subpopulations in wound tissue were analyzed. The accelerated experiments were performed by local injection of either rIL-17A and/or rIL-9 after wound healing. In vitro, the differentiation of Th17/Th9 in miR-155+/+ or miR-155-/- mice was investigated, and the target genes of miR155 were analyzed. From our findings, miR-155-/- in mice promoted wound healing and weakened T cell-mediated inflammation, especially in IL-17/IL-9, and less severe skin fibrosis developed in the mice. rIL-17A and/or rIL-9 could exacerbate inflammatory injury and delay wound healing. We also demonstrated that miR-155-/- led to a defect in the differentiation of Th17/Th9 in vitro, and this effect of IL-17/IL-9 might be related to the expression of C-maf, which is a target gene of miR155. MiR-155 regulated IL-17/IL-9-related inflammation in wound healing and might be a potential therapeutic target to attenuate the inflammatory response in wound tissue and promote the closure of wound injuries.
Collapse
|
10
|
Xue H, Hu L, Xiong Y, Zhu X, Wei C, Cao F, Zhou W, Sun Y, Endo Y, Liu M, Liu Y, Liu J, Abududilibaier A, Chen L, Yan C, Mi B, Liu G. Quaternized chitosan-Matrigel-polyacrylamide hydrogels as wound dressing for wound repair and regeneration. Carbohydr Polym 2019; 226:115302. [DOI: 10.1016/j.carbpol.2019.115302] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/17/2019] [Accepted: 09/05/2019] [Indexed: 10/26/2022]
|
11
|
Cellular responses to thermoresponsive stiffness memory elastomer nanohybrid scaffolds by 3D-TIPS. Acta Biomater 2019; 85:157-171. [PMID: 30557696 DOI: 10.1016/j.actbio.2018.12.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 11/11/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022]
Abstract
Increasing evidence suggests the contribution of the dynamic mechanical properties of the extracellular matrix (ECM) to regulate tissue remodeling and regeneration. Following our recent study on a family of thermoresponsive 'stiffness memory' elastomeric nanohybrid scaffolds manufactured via an indirect 3D printing guided thermally-induced phase separation process (3D-TIPS), this work reports in vitro and in vivo cellular responses towards these scaffolds with different initial stiffness and hierarchically interconnected porous structure. The viability of mouse embryonic dermal fibroblasts in vitro and the tissue responses during the stiffness softening of the scaffolds subcutaneously implanted in rats for three months were evaluated by immunohistochemistry and histology. Scaffolds with a higher initial stiffness and a hierarchical porous structure outperformed softer ones, providing initial mechanical support to cells and surrounding tissues before promoting cell and tissue growth during stiffness softening. Vascularization was guided throughout the digitally printed interconnected networks. All scaffolds exhibited polarization of the macrophage response from a macrophage phenotype type I (M1) towards a macrophage phenotype type II (M2) and down-regulation of the T-cell proliferative response with increasing implantation time; however, scaffolds with a more pronounced thermo-responsive stiffness memory mechanism exerted higher inflammo-informed effects. These results pave the way for personalized and biologically responsive soft tissue implants and implantable device with better mechanical matches, angiogenesis and tissue integration. Statement of Significance This work reports cellular responses to a family of 3D-TIPS thermoresponsive nanohybrid elastomer scaffolds with different stiffness softening both in vitro and in vivo rat models. The results, for the first time, have revealed the effects of initial stiffness and dynamic stiffness softening of the scaffolds on tissue integration, vascularization and inflammo-responses, without coupling chemical crosslinking processes. The 3D printed, hierarchically interconnected porous structures guide the growth of myofibroblasts, collagen fibers and blood vessels in real 3D scales. In vivo study on those unique smart elastomer scaffolds will help pave the way for personalized and biologically responsive soft tissue implants and implantable devices with better mechanical matches, angiogenesis and tissue integration.
Collapse
|
12
|
Sun G, Shen YI, Harmon JW. Engineering Pro-Regenerative Hydrogels for Scarless Wound Healing. Adv Healthc Mater 2018; 7:e1800016. [PMID: 29663707 DOI: 10.1002/adhm.201800016] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/17/2018] [Indexed: 12/21/2022]
Abstract
Skin and skin appendages protect the body from harmful environment and prevent internal organs from dehydration. Superficial epidermal wounds usually heal without scarring, however, deep dermal wound healing commonly ends up with nonfunctioning scar formation with substantial loss of skin appendage. Wound healing is one of the most complex dynamic biological processes, during which a cascade of biomolecules combine with stem cell influx and matrix synthesis and synergistically contribute to wound healing at all levels. Although many approaches have been investigated to restore complete skin, the clinically effective therapy is still unavailable and the regeneration of perfect skin still remains a significant challenge. The complete mechanism behind scarless skin regeneration still requires further investigation. Fortunately, recent advancement in regenerative medicine empowers us more than ever to restore tissue in a regenerative manner. Many studies have elucidated and reviewed the contribution of stem cells and growth factors to scarless wound healing. This article focuses on recent advances in scarless wound healing, especially strategies to engineer pro-regenerative scaffolds to restore damaged skin in a regenerative manner.
Collapse
Affiliation(s)
- Guoming Sun
- Sunogel Biotechnologies Inc.; 9 W Ridgely Road Ste 270 Lutherville Timonium MD 21093 USA
| | - Yu-I Shen
- Sunogel Biotechnologies Inc.; 9 W Ridgely Road Ste 270 Lutherville Timonium MD 21093 USA
| | - John W. Harmon
- Department of Surgery and the Hendrix Burn Lab; Johns Hopkins University School of Medicine; Baltimore MD 21224 USA
| |
Collapse
|
13
|
Yu G, Li Y, Ye L, Wang X, Zhang J, Dong Z, Jiang D. Exogenous peripheral blood mononuclear cells affect the healing process of deep‑degree burns. Mol Med Rep 2017; 16:8110-8122. [PMID: 28990101 PMCID: PMC5779898 DOI: 10.3892/mmr.2017.7672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/20/2017] [Indexed: 12/24/2022] Open
Abstract
The regenerative repair of deep-degree (second degree) burned skin remains a notable challenge in the treatment of burn injury, despite improvements being made with regards to treatment modality and the emergence of novel therapies. Fetal skin constitutes an attractive target for investigating scarless healing of burned skin. To investigate the inflammatory response during scarless healing of burned fetal skin, the present study developed a nude mouse model, which was implanted with normal human fetal skin and burned fetal skin. Subsequently, human peripheral blood mononuclear cells (PBMCs) were used to treat the nude mouse model carrying the burned fetal skin. The expression levels of matrix metalloproteinase (MMP)-9 and tissue inhibitor of metalloproteinases (TIMP)-1 were investigated during this process. In the present study, fetal skin was subcutaneously implanted into the nude mice to establish the murine model. Hematoxylin and eosin staining was used to detect alterations in the skin during the development of fetal skin and during the healing process of deep-degree burned fetal skin. The expression levels of MMP-9 and TIMP-1 were determined using immunochemical staining, and their staining intensity was evaluated by mean optical density. The results demonstrated that fetal skin subcutaneously implanted into the dorsal skin flap of nude mice developed similarly to the normal growth process in the womb. In addition, the scarless healing process was clearly observed in the mice carrying the burned fetal skin. A total of 2 weeks was required to complete scarless healing. Following treatment with PBMCs, the burned fetal skin generated inflammatory factors and enhanced the inflammatory response, which consequently resulted in a reduction in the speed of healing and in the formation of scars. Therefore, exogenous PBMCs may alter the lowered immune response environment, which is required for scarless healing, resulting in scar formation. In conclusion, the present study indicated that the involvement of inflammatory cells is important during the healing process of deep-degree burned skin, and MMP-9 and TIMP-1 may serve important roles in the process of scar formation.
Collapse
Affiliation(s)
- Guanying Yu
- Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yaonan Li
- Department of Emergency, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Lan Ye
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xinglei Wang
- Department of Emergency, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jixun Zhang
- Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhengxue Dong
- Department of Burns and Plastic Surgery, The Chinese People's Liberation Army 148 Hospital, Zibo, Shandong 255300, P.R. China
| | - Duyin Jiang
- Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
14
|
Balaji S, Wang X, King A, Le LD, Bhattacharya SS, Moles CM, Butte MJ, de Jesus Perez VA, Liechty KW, Wight TN, Crombleholme TM, Bollyky PL, Keswani SG. Interleukin-10-mediated regenerative postnatal tissue repair is dependent on regulation of hyaluronan metabolism via fibroblast-specific STAT3 signaling. FASEB J 2016; 31:868-881. [PMID: 27903619 PMCID: PMC5295728 DOI: 10.1096/fj.201600856r] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/07/2016] [Indexed: 01/05/2023]
Abstract
The cytokine IL-10 has potent antifibrotic effects in models of adult fibrosis, but the mechanisms of action are unclear. Here, we report a novel finding that IL-10 triggers a signal transducer and activator of transcription 3 (STAT3)–dependent signaling pathway that regulates hyaluronan (HA) metabolism and drives adult fibroblasts to synthesize an HA-rich pericellular matrix, which mimics the fetal regenerative wound healing phenotype with reduced fibrosis. By using cre-lox–mediated novel, inducible, fibroblast-, keratinocyte-, and wound-specific STAT3-knockdown postnatal mice—plus syngeneic fibroblast cell-transplant models—we demonstrate that the regenerative effects of IL-10 in postnatal wounds are dependent on HA synthesis and fibroblast-specific STAT3-dependent signaling. The importance of IL-10–induced HA synthesis for regenerative wound healing is demonstrated by inhibition of HA synthesis in a murine wound model by administering 4-methylumbelliferone. Although IL-10 and STAT3 signaling were intact, the antifibrotic repair phenotype that is induced by IL-10 overexpression was abrogated in this model. Our data show a novel role for IL-10 beyond its accepted immune-regulatory mechanism. The opportunity for IL-10 to regulate a fibroblast-specific formation of a regenerative, HA-rich wound extracellular matrix may lead to the development of innovative therapies to attenuate postnatal fibrosis in organ systems or diseases in which dysregulated inflammation and HA intersect.—Balaji, S., Wang, X., King, A., Le, L. D., Bhattacharya, S. S., Moles, C. M., Butte, M. J., de Jesus Perez, V. A., Liechty, K. W., Wight, T. N., Crombleholme, T. M., Bollyky, P. L., Keswani, S. G. Interleukin-10–mediated regenerative postnatal tissue repair is dependent on regulation of hyaluronan metabolism via fibroblast-specific STAT3 signaling.
Collapse
Affiliation(s)
- Swathi Balaji
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Xinyi Wang
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Alice King
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Louis D Le
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Sukanta S Bhattacharya
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Chad M Moles
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Manish J Butte
- Division of Immunology, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Vinicio A de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Kenneth W Liechty
- Center for Children's Surgery, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington, USA; and
| | - Timothy M Crombleholme
- Center for Children's Surgery, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Paul L Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Sundeep G Keswani
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA;
| |
Collapse
|
15
|
Pritchard MT, McCracken JM. Identifying Novel Targets for Treatment of Liver Fibrosis: What Can We Learn from Injured Tissues which Heal Without a Scar? Curr Drug Targets 2016; 16:1332-46. [PMID: 26302807 DOI: 10.2174/1389450116666150825111439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/08/2015] [Indexed: 02/07/2023]
Abstract
The liver is unique in that it is able to regenerate. This regeneration occurs without formation of a scar in the case of non-iterative hepatic injury. However, when the liver is exposed to chronic liver injury, the purely regenerative process fails and excessive extracellular matrix proteins are deposited in place of normal liver parenchyma. While much has been discovered in the past three decades, insights into fibrotic mechanisms have not yet lead to effective therapies; liver transplant remains the only cure for advanced liver disease. In an effort to broaden the collection of possible therapeutic targets, this review will compare and contrast the liver wound healing response to that found in two types of wound healing: scarless wound healing of fetal skin and oral mucosa and scar-forming wound healing found in adult skin. This review will examine wound healing in the liver and the skin in relation to the role of humoral and cellular factors, as well as the extracellular matrix, in this process. While several therapeutic targets are similar between fibrotic liver and adult skin wound healing, others are unique and represent novel areas for hepatic anti-fibrotic research. In particular, investigations into the role of hyaluronan in liver fibrosis and fibrosis resolution are warranted.
Collapse
Affiliation(s)
- Michele T Pritchard
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66161, USA.
| | | |
Collapse
|
16
|
Hortensius RA, Harley BA. Naturally derived biomaterials for addressing inflammation in tissue regeneration. Exp Biol Med (Maywood) 2016; 241:1015-24. [PMID: 27190254 DOI: 10.1177/1535370216648022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tissue regeneration strategies have traditionally relied on designing biomaterials that closely mimic features of the native extracellular matrix (ECM) as a means to potentially promote site-specific cellular behaviors. However, inflammation, while a necessary component of wound healing, can alter processes associated with successful tissue regeneration following an initial injury. These processes can be further magnified by the implantation of a biomaterial within the wound site. In addition to designing biomaterials to satisfy biocompatibility concerns as well as to replicate elements of the composition, structure, and mechanics of native tissue, we propose that ECM analogs should also include features that modulate the inflammatory response. Indeed, strategies that enhance, reduce, or even change the temporal phenotype of inflammatory processes have unique potential as future pro-regenerative analogs. Here, we review derivatives of three natural materials with intrinsic anti-inflammatory properties and discuss their potential to address the challenges of inflammation in tissue engineering and chronic wounds.
Collapse
Affiliation(s)
| | - Brendan Ac Harley
- Department of Chemical and Biological Engineering, University of Illinois, Urbana, IL 61801, USA Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
17
|
Tseng SCG. HC-HA/PTX3 Purified From Amniotic Membrane as Novel Regenerative Matrix: Insight Into Relationship Between Inflammation and Regeneration. Invest Ophthalmol Vis Sci 2016; 57:ORSFh1-8. [PMID: 27116665 PMCID: PMC4855828 DOI: 10.1167/iovs.15-17637] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Human limbal palisade of Vogt is an ideal model for studying and practicing regenerative medicine due to their accessibility. Nonresolving inflammation is a common manifestation of limbal stem cell deficiency, which is the major cause of corneal blindness, and presents as a threat to the success of transplanted limbal epithelial stem cells. Clinical studies have shown that the efficacy of transplantation of limbal epithelial stem cells can be augmented by transplantation of cryopreserved human amniotic membrane (AM), which exerts anti-inflammatory, antiscarring, and antiangiogenic action to promote wound healing. METHODS Review of published data to determine the molecular action mechanism explaining how AM exerts the aforementioned therapeutic actions. RESULTS From the water-soluble extract of cryopreserved AM, we have biochemically purified one novel matrix component termed heavy chain (HC)-hyaluronan (HA)/pentraxin 3 (PTX3) as the key relevant tissue characteristic responsible for the aforementioned AM's efficacy. Heavy chain-HA is a complex formed by a covalent linkage between HA and HC1 of inter-α-trypsin inhibitor (IαI) by tumor necrosis factor-stimulated gene-6 (TSG-6). This complex may then be tightly associated with PTX3 to form HC-HA/PTX3 complex. Besides exerting an anti-inflammatory, antiscarring, and antiangiogenic effects, HC-HA/PTX3 complex also uniquely maintains limbal niche cells to support the quiescence of limbal epithelial stem cells. CONCLUSIONS We envision that HC-HA/PTX3 purified from AM can be used as a unique substrate to refine ex vivo expansion of limbal epithelial stem cells by maintaining stem cell quiescence, self-renewal and fate decision. Furthermore, it can also be deployed as a platform to launch new therapeutics in regenerative medicine by mitigating nonresolving inflammation and reinforcing the well-being of stem cell niche.
Collapse
Affiliation(s)
- Scheffer C. G. Tseng
- The R&D Department of TissueTech Inc., Ocular Surface Center, and Ocular Surface Research and Education Foundation, Miami, Florida, United States
| |
Collapse
|
18
|
Hortensius RA, Ebens JH, Harley BAC. Immunomodulatory effects of amniotic membrane matrix incorporated into collagen scaffolds. J Biomed Mater Res A 2016; 104:1332-42. [PMID: 26799369 DOI: 10.1002/jbm.a.35663] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 01/08/2023]
Abstract
Adult tendon wound repair is characterized by the formation of disorganized collagen matrix which leads to decreases in mechanical properties and scar formation. Studies have linked this scar formation to the inflammatory phase of wound healing. Instructive biomaterials designed for tendon regeneration are often designed to provide both structural and cellular support. In order to facilitate regeneration, success may be found by tempering the body's inflammatory response. This work combines collagen-glycosaminoglycan scaffolds, previously developed for tissue regeneration, with matrix materials (hyaluronic acid and amniotic membrane) that have been shown to promote healing and decreased scar formation in skin studies. The results presented show that scaffolds containing amniotic membrane matrix have significantly increased mechanical properties and that tendon cells within these scaffolds have increased metabolic activity even when the media is supplemented with the pro-inflammatory cytokine interleukin-1 beta. Collagen scaffolds containing hyaluronic acid or amniotic membrane also temper the expression of genes associated with the inflammatory response in normal tendon healing (TNF-α, COLI, MMP-3). These results suggest that alterations to scaffold composition, to include matrix known to decrease scar formation in vivo, can modify the inflammatory response in tenocytes. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1332-1342, 2016.
Collapse
Affiliation(s)
- Rebecca A Hortensius
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Jill H Ebens
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| |
Collapse
|
19
|
Brant JO, Yoon JH, Polvadore T, Barbazuk WB, Maden M. Cellular events during scar-free skin regeneration in the spiny mouse,Acomys. Wound Repair Regen 2016; 24:75-88. [DOI: 10.1111/wrr.12385] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 11/20/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Jason O. Brant
- Department of Biology; and UF Genetics Institute, University of Florida; Gainesville Florida
| | - Jung H. Yoon
- Department of Biology; and UF Genetics Institute, University of Florida; Gainesville Florida
| | - Trey Polvadore
- Department of Biology; and UF Genetics Institute, University of Florida; Gainesville Florida
| | - William Brad Barbazuk
- Department of Biology; and UF Genetics Institute, University of Florida; Gainesville Florida
| | - Malcolm Maden
- Department of Biology; and UF Genetics Institute, University of Florida; Gainesville Florida
| |
Collapse
|
20
|
Tseng SCG, He H, Zhang S, Chen SY. Niche Regulation of Limbal Epithelial Stem Cells: Relationship between Inflammation and Regeneration. Ocul Surf 2016; 14:100-12. [PMID: 26769483 DOI: 10.1016/j.jtos.2015.12.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/17/2015] [Accepted: 12/24/2015] [Indexed: 02/07/2023]
Abstract
Human limbal palisades of Vogt are the ideal site for studying and practicing regenerative medicine due to their accessibility. Nonresolving inflammation in limbal stroma is common manifestation of limbal stem cell (SC) deficiency and presents as a threat to the success of transplanted limbal epithelial SCs. This pathologic process can be overcome by transplantation of cryopreserved human amniotic membrane (AM), which exerts anti-inflammatory, antiscarring and anti-angiogenic action to promote wound healing. To determine how AM might exert anti-inflammation and promote regeneration, we have purified a novel matrix, HC-HA/PTX3, responsible for the efficacy of AM efficacy. HC-HA complex is covalently formed by hyaluronan (HA) and heavy chain 1 (HC1) of inter-α-trypsin inhibitor by the catalytic action of tumor necrosis factor-stimulated gene-6 (TSG-6) and are tightly associated with pentraxin 3 (PTX3) to form HC-HA/PTX3. In vitro reconstitution of the limbal niche can be established by reunion between limbal epithelial progenitors and limbal niche cells on different substrates. In 3-dimensional Matrigel, clonal expansion indicative of SC renewal is correlated with activation of canonical Wnt signaling and suppression of canonical bone morphogenetic protein (BMP) signaling. In contrast, SC quiescence can be achieved in HC-HA/PTX3 by activation of canonical BMP signaling and non-canonical planar cell polarity (PCP) Wnt signaling, but suppression of canonical Wnt signaling. HC-HA/PTX3 is a novel matrix mitigating nonresolving inflammation and restoring SC quiescence in the niche for various applications in regenerative medicine.
Collapse
Affiliation(s)
- Scheffer C G Tseng
- R&D Department, TissueTech, Inc., Ocular Surface Center, and Ocular Surface Research and Education Foundation, Miami, Florida, USA.
| | - Hua He
- R&D Department, TissueTech, Inc., Ocular Surface Center, and Ocular Surface Research and Education Foundation, Miami, Florida, USA
| | - Suzhen Zhang
- R&D Department, TissueTech, Inc., Ocular Surface Center, and Ocular Surface Research and Education Foundation, Miami, Florida, USA
| | - Szu-Yu Chen
- R&D Department, TissueTech, Inc., Ocular Surface Center, and Ocular Surface Research and Education Foundation, Miami, Florida, USA
| |
Collapse
|
21
|
Balaji S, Watson CL, Ranjan R, King A, Bollyky PL, Keswani SG. Chemokine Involvement in Fetal and Adult Wound Healing. Adv Wound Care (New Rochelle) 2015; 4:660-672. [PMID: 26543680 DOI: 10.1089/wound.2014.0564] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Significance: Fetal wounds heal with a regenerative phenotype that is indistinguishable from surrounding skin with restored skin integrity. Compared to this benchmark, all postnatal wound healing is impaired and characterized by scar formation. The biologic basis of the fetal regenerative phenotype can serve as a roadmap to recapitulating regenerative repair in adult wounds. Reduced leukocyte infiltration, likely mediated, in part, through changes in the chemokine milieu, is a fundamental feature of fetal wound healing. Recent Advances: The contributions of chemokines to wound healing are a topic of active investigation. Recent discoveries have opened the possibility of targeting chemokines therapeutically to treat disease processes and improve healing capability, including the possibility of achieving a scarless phenotype in postnatal wounds. Critical Issues: Successful wound healing is a complex process, in which there is a significant interplay between multiple cell types, signaling molecules, growth factors, and extracellular matrix. Chemokines play a crucial role in this interplay and have been shown to have different effects in various stages of the healing process. Understanding how these chemokines are locally produced and regulated during wound healing and how the chemokine milieu differs in fetal versus postnatal wounds may help us identify ways in which we can target chemokine pathways. Future Directions: Further studies on the role of chemokines and their role in the healing process will greatly advance the potential for using these molecules as therapeutic targets.
Collapse
Affiliation(s)
- Swathi Balaji
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital and the University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Carey L. Watson
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital and the University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Rajeev Ranjan
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital and the University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Alice King
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital and the University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Paul L. Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford School of Medicine, Palo Alto, California
| | - Sundeep G. Keswani
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital and the University of Cincinnati, College of Medicine, Cincinnati, Ohio
| |
Collapse
|
22
|
pGlcNAc Nanofiber Treatment of Cutaneous Wounds Stimulate Increased Tensile Strength and Reduced Scarring via Activation of Akt1. PLoS One 2015; 10:e0127876. [PMID: 25955155 PMCID: PMC4425470 DOI: 10.1371/journal.pone.0127876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/21/2015] [Indexed: 11/30/2022] Open
Abstract
Treatment of cutaneous wounds with poly-N-acetyl-glucosamine containing nanofibers (pGlcNAc), a novel polysaccharide material derived from a marine diatom, results in increased wound closure, antibacterial activities and innate immune responses. We have shown that Akt1 plays a central role in the regulation of these activities. Here, we show that pGlcNAc treatment of cutaneous wounds results in a smaller scar that has increased tensile strength and elasticity. pGlcNAc treated wounds exhibit decreased collagen content, increased collagen organization and decreased myofibroblast content. A fibrin gel assay was used to assess the regulation of fibroblast alignment in vitro. In this assay, fibrin lattice is formed with two pins that provide focal points upon which the gel can exert force as the cells align from pole to pole. pGlcNAc stimulation of embedded fibroblasts results in cellular alignment as compared to untreated controls, by a process that is Akt1 dependent. We show that Akt1 is required in vivo for the pGlcNAc-induced increased tensile strength and elasticity. Taken together, our findings suggest that pGlcNAc nanofibers stimulate an Akt1 dependent pathway that results in the proper alignment of fibroblasts, decreased scarring, and increased tensile strength during cutaneous wound healing.
Collapse
|
23
|
Balaji S, King A, Marsh E, LeSaint M, Bhattacharya SS, Han N, Dhamija Y, Ranjan R, Le LD, Bollyky PL, Crombleholme TM, Keswani SG. The role of interleukin-10 and hyaluronan in murine fetal fibroblast function in vitro: implications for recapitulating fetal regenerative wound healing. PLoS One 2015; 10:e0124302. [PMID: 25951109 PMCID: PMC4423847 DOI: 10.1371/journal.pone.0124302] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 03/12/2015] [Indexed: 12/14/2022] Open
Abstract
Background Mid-gestation fetal cutaneous wounds heal scarlessly and this has been attributed in part to abundant hyaluronan (HA) in the extracellular matrix (ECM) and a unique fibroblast phenotype. We recently reported a novel role for interleukin 10 (IL-10) as a regulator of HA synthesis in the fetal ECM, as well as the ability of the fetal fibroblast to produce an HA-rich pericellular matrix (PCM). We hypothesized that IL-10-mediated HA synthesis was essential to the fetal fibroblast functional phenotype and, moreover, that this phenotype could be recapitulated in adult fibroblasts via supplementation with IL-10 via an HA dependent process. Methodology/Principal Findings To evaluate the differences in functional profile, we compared metabolism (MTS assay), apoptosis (caspase-3 staining), migration (scratch wound assay) and invasion (transwell assay) between C57Bl/6J murine fetal (E14.5) and adult (8 weeks) fibroblasts. We found that fetal fibroblasts have lower rates of metabolism and apoptosis, and an increased ability to migrate and invade compared to adult fibroblasts, and that these effects were dependent on IL-10 and HA synthase activity. Further, addition of IL-10 to adult fibroblasts resulted in increased fibroblast migration and invasion and recapitulated the fetal phenotype in an HA-dependent manner. Conclusions/Significance Our data demonstrates the functional differences between fetal and adult fibroblasts, and that IL-10 mediated HA synthesis is essential for the fetal fibroblasts' enhanced invasion and migration properties. Moreover, IL-10 via an HA-dependent mechanism can recapitulate this aspect of the fetal phenotype in adult fibroblasts, suggesting a novel mechanism of IL-10 in regenerative wound healing.
Collapse
Affiliation(s)
- Swathi Balaji
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Alice King
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Emily Marsh
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Maria LeSaint
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Sukanta S. Bhattacharya
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Nathaniel Han
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Yashu Dhamija
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Rajeev Ranjan
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Louis D. Le
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Paul L. Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Timothy M. Crombleholme
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Center for Children's Surgery, Children’s Hospital Colorado and The University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Sundeep G. Keswani
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Pediatric General and Thoracic Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
24
|
Seifert AW, Maden M. New insights into vertebrate skin regeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:129-69. [PMID: 24725426 DOI: 10.1016/b978-0-12-800180-6.00004-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Regeneration biology has experienced a renaissance as clinicians, scientists, and engineers have combined forces to drive the field of regenerative medicine. Studies investigating the mechanisms that regulate wound healing in adult mammals have led to a good understanding of the stereotypical processes that lead to scarring. Despite comparative studies of fetal wound healing in which no scar is produced, the fact remains that insights from this work have failed to produce therapies that can regenerate adult human skin. In this review, we analyze past and contemporary accounts of wound healing in a variety of vertebrates, namely, fish, amphibians, and mammals, in order to demonstrate how examples of skin regeneration in adult organisms can impact traditional wound-healing research. When considered together, these studies suggest that inflammation and reepithelialization are necessary events preceding both scarring and regeneration. However, the extent to which these processes may direct one outcome over another is likely weaker than currently accepted. In contrast, the extent to which newly deposited extracellular matrix in the wound bed can be remodeled into new skin, and the intrinsic ability of new epidermis to regenerate appendages, appears to underlie the divergence between scar-free healing and the persistence of a scar. We discuss several ideas that may offer areas of overlap between researchers using these different model organisms and which may be of benefit to the ultimate goal of scar-free human wound healing.
Collapse
Affiliation(s)
- Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Malcolm Maden
- Department of Biology and UF Genetics Institute, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
25
|
Walraven M, Gouverneur M, Middelkoop E, Beelen RHJ, Ulrich MMW. Altered TGF-β signaling in fetal fibroblasts: what is known about the underlying mechanisms? Wound Repair Regen 2013; 22:3-13. [PMID: 24134669 DOI: 10.1111/wrr.12098] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/25/2013] [Indexed: 02/01/2023]
Abstract
Scarless wound healing is a unique and intrinsic capacity of the fetal skin that is not fully understood. Further insight into the underlying mechanisms of fetal wound healing may lead to new therapeutic approaches promoting adult scarless wound healing. Differences between fetal and adult wound healing are found in the extracellular matrix, the inflammatory reaction and the levels of growth factors present in the wound. This review focuses specifically on transforming growth factor β (TGF-β), as this growth factor is prominently involved in wound healing and fibroblast-to-myofibroblast differentiation. Although fetal fibroblasts do respond to TGF-β, they lack a proliferative and a contractile response and display short-lived myofibroblast differentiation, autocrine response, and collagen up-regulation in comparison with adult fibroblasts. Curiously, prolonged TGF-β activation is associated with fibrosis, and therefore, this short-lived response in fetal fibroblasts might contribute to scarless healing. This review gives an overview of the current knowledge on TGF-β signaling and the intracellular TGF-β signaling pathway in fetal fibroblasts. Furthermore, this review also describes the various components that regulate the cellular TGF-β response and hypothesizes about the possible roles these components might play in the altered response of fetal fibroblasts to TGF-β.
Collapse
Affiliation(s)
- Mariëlle Walraven
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands; Association of Dutch Burn Centers, Beverwijk, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
Degen KE, Gourdie RG. Embryonic wound healing: a primer for engineering novel therapies for tissue repair. ACTA ACUST UNITED AC 2013; 96:258-70. [PMID: 23109321 DOI: 10.1002/bdrc.21019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Scar is the default tissue repair used by the body in response to most injuries-a response that occurs in wounds ranging in seriousness from minor skin cuts to complete severance of the spinal cord. By contrast, before the third trimester of pregnancy embryonic mammals tend to heal without scarring due to a variety of mechanisms and factors that are uniquely in operation during development in utero. The goal of tissue engineering is to develop safe and clinically effective biological substitutes that restore, maintain, or improve tissue function in patients. This review provides a comparative overview of wound healing during development and maturation and seeks to provide a perspective on just how much the embryo may be able teach us in the engineering of new therapies for tissue repair.
Collapse
Affiliation(s)
- Katherine E Degen
- School of Biomedical Engineering Science, Virginia Tech, Blacksburg, USA
| | | |
Collapse
|
27
|
|
28
|
Wulff BC, Yu L, Parent AE, Wilgus TA. Novel differences in the expression of inflammation-associated genes between mid- and late-gestational dermal fibroblasts. Wound Repair Regen 2012; 21:103-12. [PMID: 23126606 DOI: 10.1111/j.1524-475x.2012.00860.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 08/21/2012] [Indexed: 01/11/2023]
Abstract
While cutaneous wounds of late-gestational fetuses and on through adulthood result in scar formation, wounds incurred early in gestation have been shown to heal scarlessly. Unique properties of fetal fibroblasts are believed to mediate this scarless healing process. In this study, microarray analysis was used to identify differences in the gene expression profiles of cultured fibroblasts from embryonic day 15 (E15; midgestation) and embryonic day 18 (E18; late-gestation) skin. Sixty-two genes were differentially expressed and 12 of those genes are associated with inflammation, a process that correlates with scar formation in fetal wounds. One of the differentially expressed inflammatory genes was cyclooxygenase-1 (COX-1). COX-1 was more highly expressed in E18 fibroblasts than in E15 fibroblasts, and these differences were confirmed at the gene and protein level. Differences in COX-1 protein expression were also observed in fetal skin by immunohistochemical and immunofluorescence staining. The baseline differences in gene expression found in mid- and late-gestational fetal fibroblasts suggest that developmental alterations in fibroblasts could be involved in the transition from scarless to fibrotic fetal wound healing. Furthermore, baseline differences in the expression of inflammatory genes by fibroblasts in E15 and E18 skin may contribute to inflammation and scar formation late in gestation.
Collapse
Affiliation(s)
- Brian C Wulff
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
29
|
Fetal Skin Possesses the Ability to Regenerate Completely: Complete Regeneration of Skin. Keio J Med 2012; 61:101-8. [DOI: 10.2302/kjm.2011-0002-ir] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Sonnemann KJ, Bement WM. Wound repair: toward understanding and integration of single-cell and multicellular wound responses. Annu Rev Cell Dev Biol 2011; 27:237-63. [PMID: 21721944 DOI: 10.1146/annurev-cellbio-092910-154251] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The importance of wound healing to medicine and biology has long been evident, and consequently, wound healing has been the subject of intense investigation for many years. However, several relatively recent developments have added new impetus to wound repair research: the increasing application of model systems; the growing recognition that single cells have a robust, complex, and medically relevant wound healing response; and the emerging recognition that different modes of wound repair bear an uncanny resemblance to other basic biological processes such as morphogenesis and cytokinesis. In this review, each of these developments is described, and their significance for wound healing research is considered. In addition, overlapping mechanisms of single-cell and multicellular wound healing are highlighted, and it is argued that they are more similar than is often recognized. Based on this and other information, a simple model to explain the evolutionary relationships of cytokinesis, single-cell wound repair, multicellular wound repair, and developmental morphogenesis is proposed. Finally, a series of important, but as yet unanswered, questions is posed.
Collapse
Affiliation(s)
- Kevin J Sonnemann
- Department of Zoology and Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706;
| | | |
Collapse
|
31
|
Cellular and Molecular Characteristics of Scarless versus Fibrotic Wound Healing. Dermatol Res Pract 2010; 2010:790234. [PMID: 21253544 PMCID: PMC3021858 DOI: 10.1155/2010/790234] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Accepted: 11/24/2010] [Indexed: 01/04/2023] Open
Abstract
The purpose of this paper is to compare and contrast the discrete biology differentiating fetal wound repair from its adult counterpart. Integumentary wound healing in mammalian fetuses is essentially different from wound healing in adult skin. Adult (postnatal) skin wound healing is a complex and well-orchestrated process spurred by attendant inflammation that leads to wound closure with scar formation. In contrast, fetal wound repair occurs with minimal inflammation, faster re-epithelialization, and without the accumulation of scar. Although research into scarless healing began decades ago, the critical molecular mechanisms driving the process of regenerative fetal healing remain uncertain. Understanding the molecular and cellular events during regenerative healing may provide clues that one day enable us to modulate adult wound healing and consequently reduce scarring.
Collapse
|
32
|
Abstract
SUMMARY Scar formation is a major medical problem that can have devastating consequences for patients. The adverse physiological and psychological effects of scars are broad, and there are currently no reliable treatments to prevent scarring. In contrast to adult wounds, early gestation fetal skin wounds repair rapidly and in the absence of scar formation. Despite extensive investigation, the exact mechanisms of scarless fetal wound healing remain largely unknown. For some time, it has been known that significant differences exist among the extracellular matrix, inflammatory response, cellular mediators, and gene expression profiles of fetal and postnatal wounds. These differences may have important implications in scarless wound repair.
Collapse
Affiliation(s)
- Barrett J Larson
- Stanford, Calif. From the Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine
| | | | | |
Collapse
|
33
|
Cutaneous scarring: a clinical review. Dermatol Res Pract 2010; 2009:625376. [PMID: 20585482 PMCID: PMC2879602 DOI: 10.1155/2009/625376] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 12/03/2009] [Indexed: 11/17/2022] Open
Abstract
Cutaneous scarring can cause patients symptoms ranging from the psychological to physical pain. Although the process of normal scarring is well described the ultimate cause of pathological scarring remains unknown. Similarly, exactly how early gestation fetuses can heal scarlessly remains unsolved. These questions are crucial in the search for a preventative or curative antiscarring agent. Such a discovery would be of enormous medical and commercial importance, not least because it may have application in other tissues. In the clinical context the assessment of scars is becoming more sophisticated and new physical, medical and surgical therapies are being introduced. This review aims to summarise some of the recent developments in scarring research for non-specialists and specialists alike.
Collapse
|
34
|
Abstract
The developing fetus has the ability to heal wounds by regenerating normal epidermis and dermis with restoration of the extracellular matrix (ECM) architecture, strength, and function. In contrast, adult wounds heal with fibrosis and scar. Scar tissue remains weaker than normal skin with an altered ECM composition. Despite extensive investigation, the mechanism of fetal wound healing remains largely unknown. We do know that early in gestation, fetal skin is developing at a rapid pace and the ECM is a loose network facilitating cellular migration. Wounding in this unique environment triggers a complex cascade of tightly controlled events culminating in a scarless wound phenotype of fine reticular collagen and abundant hyaluronic acid. Comparison between postnatal and fetal wound healing has revealed differences in inflammatory response, cellular mediators, cytokines, growth factors, and ECM modulators. Investigation into cell signaling pathways and transcription factors has demonstrated differences in secondary messenger phosphorylation patterns and homeobox gene expression. Further research may reveal novel genes essential to scarless repair that can be manipulated in the adult wound and thus ameliorate scar.
Collapse
Affiliation(s)
- Edward P Buchanan
- Division Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | |
Collapse
|
35
|
Wagner W, Wehrmann M. Differential cytokine activity and morphology during wound healing in the neonatal and adult rat skin. J Cell Mol Med 2008; 11:1342-51. [PMID: 18205704 PMCID: PMC4401296 DOI: 10.1111/j.1582-4934.2007.00037.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Wound-healing mechanisms change during transition from prenatal to postnatal stage. Cytokines are known to play a key role in this process. The current study investigated the differential cytokine activity and healing morphology during healing of incisional skin wounds in rats of the ages neonatal (p0), 3 days old (p3) and adult, after six different healing times (2 hrs to 30 days). All seven tested cytokines (Transforming Growth Factor (TGF) α, TGFβ1, −β2 and −β3, IGF 1, Platelet Derived Growth Factor A (PDGF A), basic Fibroblast Growth Factor (bFGF) exhibited higher expression in the adult wounds than at the ages p0 and p3. Expression typically peaked between 12 hrs and 3 days post-wounding, and was not detectable any more at days 10 and 30. The neonate specimen showed more rapid re-epithelialization, far less inflammation and scarring, and larger restitution of original tissue architecture than their adult counterparts, resembling a prenatal healing pattern. The results may encourage the use of neonatal rat skin as a wound-healing model for further studies, instead of the more complicated prenatal animal models. Secondly, the data may recommend inhibition of PDGF A, basic FGF or TGF-β1 as therapeutic targets in efforts to optimize wound healing in the adult organism.
Collapse
Affiliation(s)
- W Wagner
- Department of Otorhinolaryngology, University of Tübingen, Tübingen, Germany.
| | | |
Collapse
|
36
|
Harrison CA, MacNeil S. The mechanism of skin graft contraction: An update on current research and potential future therapies. Burns 2008; 34:153-63. [DOI: 10.1016/j.burns.2007.08.011] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 08/14/2007] [Indexed: 12/20/2022]
|
37
|
Jiang H, Rhee S, Ho CH, Grinnell F. Distinguishing fibroblast promigratory and procontractile growth factor environments in 3-D collagen matrices. FASEB J 2008; 22:2151-60. [PMID: 18272655 DOI: 10.1096/fj.07-097014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Understanding growth factor function during wound repair is necessary for the development of therapeutic interventions to improve healing outcomes. In the current study, we compare the effects of serum and purified growth factors on human fibroblast function in three different collagen matrix models: cell migration in nested matrices, floating matrix contraction, and stressed-released matrix contraction. The results of these studies indicate that platelet-derived growth factor (PDGF) is unique in its capacity to promote cell migration. Serum, lysophosphatidic acid, sphingosine-1-phophate (S1P), and endothelin-1 promote stressed-released matrix contraction but not cell migration. In addition, we found that S1P inhibits fibroblast migration and treatment of serum to remove lipid growth factors or treatment of cells to interfere with S1P(2) receptor function increases serum promigratory activity. Our findings suggest that different sets of growth factors generate promigratory and procontractile tissue environments for fibroblasts and that the balance between PDGF and S1P is a key determinant of fibroblast promigratory activity.
Collapse
Affiliation(s)
- Hongmei Jiang
- Department of Cell Biology, University of Texas Southwestern Medical School, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, USA
| | | | | | | |
Collapse
|
38
|
Enoch S, Moseley R, Stephens P, Thomas D. The oral mucosa: a model of wound healing with reduced scarring. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1752-248x.2007.00005.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Yannas IV, Kwan MD, Longaker MT. Early Fetal Healing as a Model for Adult Organ Regeneration. ACTA ACUST UNITED AC 2007; 13:1789-98. [PMID: 17518739 DOI: 10.1089/ten.2006.0054] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Evidence is provided pointing out certain basic similarities, though not an identity, between the mechanisms of early fetal regeneration and induced organ regeneration in adults. These similarities favor a model of induced organ regeneration in which biologically active scaffolds block wound contraction and scar formation.
Collapse
Affiliation(s)
- Ioannis V Yannas
- Department of Mechanical Engineering, Materials Science Engineering, and Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
40
|
Naik-Mathuria B, Gay AN, Zhu X, Yu L, Cass DL, Olutoye OO. Age-dependent recruitment of neutrophils by fetal endothelial cells: implications in scarless wound healing. J Pediatr Surg 2007; 42:166-71. [PMID: 17208559 DOI: 10.1016/j.jpedsurg.2006.09.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Fetal dermal wounds heal with minimal inflammation and absent fibrosis. Later in gestation, a transition to adult-like healing with marked inflammation and scarring is observed. Interaction with endothelial cells (ECs) is imperative for leukocyte transmigration, a critical step in the inflammatory cascade. This study was embarked upon to determine if gestational age-dependent differences in EC function modulate changes in inflammatory response and correlate with the healing phenotype. METHODS Fetal porcine ECs were harvested at days 65 (mid gestation), 85 (late gestation), and 100 (near-term) (term = 115 days). Confluent monolayers were activated with IL-1beta at 10 and 100 ng/mL and exposed to adult neutrophils under static (n = 4 per group) and continuous flow (n = 6 per group) conditions. Neutrophil-endothelial interaction was quantified and compared using analysis of variance. RESULTS Under static conditions, the lower cytokine dose elicited maximal neutrophil recruitment in later-gestation ECs, while midgestation ECs required higher stimulation. Midgestation ECs recruited significantly less neutrophils than later gestation ECs at both cytokine concentrations under flow conditions. CONCLUSION There is a gestational age-dependent variation in neutrophil recruitment by fetal ECs. With minimal stimulation, later-gestation ECs actively recruit neutrophils, whereas midgestation ECs do not. These findings correlate with the transition period to adult-like healing, supporting the potential role of fetal ECs in scarless healing.
Collapse
Affiliation(s)
- Bindi Naik-Mathuria
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030-2399, USA
| | | | | | | | | | | |
Collapse
|
41
|
Yannas IV. Similarities and differences between induced organ regeneration in adults and early foetal regeneration. J R Soc Interface 2006; 2:403-17. [PMID: 16849201 PMCID: PMC1618502 DOI: 10.1098/rsif.2005.0062] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
At least three organs (skin, peripheral nerves and the conjunctiva) have been induced to regenerate partially in adults following application of porous, degradable scaffolds with highly specific structure (templates). Templates blocked contraction and scar formation by inducing a reduction in the density of contractile fibroblasts (probably myofibroblasts) and by preventing these cells to organize themselves appropriately in the wound. In contrast, during early foetal healing, myofibroblasts were absent and wounds did not close by contraction but rather by spontaneous regeneration. The adult regenerative process has so far led to imperfect recovery of the physiological anatomy of skin (skin appendages were missing), while early foetal healing has led to apparently complete restoration. Furthermore, the mechanism of the adult regenerative process involves thwarting of myofibroblast function while, during early foetal healing, differentiation of myofibroblasts has not yet occurred. The data suggest that induced organ regeneration in the adult is the result of partial reversion to early foetal healing. If so, the adult may conceal a foetal response that may be subject to activation following application of highly active scaffolds or of other substances or cells.
Collapse
Affiliation(s)
- Ioannis V Yannas
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
42
|
Evans SB, Kaufman SA, Price LL, Cardarelli G, Dipetrillo TA, Wazer DE. Persistent seroma after intraoperative placement of MammoSite for accelerated partial breast irradiation: Incidence, pathologic anatomy, and contributing factors. Int J Radiat Oncol Biol Phys 2006; 65:333-9. [PMID: 16545918 DOI: 10.1016/j.ijrobp.2005.12.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 12/26/2005] [Accepted: 12/28/2005] [Indexed: 10/24/2022]
Abstract
PURPOSE To investigate the incidence of, and possible factors associated with, seroma formation after intraoperative placement of the MammoSite catheter for accelerated partial breast irradiation. METHODS AND MATERIALS This study evaluated 38 patients who had undergone intraoperative MammoSite catheter placement at lumpectomy or reexcision followed by accelerated partial breast irradiation with 34 Gy in 10 fractions. Data were collected regarding dosimetric parameters, including the volume of tissue enclosed by the 100%, 150%, and 200% isodose shells, dose homogeneity index, and maximal dose at the surface of the applicator. Clinical and treatment-related factors were analyzed, including patient age, patient weight, history of diabetes and smoking, use of reexcision, interval between surgery and radiotherapy, total duration of catheter placement, total excised specimen volume, and presence or absence of postprocedural infection. Seroma was verified by clinical examination, mammography, and/or ultrasonography. Persistent seroma was defined as seroma that was clinically detectable >6 months after radiotherapy completion. RESULTS After a median follow-up of 17 months, the overall rate of any detectable seroma was 76.3%. Persistent seroma (>6 months) occurred in 26 (68.4%) of 38 patients, of whom 46% experienced at least modest discomfort at some point during follow-up. Of these symptomatic patients, 3 required biopsy or complete cavity excision, revealing squamous metaplasia, foreign body giant cell reaction, fibroblasts, and active collagen deposition. Of the analyzed dosimetric, clinical, and treatment-related variables, only body weight correlated positively with the risk of seroma formation (p = 0.04). Postprocedural infection correlated significantly (p = 0.05) with a reduced risk of seroma formation. Seroma was associated with a suboptimal cosmetic outcome, because excellent scores were achieved in 61.5% of women with seroma compared with 83% without seroma. CONCLUSION Intraoperative placement of the MammoSite catheter for accelerated partial breast irradiation is associated with a high rate of clinically detectable seroma that adversely affects the cosmetic outcome. The seroma risk was positively associated with body weight and negatively associated with postprocedural infection.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Brachytherapy/adverse effects
- Brachytherapy/instrumentation
- Breast Neoplasms/radiotherapy
- Breast Neoplasms/surgery
- Carcinoma, Ductal, Breast/radiotherapy
- Carcinoma, Ductal, Breast/surgery
- Carcinoma, Intraductal, Noninfiltrating/radiotherapy
- Carcinoma, Intraductal, Noninfiltrating/surgery
- Female
- Humans
- Intraoperative Period
- Mastectomy, Segmental
- Middle Aged
- Radiography
- Radiotherapy Dosage
- Recurrence
- Regression Analysis
- Seroma/diagnostic imaging
- Seroma/etiology
- Seroma/pathology
- Seroma/surgery
- Statistics, Nonparametric
Collapse
Affiliation(s)
- Suzanne B Evans
- Department of Radiation Oncology, Tufts-New England Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
43
|
Olutoye OO, Zhu X, Cass DL, Smith CW. Neutrophil recruitment by fetal porcine endothelial cells: implications in scarless fetal wound healing. Pediatr Res 2005; 58:1290-4. [PMID: 16306210 DOI: 10.1203/01.pdr.0000184326.01884.bc] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fetal dermal wounds heal scarlessly and with a minimal inflammatory response. When a robust inflammatory response is induced at the site of fetal dermal wounds by the application of cytokines, healing results in fibrosis. To test the hypothesis that the reduced inflammatory response in fetal wounds is due to impaired fetal leukocyte-endothelial interactions, the contributions of fetal endothelial cells to the inflammatory response in the fetus were investigated. Endothelial cells isolated from blood vessels of adult and mid-gestational fetal pigs were cultured in media until confluent monolayers were established. Adult porcine neutrophils were isolated and resuspended at a concentration of 1 million cells/mL. Interactions between neutrophils and endothelial cells were observed under static and flow conditions. Endothelial monolayers were exposed to neutrophils with and without prior stimulation of the endothelial cells with tumor necrosis factor alpha (TNF-alpha) for 4 h. The neutrophil-endothelial interactions were observed and analyzed for neutrophil adhesion, rolling velocity, and transmigration. Endothelial P-selectin mRNA expression was determined by real-time polymerase chain reaction (PCR). A novel in vitro model of fetal inflammation is described. Both adult and fetal endothelial cells demonstrated a dose-dependent increase in neutrophil adhesion and transmigration with increasing doses of TNF-alpha. The fetal response was significantly lower than the adult. As expected, rolling velocity was lower at higher cytokine concentrations and had an inverse correlation with P-selectin mRNA expression. Fetal endothelial cells are less permissive to adhesion and transmigration of neutrophils than adult endothelial cells. This may contribute to the paucity of inflammation seen in the fetal response to dermal injury.
Collapse
Affiliation(s)
- Oluyinka O Olutoye
- Michael E DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
44
|
Harrison CA, Gossiel F, Bullock AJ, Sun T, Blumsohn A, Mac Neil S. Investigation of keratinocyte regulation of collagen I synthesis by dermal fibroblasts in a simplein vitromodel. Br J Dermatol 2005; 154:401-10. [PMID: 16445767 DOI: 10.1111/j.1365-2133.2005.07022.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Hypertrophic scarring and skin graft contracture are major causes of morbidity after burn injuries. A prominent feature is excessive fibroplasia with accumulation of increased fibrillar collagen relative to normal scar tissue. The application of split-thickness skin grafts or cultured epithelial autografts to burn wounds is known to reduce scarring and contraction. OBJECTIVES To investigate further how the keratinocyte influences underlying fibroblast behaviour by examining the influence of keratinocytes on fibroblast collagen synthesis, using a new assay for collagen synthesis never previously applied to skin cell biology. METHODS We investigated the influence of the keratinocyte on fibroblast synthesis of type I collagen using an immunoassay for the aminoterminal propeptide of type I collagen (P1NP) in conditioned medium from monocultures and cocultures of keratinocytes and fibroblasts over 14 days. The importance of the physical presence of the keratinocyte was investigated by comparing cocultures of keratinocytes and fibroblasts against fibroblast monocultures with keratinocyte-conditioned medium. Pharmacological agents known to promote fibroblast proliferation [basic fibroblast growth factor (bFGF)], keratinocyte proliferation [insulin-like growth factor (IGF)-1], modify scarring in vivo[tumour necrosis factor (TNF)-alpha] or modify collagen biochemistry [putrescine, estrone, estradiol and beta-aminopropionitrile (beta-APN)] were then investigated for their effect on collagen synthesis in fibroblasts and in keratinocyte/fibroblast cocultures. RESULTS Keratinocytes in coculture with fibroblasts, and keratinocyte-conditioned medium, both reduced fibroblast P1NP synthesis. Of the pharmacological agents investigated, bFGF, IGF-1, TNF-alpha and beta-APN all increased collagen synthesis both in monocultures of fibroblasts and in cocultures of keratinocytes and fibroblasts. CONCLUSIONS Fibroblast collagen synthesis appears to be downregulated by keratinocyte-derived cytokines. Fibroblast growth factors and proinflammatory cytokines appear to be able partially to overcome this downregulation and to increase collagen synthesis.
Collapse
Affiliation(s)
- C A Harrison
- Skin Research Group, Division of Clinical Sciences (North), University of Sheffield, UK.
| | | | | | | | | | | |
Collapse
|
45
|
Harrison CA, Dalley AJ, Mac Neil S. A simple in vitro model for investigating epithelial/mesenchymal interactions: keratinocyte inhibition of fibroblast proliferation and fibronectin synthesis. Wound Repair Regen 2005; 13:543-50. [PMID: 16283869 DOI: 10.1111/j.1524-475x.2005.00076.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hypertrophic scarring and graft contracture are major causes of morbidity after burn injuries. It is well established that application of a split-thickness skin graft reduces scarring and contraction, and cultured epithelial autografts have a similar effect. To investigate the influence of keratinocytes on fibroblast proliferation and fibronectin synthesis, we used an in vitro separated co-culture model in which epithelial sheets were cultured above fibroblast monolayers without physical contact. We also investigated the response of fibroblasts to keratinocyte-conditioned medium (KCM) obtained from confluent and subconfluent keratinocyte monolayers. Both cultured epithelial sheets, composed of adherent fully confluent keratinocytes, and their conditioned medium, reduced fibroblast proliferation. However, KCM from subconfluent keratinocytes stimulated fibroblast proliferation at low concentrations while inhibiting it at higher concentrations, indicating that keratinocytes can produce both mitogenic and growth-inhibiting factors for fibroblasts. KCM, but not epithelial sheet co-culture, also inhibited fibroblast fibronectin synthesis. This indicates regulation of fibroblast phenotype by soluble factors released by the keratinocyte and also suggests that there is a dialogue between keratinocytes and fibroblasts with respect to fibronectin production. We conclude that this separated co-culture model is a simple way to study epithelial/mesenchymal communication particularly with respect to the role of the fibroblast in wound healing.
Collapse
Affiliation(s)
- Caroline A Harrison
- Skin Research Unit, Section of Human Metabolism, Division of Clinical Sciences, University of Sheffield, Sheffield, United Kingdom
| | | | | |
Collapse
|
46
|
Krein PM, Huang Y, Winston BW. Growth factor regulation and manipulation in wound repair: to scar or not to scar, that is the question. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.11.7.1065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Makhijani NS, Bischoff DS, Yamaguchi DT. Regulation of proliferation and migration in retinoic acid treated C3H10T1/2 cells by TGF-? isoforms. J Cell Physiol 2004; 202:304-13. [PMID: 15389595 DOI: 10.1002/jcp.20128] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
UNLABELLED Proliferation of mesenchymal precursors of osteogenic and chondrogenic cells and migration of these precursors to repair sites are important early steps in bone repair. Transforming growth factor-beta (TGF-beta) has been implicated in the promotion of bone repair and may have a role in these processes. Three isoforms of TGF-beta, TGF-beta1, -beta2, and -beta3, are expressed in fracture healing, however, their specific roles in the repair process are unknown. Differential actions of the TGF-beta isoforms on early events of bone repair were explored in the multipotent mesenchymal precursor cell line, C3H10T1/2. Cell migration was determined using a modified Boyden chamber in response to concentrations of each isoform ranging from 10(-12) to 10(-9) g/ml. All three isoforms demonstrated a dose-dependent chemotactic stimulation of untreated C3H10T1/2 cells. Checkerboard assays indicated that all three isoforms also stimulated chemokinesis of the untreated cells. C3H10T1/2 cells treated with all-trans-retinoic acid (ATRA) and expressing relatively higher levels of osteoblastic gene markers such as alkaline phosphatase and collagen type I, lower levels of chondrocytic gene markers collagen type II and aggrecan, and unchanged levels of the adipose marker adipsin did not demonstrate significant chemokinesis or chemotaxis in response to TGF-beta1 or -beta3 at concentrations ranging from 10(-12) to 10(-9) g/ml. In the ATRA-treated cells, TGF-beta2 stimulated a significant increase in chemotaxis only at the highest concentration tested. Cell proliferation was assessed by mitochondrial dehydrogenase activity and cell counts at TGF-beta concentrations from 10(-11) to 10(-8) g/ml. None of the TGF-beta isoforms stimulated cell proliferation in untreated or ATRA-treated C3H10T1/2 cells. Analysis of TGF-beta receptors (TGF-betaR1, -betaR2, and -betaR3) showed a 1.6- to 2.8-fold decrease in mRNA expression of these receptors in ATRA-treated cells. IN CONCLUSION (1) while all three TGF-beta isoforms stimulate chemotaxis/chemokinesis of multipotent C3H10T1/2 cells, TGF-beta1 and -beta3 do not stimulate chemotaxis in C3H10T1/2 cells treated with ATRA while TGF-beta2 stimulated chemotaxis only at the highest concentration tested. (2) TGF-beta isoforms do not appear to stimulate cell proliferation in C3H10T1/2 cells in either a multipotent state or after ATRA treatment when expressing higher levels of alkaline phosphatase and collagen type I gene markers. (3) Decrease in mRNA expression for TGF-betaR1, -betaR2, and -betaR3 upon ATRA treatment could potentially explain the lack of chemotaxis/chemokinesis in these cells expressing higher levels of alkaline phosphatase and collagen type I.
Collapse
Affiliation(s)
- Nalini S Makhijani
- Research Service, VA Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA
| | | | | |
Collapse
|
48
|
Yang GP, Lim IJ, Phan TT, Lorenz HP, Longaker MT. From scarless fetal wounds to keloids: Molecular studies in wound healing. Wound Repair Regen 2003; 11:411-8. [PMID: 14617279 DOI: 10.1046/j.1524-475x.2003.11604.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Surgical researchers were among the first to describe the different phases of wound healing and the events in tissue repair and regeneration that were taking place during each phase. The understanding of these events has been significantly enhanced in recent years by modern techniques in molecular and cellular biology. In this article, we discuss new findings in scarless fetal repair, angiogenesis in wound healing, and keloid pathogenesis. This serves to highlight the advances that have been made and also how much remains to be understood.
Collapse
Affiliation(s)
- George P Yang
- Department of Surgery, Stanford University, Stanford, California 94305, USA.
| | | | | | | | | |
Collapse
|
49
|
Abstract
Early in gestation, fetal wounds are capable of healing scarlessly. Scarless healing in the fetus is characterized by regeneration of an organized dermis with normal appendages and by a relative lack of inflammation. Although there is a transition period between scarless and scar-forming repair, scarless healing also depends on wound size and the organ involved. The ability to heal scarlessly, furthermore, appears to be intrinsic to fetal skin. Unique characteristics of fetal fibroblasts, inflammatory cells, extra-cellular matrix, cytokine profile, and developmental gene regulation may be responsible for the scarless phenotype of early gestation fetal wounds. With the current knowledge, only minimal success has been achieved with the topical application of neutralizing antibodies, antisense oligonucleotides, and growth factors to improve wound-healing outcomes. Thus, further investigation into the mechanisms underlying scarless repair is crucial in order to devise more effective therapies for scar reduction and the treatment of cirrhosis, scleroderma, and other diseases of excessive fibrosis.
Collapse
Affiliation(s)
- Catherine Dang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California, Los Angeles, CHS 73-060, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
50
|
Chang L, Crowston JG, Cordeiro MF, Akbar AN, Khaw PT. The role of the immune system in conjunctival wound healing after glaucoma surgery. Surv Ophthalmol 2000; 45:49-68. [PMID: 10946081 DOI: 10.1016/s0039-6257(00)00135-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The immune system has a fundamental role in the development and regulation of ocular healing, which plays an important role in the pathogenesis of most blinding diseases. This review discusses the mechanisms of normal wound healing, describing the animal and fetal wound healing models used to provide further insight into normal wound repair. In particular, conjunctival wound repair after glaucoma filtration surgery will be used to illustrate the contributions that the different components of the immune system make to the healing process. The potential role of macrophages, the possible regulatory effect of lymphocytes, and the important role of growth factors and cytokines in the wound healing reaction are discussed. The significance of the immune system in the pathogenesis of aggressive conjunctival scarring is addressed, particularly assessing the predisposing factors, including drugs, age, and ethnicity. The rationale behind the pharmacological agents currently used to modulate the wound healing response and the effects these drugs have on the function of the immune system are described. Finally, potential new therapeutic approaches to regulating the wound healing response are reported.
Collapse
Affiliation(s)
- L Chang
- Wound Healing Research and Glaucoma Units, Institute of Ophthalmology, London, United Kingdom
| | | | | | | | | |
Collapse
|