1
|
Eastwood MP, Russo FM, Toelen J, Deprest J. Medical interventions to reverse pulmonary hypoplasia in the animal model of congenital diaphragmatic hernia: A systematic review. Pediatr Pulmonol 2015; 50:820-38. [PMID: 25994108 DOI: 10.1002/ppul.23206] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 02/24/2015] [Accepted: 03/23/2015] [Indexed: 12/25/2022]
Abstract
We aimed to systematically review all published pre-clinical research on prenatal medical treatment of pulmonary hypoplasia in congenital diaphragmatic hernia (CDH). Background The neonatal mortality due to isolated CDH remains high. Whether fetal endoscopic tracheal occlusion (FETO) reduces mortality is still to be demonstrated. Therefore more potent preferentially medical therapy would be welcomed. Methods We searched MEDLINE (Pubmed), Embase and the Web of Science including all studies from the earliest date (1951) to December 2013. Article quality was assessed using the modified CAMRADES checklist. Inclusion criteria were those animal studies addressing prenatal medical interventions and principal variables were confirmation of a diaphragmatic defect, lung to body weight ratio (LBWR), formal airway morphometry or DNA/protein content. Results In total 983 articles were identified. Following abstract review, 96 articles were assessed by two authors in agreement with a third for eligibility. Of these, 43 were included in the final analysis. The median number of study quality checklist items (maximum 10) scored was 4 (IQ range: 2-5). Thirty (69.8%) of studies were in the nitrofen rat. The majority were treated with vitamins or glucocorticoids. Single studies reported some improvement in lung morphology with alternative therapies. It was impossible to identify a pattern in animal model selection or creation, mode, time point or duration of treatment and readouts. Only one study reported a sample size calculation. Conclusion Comparison in pre-clinical studies in CDH is challenging due to methodological variation. Agreed standardized methods need to be applied in future investigation of new medical therapies.
Collapse
Affiliation(s)
- Mary Patrice Eastwood
- Department of Development and Regeneration, Cluster Organ Systems, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Francesca Maria Russo
- Department of Development and Regeneration, Cluster Organ Systems, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jaan Toelen
- Department of Development and Regeneration, Cluster Organ Systems, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Paediatrics, UZ Leuven, KU Leuven, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, Cluster Organ Systems, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Obstetrics and Gynaecology, Fetal Medicine Unit, UZ Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Roubliova XI, Lewi PJ, Verbeken EK, Vaast P, Jani JC, Lu H, Tibboel D, Deprest JA. The effect of maternal betamethasone and fetal tracheal occlusion on pulmonary vascular morphometry in fetal rabbits with surgically induced diaphragmatic hernia: a placebo controlled morphologic study. Prenat Diagn 2009; 29:674-81. [DOI: 10.1002/pd.2243] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Kling DE, Schnitzer JJ. Vitamin A deficiency (VAD), teratogenic, and surgical models of congenital diaphragmatic hernia (CDH). AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2007; 145C:139-57. [PMID: 17436305 DOI: 10.1002/ajmg.c.30129] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Congenital diaphragmatic hernia (CDH) is a congenital malformation that occurs with a frequency of 0.08 to 0.45 per 1,000 births. Children with CDH are born with the abdominal contents herniated through the diaphragm and exhibit an associated pulmonary hypoplasia which is frequently accompanied by severe morbidity and mortality. Although the etiology of CDH is largely unknown, considerable progress has been made in understanding its molecular mechanisms through the usage of genetic, teratogenic, and surgical models. The following review focuses on the teratogenic and surgical models of CDH and the possible molecular mechanisms of nitrofen (a diphenyl ether, formerly used as an herbicide) in both induction of CDH and pulmonary hypoplasia. In addition, the mechanisms of other compounds including several anti-inflammatory agents that have been linked to CDH will be discussed. Furthermore, this review will also explore the importance of vitamin A in lung and diaphragm development and the possible mechanisms of teratogen interference in vitamin A homeostasis. Continued exploration of these models will bring forth a clearer understanding of CDH and its molecular underpinnings, which will ultimately facilitate development of therapeutic strategies.
Collapse
Affiliation(s)
- David E Kling
- Massachusetts General Hospital, Department of Pediatric Surgery, Boston, MA 02114, USA.
| | | |
Collapse
|
4
|
Masumoto K, de Rooij JD, Suita S, Rottier R, Tibboel D, de Krijger RR. The distribution of matrix metalloproteinases and tissue inhibitors of metalloproteinases in the lungs of congenital diaphragmatic hernia patients and age-matched controls. Histopathology 2006; 48:588-95. [PMID: 16623785 DOI: 10.1111/j.1365-2559.2006.02379.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIMS In congenital diaphragmatic hernia (CDH), the pathogenesis of abnormal pulmonary morphology is still incompletely understood. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are known to play an important role in the turnover of the extracellular matrix (ECM) during development and in remodelling of tissue. The aim of this study was to investigate differences in the expression of MMPs and TIMPs between CDH lungs and controls, against the background of the abnormal pulmonary vasculature in CDH. METHODS We studied 12 lungs of term CDH patients who died < 24 h after birth and 11 normal age-matched control lungs, by immunohistochemistry with antibodies against human MMP-1, -2, -9, TIMP-1 and -2. RESULTS There was a clear increase in the number of MMP-1-reactive capillaries and fibroblasts in CDH lungs compared with controls. In contrast, TIMP-2 reactivity in these structures was decreased in CDH lungs. The arterial endothelium and medial smooth muscle expressed MMP-2, -9 and TIMP-2 in both CDH and control lungs. In small arteries (< 100 microm in diameter), the positive surface area of MMP-2, -9 and TIMP-2 was significantly larger in CDH lungs than in controls. There was no difference in the distribution and expression of TIMP-1 between CDH lungs and normal controls. CONCLUSION The differences in staining pattern of MMPs and TIMPs between normal and CDH lungs suggest that these enzymes might play a role in the abnormal remodelling of the interstitium and the pulmonary arteries in CDH lungs. This could contribute to our understanding of the abnormal lung morphology and the occurrence of pulmonary hypertension, which forms one of the major obstacles to the successful treatment of these patients.
Collapse
Affiliation(s)
- K Masumoto
- Department of Paediatric Surgery, Erasmus MC-Sophia, Rotterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
Surfactant has led to a significant reduction in neonatal mortality for premature infants with lung immaturity and respiratory distress. However, surfactant therapy has been shown to be effective in the treatment of a number of other neonatal respiratory disorders and the evidence for surfactant use in such circumstances is presented. Meconium aspiration is characterised by severe atelectasis, the influx of neutrophils, edema, and hyaline membranes, with decreased levels of SP-A and SP-B and the large aggregate fraction of lung surfactant, and altered surfactant surface morphology. Meconium contains cholesterol, free fatty acids and bilirubin all of which can interfere with surfactant function in a dose-dependent fashion. Providing larger amounts of surfactant can overcome some of this inhibition. Animal models of meconium aspiration treated with surfactant have improved histology, lung mechanics and gas exchange. Studies in human infants with meconium aspiration have found elevated concentrations of total protein, albumin, and membrane-derived phospholipid in lung lavage fluid, and haemorrhagic pulmonary edema. Clinical studies in such neonates have reported improved gas exchange and clinical outcomes following surfactant treatment. More recently surfactant lavage has been shown to be a potentially efficacious therapy for such infants. The inflammatory exudate containing plasma proteins and cytokines which accompanies neonatal pneumonia may inactivate surfactant. Surfactant treatment given to animals following the tracheal instillation of group B Streptococcal resulted in significantly less bacterial growth and improved lung function. Small clinical experiences have demonstrated the benefit of surfactant to infants with pneumonia/sepsis. Pulmonary haemorrhage, which some consider a complication of surfactant therapy, has also been effectively managed using surfactant instillation. The hemoglobin and red blood cell lipids may act to inhibit natural surfactant and treatment with surfactant has been shown to improve outcome for infants with pulmonary haemorrhage. Animal models of congenital diaphragmatic hernia (CDH) have hypoplastic lungs with evidence of decreased lamellar bodies in their type II pneumocytes and resultant surfactant deficiency, and respond to surfactant replacement with improved gas exchange and lung mechanics. The lungs of human infants with CDH contain less phospholipids and phosphatidylcholine per milligram of DNA than control infants. Case reports have reported a benefit of surfactant for infants with CDH. In the near-term infants with severe respiratory distress, surfactant is one of the therapies along with inhaled nitric oxide and high frequency ventilations, that have resulted in improved outcomes. Surfactant treatment may be of significant benefit in newborn infants with respiratory compromise secondary to a number of insults, and further prospective evidence of its efficacy in such disorders is needed.
Collapse
|
6
|
Mychaliska GB, Officer SM, Heintz CK, Starcher BC, Pierce RA. Pulmonary elastin expression is decreased in the nitrofen-induced rat model of congenital diaphragmatic hernia. J Pediatr Surg 2004; 39:666-71. [PMID: 15136996 DOI: 10.1016/j.jpedsurg.2004.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND/PURPOSE Babies with congenital diaphragmatic hernia (CDH) suffer from pulmonary hypoplasia and pulmonary hypertension. Elastin is a critical component of the extracellular matrix (EM) involved in pulmonary development and mechanics. Because CDH lungs are developmentally immature and have reduced compliance, the authors hypothesized that elastin deposition would be reduced and disorganized in the nitrofen rat model of CDH. METHODS Time-dated pregnant Sprague-Dawley rats were fed 100 mg of nitrofen on day 9 of gestation. Control rats did not receive nitrofen. The authors analyzed three groups of rats (n = 10 for each group): (1) control (C), (2) nitrofen no CDH (NC), and (3) nitrofen-induced CDH (CDH). On day 21.5 (term, 22 days), the fetuses were delivered by cesarean section, and the fetal lung was harvested. Elastin content, mRNA expression, and distribution were assessed with desmosine analysis, Northern blot analysis, and Hart's staining, respectively. RESULTS The mean desmosine content in picomole desmosine per milligram protein (pmD/mgP) +/- SD was 30 +/- 6.8 (C, n = 10), 25.1 +/- 10.1 (NC, n = 10), and 21.6 +/- 6.4 (CDH, n = 10). The comparison between CDH and controls was statistically significant (P =.026). Northern blot analysis showed decreased mRNA expression in the CDH sample. Hart's staining showed developmentally immature CDH lungs with less elastin deposition and disorganized distribution. CONCLUSIONS Pulmonary elastin expression is decreased and disorganized in the nitrofen-induced rat model of CDH. The decreased expression appears to be regulated at the level of transcription. Altered mechanical forces may be responsible for mediating the expression of elastin in CDH.
Collapse
Affiliation(s)
- George B Mychaliska
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | |
Collapse
|
7
|
Santos MM, Tannuri U, Maksoud JG. Alterations of enteric nerve plexus in experimental gastroschisis: is there a delay in the maturation? J Pediatr Surg 2003; 38:1506-11. [PMID: 14577076 DOI: 10.1016/s0022-3468(03)00504-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND/PURPOSE After surgical correction of gastroschisis, intestinal transitory hypoperistalsis usually occurs. Long-term parenteral nutrition often is necessary leading to a higher morbidity associated with this malformation. The etiology of this transitory intestinal hypomotility is unknown. It may be caused by a reversible inflammatory process in the intestinal wall or other causes, including an alteration of the maturation of intestinal neural plexus, because the disturbance disappears spontaneously after a variable period. The aim of this work was to study the neuronal cells of the myenteric plexus of the fetal intestine in experimental gastroschisis. The main hypothesis was that the transitory intestinal dismotility seen in gastroschisis could be secondary to alteration in the maturation of the enteric nervous plexus. METHODS Twenty-seven time-mated rabbits, on gestational day 25, were submitted to a midline laparotomy; the gravid bicornuate uterus was exposed and opened, and the more distal fetuses relative to the vaginal opening had the abdominal wall opened by a small incision to produce gastroschisis (n = 29). The fetuses not submitted to gastroschisis were used as controls (n = 12). The amniotic fluid was carefully aspirated from the opened uterus and saved for later repositions. On gestational day 30, the does were again submitted to general anesthesia, and the fetuses were delivered by cesarean section. The fetal intestine was removed, the adjacent mesentery excised, and intestinal specimens were harvested for histologic studies. The specimens were stained for acetyl-cholinesterase activity (AChE) to assess the maturity of the nervous enteric cells and for lactate dehydrogenase (LDH) that identify specifically immature nervous cells. The histologic sections stained by LDH were submitted to histomorphometric analysis of the nervous cells through an image system analysis (Kontron 300). The results were submitted to statistical analyses (P <.05). RESULTS Macroscopic alterations of the fetal gastroschisis intestine are similar to the human findings: shortening of the intestine, intestinal wall thickening, and a hypertrophied muscular layer. In the gastroschisis group, histologic AChE activity was decreased in comparison with control intestines. The histomorphometric assessment in slices stained with LDH, which identify immature nervous cells, showed that the neuronal intestinal cells of the gastroschisis group were significantly smaller and more numerous relative to the control group. CONCLUSIONS There were significant differences in the nervous plexus of the intestine of fetuses with gastroschisis relative to the controls. The observed morphologic changes may be caused by alteration in the maturation of the intestinal neuronal in gastroschisis. This alteration may explain the transitory intestinal hypomotility observed in infants after surgical correction of gastroschisis.
Collapse
Affiliation(s)
- Maria Mercês Santos
- Department of Surgery, University of Sao Paulo Medical School, Division of Pediatric Surgery, Pediatric Surgery Laboratory (LIM-30), Sao Paulo, Brazil
| | | | | |
Collapse
|
8
|
Rodrigues CJ, Tannuri U, Tannuri ACA, Maksoud-Filho J, Rodrigues AJ. Prenatal tracheal ligation or intra-amniotic administration of surfactant or dexamethasone prevents some structural changes in the pulmonary arteries of surgically created diaphragmatic hernia in rabbits. REVISTA DO HOSPITAL DAS CLINICAS 2002; 57:1-8. [PMID: 12170342 DOI: 10.1590/s0041-87812002000100001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PURPOSE Characterization of the structural changes occurring in the pulmonary arteries resulting from surgically produced congenital diaphragmatic hernia in rabbits, with particular emphasis on the preventive effects of prenatal tracheal ligation or administration of intra-amniotic dexamethasone or surfactant. METHODS Twenty rabbit fetuses underwent surgical creation of a left-sided congenital diaphragmatic hernia on the 24th or 25th gestational day. They were divided according to the following procedures: congenital diaphragmatic hernia (n = 5), congenital diaphragmatic hernia plus tracheal ligation (n = 5), congenital diaphragmatic hernia plus intra-amniotic administration of dexamethasone 0.4 mg (n = 5) or surfactant (Curosurf 40 mg, n = 5). On gestational day 30, all the fetuses were delivered by caesarean section and killed. A control group consisted of five nonoperated fetuses. Histomorphometric analysis of medial thickness, cell nuclei density, and elastic fiber density of pulmonary arterial walls was performed. RESULTS Arteries with an external diameter > 100 microm have a decreased medial thickness, lower cell nuclei density, and greater elastic fiber density when compared with arteries with external diameter < or = 100 microm. Congenital diaphragmatic hernia promoted a significant decrease in medial thickness and an increase in cell nuclei density in artery walls with external diameter > 100 microm. Prenatal treatments with tracheal ligation or intra-amniotic administration of dexamethasone or surfactant prevented these changes. In arteries with external diameter < or = 100 microm, congenital diaphragmatic hernia promoted a significant increase in medial thickness and in cell nuclei density and a decrease in elastic fiber density. The prenatal treatments with tracheal ligation or intra-amniotic administration of dexamethasone or surfactant prevented these changes, although no effect was observed in elastic fiber density in the congenital diaphragmatic hernia plus dexamethasone group. CONCLUSIONS Congenital diaphragmatic hernia promoted different structural changes for large or small arteries. The prenatal intra-amniotic administration of dexamethasone or surfactant had positive effects on the lung structural changes promoted by congenital diaphragmatic hernia, and these effects were comparable to the changes induced by tracheal ligation.
Collapse
Affiliation(s)
- Consuelo J Rodrigues
- Laboratory of Surgical Anatomy, Hospital das Clínicas, Faculty of Medicine, University of São Paulo
| | | | | | | | | |
Collapse
|
9
|
Tannuri U. Heart hypoplasia in an animal model of congenital diaphragmatic hernia. REVISTA DO HOSPITAL DAS CLINICAS 2001; 56:173-8. [PMID: 11836540 DOI: 10.1590/s0041-87812001000600003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE In previous papers, we described a new experimental model of congenital diaphragmatic hernia in rabbits, and we also reported noninvasive therapeutic strategies for prevention of the functional and structural immaturity of the lungs associated with this defect. In addition to lung hypoplasia, pulmonary hypertension, biochemical, and structural immaturity of the lungs, the hemodynamics of infants and animals with congenital diaphragmatic hernia are markedly altered. Hence, cardiac hypoplasia has been implicated as a possible cause of death in patients with congenital diaphragmatic hernia, and it is hypothesized to be a probable consequence of fetal mediastinal compression by the herniated viscera. Cardiac hypoplasia has also been reported in lamb and rat models of congenital diaphragmatic hernia. The purpose of the present experiment was to verify the occurrence of heart hypoplasia in our new model of surgically produced congenital diaphragmatic hernia in fetal rabbits. METHODS Twelve pregnant New Zealand rabbits underwent surgery on gestational day 24 or 25 (normal full gestational time - 31 to 32 days) to create left-sided diaphragmatic hernias in 1 or 2 fetuses per each doe. On gestational day 30, all does again underwent surgery, and the delivered fetuses were weighed and divided into 2 groups: control (non-surgically treated fetuses) (n = 12) and congenital diaphragmatic hernia (n = 9). The hearts were collected, weighed, and submitted for histologic and histomorphometric studies. RESULTS During necropsy, it was noted that in all congenital diaphragmatic hernia fetuses, the left lobe of the liver herniated throughout the surgically created defect and occupied the left side of the thorax, with the deviation of the heart to the right side, compressing the left lung; consequently, this lung was smaller than the right one. The body weights of the animals were not altered by congenital diaphragmatic hernia, but heart weights were decreased in comparison to control fetuses. The histomorphometric analysis demonstrated that congenital diaphragmatic hernia promoted a significant decrease in the ventricular wall thickness and an increase in the interventricular septum thickness. CONCLUSION Heart hypoplasia occurs in a rabbit experimental model of congenital diaphragmatic hernia. This model may be utilized for investigations in therapeutic strategies that aim towards the prevention or the treatment of heart hypoplasia caused by congenital diaphragmatic hernia.
Collapse
Affiliation(s)
- U Tannuri
- Pediatric Surgery Division, Faculty of Medicine, University of São Paulo, Brazil
| |
Collapse
|
10
|
Utsuki T, Hashizume K, Iwamori M. Impaired spreading of surfactant phospholipids in the lungs of newborn rats with pulmonary hypoplasia as a model of congenital diaphragmatic hernia induced by nitrofen. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1531:90-8. [PMID: 11278175 DOI: 10.1016/s1388-1981(01)00087-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In order to clarify the pathological outcome of congenital diaphragmatic hernia (CDH), we devised an animal model of CDH by administration of 2,4-dichlorophenyl-p-nitrophenyl ether (nitrofen) to pregnant rats, and determined the level and distribution of lung surfactant using the monoclonal antibody toward sphingomyelin and disaturated phosphatidylcholine (disat-PC). In control rats, the concentration of disat-PC was found to increase greatly from 16 to 18 days of gestation. Intragastric administration of nitrofen to pregnant rats at day 9 of gestation resulted in CDH in 42.7% of fetuses delivered after 20 days of gestation. In nitrofen-treated fetuses, the concentration of disat-PC in the lungs was lower than those in control fetuses, and surfactant apoprotein SP-A was similarly reduced in nitrofen-treated fetuses. However, the concentration of disat-PC in nitrofen-treated fetuses was higher than that in control fetuses at 18 days of gestation, indicating a synthetic potential of surfactant in nitrofen-treated fetuses comparable to that at the late stage of normal gestation. Immunohistochemical study with the antibody revealed that surfactant phospholipid was mainly in the form of intracellular granules in nitrofen-treated fetuses, probably causing the hypoplastic lungs and then CDH, in contrast to the uniform distribution on the pulmonary alveolar surface in control fetuses.
Collapse
Affiliation(s)
- T Utsuki
- Department of Pediatrics, Kiyosenomori Hospital, Tokyo, Japan
| | | | | |
Collapse
|