1
|
Mandlik DS, Mandlik SK, S A. Therapeutic implications of glycogen synthase kinase-3β in Alzheimer's disease: a novel therapeutic target. Int J Neurosci 2024; 134:603-619. [PMID: 36178363 DOI: 10.1080/00207454.2022.2130297] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 09/03/2022] [Accepted: 09/10/2022] [Indexed: 10/17/2022]
Abstract
Alzheimer's disease (AD) is an extremely popular neurodegenerative condition associated with dementia, responsible for around 70% of the cases. There are presently 50 million people living with dementia in the world, but this number is anticipated to increase to 152 million by 2050, posing a substantial socioeconomic encumbrance. Despite extensive research, the precise mechanisms that cause AD remain unidentified, and currently, no therapy is available. Numerous signalling paths related to AD neuropathology, including glycogen synthase kinase 3-β (GSK-3β), have been investigated as potential targets for the treatment of AD in current years.GSK-3β is a proline-directed serine/threonine kinase that is linked to a variety of biological activities, comprising glycogen metabolism to gene transcription. GSK-3β is also involved in the pathophysiology of sporadic as well as familial types of AD, which has led to the development of the GSK3 theory of AD. GSK-3β is a critical performer in the pathology of AD because dysregulation of this kinase affects all the main symbols of the disease such as amyloid formation, tau phosphorylation, neurogenesis and synaptic and memory function. The current review highlights present-day knowledge of GSK-3β-related neurobiology, focusing on its role in AD pathogenesis signalling pathways. It also explores the possibility of targeting GSK-3β for the management of AD and offers an overview of the present research work in preclinical and clinical studies to produce GSK-3β inhibitors.
Collapse
Affiliation(s)
- Deepa S Mandlik
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Erandawane, Pune, India
| | - Satish K Mandlik
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Erandawane, Pune, India
| | - Arulmozhi S
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Erandawane, Pune, India
| |
Collapse
|
2
|
Shippy DC, Oliai SF, Ulland TK. Zinc utilization by microglia in Alzheimer's disease. J Biol Chem 2024; 300:107306. [PMID: 38648940 PMCID: PMC11103939 DOI: 10.1016/j.jbc.2024.107306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia defined by two key pathological characteristics in the brain, amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau. Microglia, the primary innate immune cells of the central nervous system (CNS), provide neuroprotection through Aβ and tau clearance but may also be neurotoxic by promoting neuroinflammation to exacerbate Aβ and tau pathogenesis in AD. Recent studies have demonstrated the importance of microglial utilization of nutrients and trace metals in controlling their activation and effector functions. Trace metals, such as zinc, have essential roles in brain health and immunity, and zinc dyshomeostasis has been implicated in AD pathogenesis. As a result of these advances, the mechanisms by which zinc homeostasis influences microglial-mediated neuroinflammation in AD is a topic of continuing interest since new strategies to treat AD are needed. Here, we review the roles of zinc in AD, including zinc activation of microglia, the associated neuroinflammatory response, and the application of these findings in new therapeutic strategies.
Collapse
Affiliation(s)
- Daniel C Shippy
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Sophia F Oliai
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Tyler K Ulland
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
3
|
Baj J, Kowalska B, Flieger W, Radzikowska-Büchner E, Forma A, Czeczelewski M, Kędzierawski P, Karakuła K, Flieger M, Majerek D, Teresiński G, Maciejewski R, Flieger J. Assessment of the Concentration of 51 Elements in the Liver and in Various Parts of the Human Brain-Profiling of the Mineral Status. Nutrients 2023; 15:2799. [PMID: 37375704 DOI: 10.3390/nu15122799] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The anthropogenic environment and diet introduce many metals into the human body, both essential and toxic. Absorption leads to systemic exposure and accumulation in body fluids and tissues. Both excess and deficiency of trace elements are health hazards. The primary aim of the present study was to evaluate the concentration of 51 elements in liver samples and 11 selected brain regions obtained at post-mortem examination from a population of adults living in south-eastern Poland (n = 15). A total of 180 analyses were performed by inductively coupled plasma mass spectrometry in two independent replicates. The collected data show very high individual variability in the content of the investigated elements. Macroelements such as sodium, magnesium, phosphorus, potassium, calcium, iron, and zinc occurred in the highest concentrations and with the greatest statistically significant variations. Although the elemental content of the brain and liver differed significantly, the strongest positive correlation between liver and polus frontalis was observed for the essential element selenium (0.9338) and the strongest negative one for manganese (-0.4316) and lanthanum (-0.5110). The brain areas studied have different requirements for phosphorus, manganese, iron, and molybdenum. In addition, males had a significantly (p < 0.05) higher brain content of lanthanides and actinides than females. The results of this study show that the inhabitants of south-eastern Poland are exposed to a fairly uniform accumulation of aluminum and vanadium in the brain, which have the highest affinity to the thalamus dorsalis. This result proves that there is environmental exposure to these elements.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Beata Kowalska
- Department of Water Supply and Wastewater Disposal, Lublin University of Technology, 20-618 Lublin, Poland
| | - Wojciech Flieger
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | | | - Alicja Forma
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Marcin Czeczelewski
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland
| | - Paweł Kędzierawski
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland
| | - Kaja Karakuła
- I Department of Psychiatry, Psychotherapy, and Early Intervention, Medical University of Lublin, 20-439 Lublin, Poland
| | - Michał Flieger
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland
| | - Dariusz Majerek
- Department of Applied Mathematics, University of Technology, 20-618 Lublin, Poland
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland
| | | | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Yuan X, Yao W, Ji D, Liu L, Lin Y, Zeng H, Jin T, Xu K, Du G, Zhang L. Synthesis of corn bract cellulose-based Au 3+ fluorescent probe and its application in composite membranes. Int J Biol Macromol 2023; 242:124600. [PMID: 37105254 DOI: 10.1016/j.ijbiomac.2023.124600] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023]
Abstract
To achieve real-time monitoring of Au3+, a corn bract cellulose-based fluorescent probe MAC-1 for was synthesized. MAC-1 showed good fluorescence properties in DMF-H2O (1:9, v/v, pH = 7.4) solution, showed a fluorescence emission peak at 520 nm with quenching fluorescence properties for Au3+. The structure of MAC-1 was analyzed by SEM (Sample microstructure images), XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), 1H NMR, Elemental analysis, EDS, Mapping and TG (Thermogravimetry) were analyzed. The fluorescence properties of the probe were also characterized by UV spectrophotometer and fluorescence spectrophotometer. The results showed that the recognition of Au3+ by the probe MAC-1 exhibited high selectivity and high sensitivity. Moreover, it is highly resistant to interference and has a short response time, which can be rapidly responded within 1 min. In addition, to improve the practical application of the probe, the probe was prepared as a fluorescent composite film and the fluorescence effect shown by the fluorescent composite film is consistent with the fluorescence change of the probe MAC-1 itself. The fluorescent composite film also has excellent selectivity and good overall physical and mechanical properties. This study provides a meaningful reference for the detection of Au3+ and further expands the application field of agroforestry waste.
Collapse
Affiliation(s)
- Xushuo Yuan
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Wentao Yao
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Decai Ji
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Li Liu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Yanfei Lin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Heyang Zeng
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Tao Jin
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Kaimeng Xu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Guanben Du
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China.
| | - Lianpeng Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China.
| |
Collapse
|
5
|
Rahim AMA, Mahmoud EMM. Recent development of eco-friendly nanocomposite carbon paste electrode for voltammetric determination of Cd(II) in real samples. ANAL SCI 2023; 39:179-190. [PMID: 36402886 PMCID: PMC10082124 DOI: 10.1007/s44211-022-00214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/02/2022] [Indexed: 11/21/2022]
Abstract
Using eco-friendly, cheap, and available adsorbents is promising for the determination of metal ions. So, this study focuses on the modification of graphite reinforcement carbon paste electrode (GRCPE) with mango seed kernel (MSK) for voltammetric determination of Cd(II). Moreover, to increase the surface area of this adsorbent, it was prepared in nanosized that formed nanoparticles of mango seed kernel (MSK-NPs). The developed nanocomposite electrode of carbon paste electrode modified with nanoparticles of mango seed kernel (MSK-NPs@GRCPE) was characterized using Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM). The effect of pH, buffer solution, and supporting electrolyte as experimental conditions were optimized through differential pulse adsorptive anodic stripping voltammetric method (DPAdASV). Britton-Robinson buffer pH = 3.9 at Eacc = - 1400 mV, tacc = 30 s, pulse width = 10 ms and sampling time = 8 ms were the optimum conditions for determination of Cd(II). The LOD and LOQ of MSK-NPs@GRCPE were calculated at 5.44 × 10-9 and 1.65 × 10-8 M, respectively. Compared with bare graphite reinforcement carbon paste electrode (BGRCPE), the nanocomposite MSK-NPs@GRCPE has a lower detection limit, indicating that the presence of MSK-NPs could greatly improve the response to Cd(II). The practical applicability of the electrode was verified by the determination of Cd(II) in chocolate and white rice samples. The results show high selectivity and sensitivity for Cd(II) in real samples.
Collapse
Affiliation(s)
- Asmaa M Abdel Rahim
- Chemistry Department, Faculty of Science, Minia University, Minia, 61511, Egypt.
| | - Esraa M M Mahmoud
- Chemistry Department, Faculty of Science, Minia University, Minia, 61511, Egypt
| |
Collapse
|
6
|
Ruczaj A, Brzóska MM. Environmental exposure of the general population to cadmium as a risk factor of the damage to the nervous system: A critical review of current data. J Appl Toxicol 2023; 43:66-88. [PMID: 35304765 PMCID: PMC10084305 DOI: 10.1002/jat.4322] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/14/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
Abstract
Nowadays, more and more attention has been focused on the risk of the neurotoxic action of cadmium (Cd) under environmental exposure. Due to the growing incidence of nervous system diseases, including neurodegenerative changes, and suggested involvement of Cd in their aetiopathogenesis, this review aimed to discuss critically this element neurotoxicity. Attempts have been made to recognize at which concentrations in the blood and urine Cd may increase the risk of damage to the nervous system and compare it to the risk of injury of other organs and systems. The performed overview of the available literature shows that Cd may have an unfavourable impact on the human's nervous system at the concentration >0.8 μg Cd/L in the urine and >0.6 μg Cd/L in the blood. Because such concentrations are currently noted in the general population of industrialized countries, it can be concluded that environmental exposure to this xenobiotic may create a risk of damage to the nervous system and be involved in the aetiopathogenesis of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, as well as worsening cognitive and behavioural functions. The potential mechanism of Cd neurotoxicity consists in inducing oxidative stress, disrupting the activity of enzymes essential to the proper functioning of the nervous system and destroying the homoeostasis of bioelements in the brain. Thus, further studies are necessary to recognize accurately both the risk of nervous system damage in the general population due to environmental exposure to Cd and the mechanism of this action.
Collapse
Affiliation(s)
- Agnieszka Ruczaj
- Department of ToxicologyMedical University of BialystokBialystokPoland
| | | |
Collapse
|
7
|
Feng L, Zheng Y, Liu Y, Zhao Y, Lei M, Li Z, Fu S. Hair Zinc and Chromium Levels Were Associated with a Reduced Likelihood of Age Related Cognitive Decline in Centenarians and Oldest-Old Adults. J Nutr Health Aging 2023; 27:1012-1017. [PMID: 37997723 DOI: 10.1007/s12603-023-2008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/27/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Cognitive function has inevitable decline with advancing age in nature, and age-related cognitive decline (ARCD) is of increasing concern to aging population. Scarce study has involved the associations between hair trace elements and ARCD in older adults, especially in centenarians and oldest-old adults. This study was to investigate the associations between hair trace elements and ARCD in centenarians and oldest-old adults. METHODS Based on the household registration information of centenarians and oldest-old adults provided by the Civil Affairs Department of Hainan Province, China, the investigators conducted a one-to-one household survey among centenarians (≥100 years old) and oldest-old adults (80-99 years old). All 50 centenarians had a median age of 103 years and females accounted for 68.0%. All 73 oldest-old adults aged 80-99 years had a median age of 90 years and females accounted for 82.2%. Basic information were obtained with questionnaire interview, physical examination, biological test and hair collection by pre-trained local doctors and nurses. An inductively coupled plasma mass spectrometer was used to measure hair trace elements. All data in this study comes from China. Age, sex, body mass index, systolic blood pressure, diastolic blood pressure, smoking, drinking, hemoglobin, albumin, fasting blood pressure, zinc, chromium, copper, selenium, iron, manganese, strontium, lead, magnesium, potassium, and barium were simultaneously included in multivariate Logistic regression analysis. One adjusted model was done with all hair trace elements together. RESULTS Zinc and chromium levels were significantly lower in participants with ARCD than those without ARCD (P < 0.05 for all). Multivariate Logistic regression analysis indicated that zinc [odds ratio (OR): 0.988, 95%confidence interval (95%CI): 0.977-0.999] and chromium (OR: 0.051, 95%CI: 0.004-0.705) were associated with a reduced likelihood of ARCD (P < 0.05 for all). CONCLUSIONS Hair zinc and chromium levels were associated with a reduced likelihood of ARCD in centenarians and oldest-old adults. Further studies are necessary to verify if zinc and chromium supplementation has the potential to improve cognitive function and prevent ARCD development.
Collapse
Affiliation(s)
- L Feng
- Shihui Fu, Department of Cardiology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, China. E-mail: ; Zhirui Li, Department of Orthopedics, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, China. E-mail: ; Mingxing Lei, Chinese People's Liberation Army Medical School, Beijing, China. E-mail: ; Yali Zhao, Central Laboratory, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, China. E-mail:
| | | | | | | | | | | | | |
Collapse
|
8
|
Mahan B, Tacail T, Lewis J, Elliott T, Habekost M, Turner S, Chung R, Moynier F. Exploring the K isotope composition of Göttingen minipig brain regions, and implications for Alzheimer's disease. Metallomics 2022; 14:mfac090. [PMID: 36416864 PMCID: PMC9764214 DOI: 10.1093/mtomcs/mfac090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
Natural stable metal isotopes have shown utility in differentiation between healthy and diseased brain states (e.g. Alzheimer's disease, AD). While the AD brain accumulates some metals, it purges others, namely K (accompanied by increased serum K, suggesting brain-blood transferal). Here, K isotope compositions of Göttingen minipig brain regions for two AD models at midlife are reported. Results indicate heavy K isotope enrichment where amyloid beta (Aβ) accumulation is observed, and this enrichment correlates with relative K depletion. These results suggest preferential efflux of isotopically light K+ from the brain, a linkage between brain K concentrations and isotope compositions, and linkage to Aβ (previously shown to purge cellular brain K+). Brain K isotope compositions differ from that for serum and brain K is much more abundant than in serum, suggesting that changes in brain K may transfer a measurable K isotope excursion to serum, thereby generating an early AD biomarker.
Collapse
Affiliation(s)
- Brandon Mahan
- IsoTropics Geochemistry Lab, Earth and Environmental Science, James Cook University, Townsville, Queensland 4814, Australia
- Thermo Fisher Isotope Development Hub, Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Department of Biomedical Research, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Theo Tacail
- Bristol Isotope Group, School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
- Institute of Geosciences, Johannes Gutenberg University, Mainz 55099, Germany
| | - Jamie Lewis
- Bristol Isotope Group, School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
| | - Tim Elliott
- Bristol Isotope Group, School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
| | - Mette Habekost
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
- Center for Neuroscience, University of Copenhagen Faculty of Health and Medical Sciences, 2200 Copenhagen N, Denmark
| | - Simon Turner
- Thermo Fisher Isotope Development Hub, Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Roger Chung
- Thermo Fisher Isotope Development Hub, Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Department of Biomedical Research, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Frédéric Moynier
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75238 Paris, France
| |
Collapse
|
9
|
Ma Y, Su Q, Yue C, Zou H, Zhu J, Zhao H, Song R, Liu Z. The Effect of Oxidative Stress-Induced Autophagy by Cadmium Exposure in Kidney, Liver, and Bone Damage, and Neurotoxicity. Int J Mol Sci 2022; 23:13491. [PMID: 36362277 PMCID: PMC9659299 DOI: 10.3390/ijms232113491] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 08/11/2023] Open
Abstract
Environmental and occupational exposure to cadmium has been shown to induce kidney damage, liver injury, neurodegenerative disease, and osteoporosis. However, the mechanism by which cadmium induces autophagy in these diseases remains unclear. Studies have shown that cadmium is an effective inducer of oxidative stress, DNA damage, ER stress, and autophagy, which are thought to be adaptive stress responses that allow cells exposed to cadmium to survive in an adverse environment. However, excessive stress will cause tissue damage by inducing apoptosis, pyroptosis, and ferroptosis. Evidently, oxidative stress-induced autophagy plays different roles in low- or high-dose cadmium exposure-induced cell damage, either causing apoptosis, pyroptosis, and ferroptosis or inducing cell survival. Meanwhile, different cell types have different sensitivities to cadmium, which ultimately determines the fate of the cell. In this review, we provided a detailed survey of the current literature on autophagy in cadmium-induced tissue damage. A better understanding of the complex regulation of cell death by autophagy might contribute to the development of novel preventive and therapeutic strategies to treat acute and chronic cadmium toxicity.
Collapse
Affiliation(s)
- Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qunchao Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chengguang Yue
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Clases D, Gonzalez de Vega R. Facets of ICP-MS and their potential in the medical sciences-Part 1: fundamentals, stand-alone and hyphenated techniques. Anal Bioanal Chem 2022; 414:7337-7361. [PMID: 36028724 PMCID: PMC9482897 DOI: 10.1007/s00216-022-04259-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 12/02/2022]
Abstract
Since its inception in the early 80s, inductively coupled plasma-mass spectrometry has developed to the method of choice for the analysis of elements in complex biological systems. High sensitivity paired with isotopic selectivity and a vast dynamic range endorsed ICP-MS for the inquiry of metals in the context of biomedical questions. In a stand-alone configuration, it has optimal qualities for the biomonitoring of major, trace and toxicologically relevant elements and may further be employed for the characterisation of disrupted metabolic pathways in the context of diverse pathologies. The on-line coupling to laser ablation (LA) and chromatography expanded the scope and application range of ICP-MS and set benchmarks for accurate and quantitative speciation analysis and element bioimaging. Furthermore, isotopic analysis provided new avenues to reveal an altered metabolism, for the application of tracers and for calibration approaches. In the last two decades, the scope of ICP-MS was further expanded and inspired by the introduction of new instrumentation and methodologies including novel and improved hardware as well as immunochemical methods. These additions caused a paradigm shift for the biomedical application of ICP-MS and its impact in the medical sciences and enabled the analysis of individual cells, their microenvironment, nanomaterials considered for medical applications, analysis of biomolecules and the design of novel bioassays. These new facets are gradually recognised in the medical communities and several clinical trials are underway. Altogether, ICP-MS emerged as an extremely versatile technique with a vast potential to provide novel insights and complementary perspectives and to push the limits in the medical disciplines. This review will introduce the different facets of ICP-MS and will be divided into two parts. The first part will cover instrumental basics, technological advances, and fundamental considerations as well as traditional and current applications of ICP-MS and its hyphenated techniques in the context of biomonitoring, bioimaging and elemental speciation. The second part will build on this fundament and describe more recent directions with an emphasis on nanomedicine, immunochemistry, mass cytometry and novel bioassays.
Collapse
Affiliation(s)
- David Clases
- Nano Mirco LAB, Institute of Chemistry, University of Graz, Graz, Austria.
| | | |
Collapse
|
11
|
Sharma H, Sharma A, Sharma B, Karna S. Green Analytical Approach for the Determination of Zinc in Pharmaceutical Product Using Natural Reagent. Int J Anal Chem 2022; 2022:8520432. [PMID: 35502194 PMCID: PMC9056243 DOI: 10.1155/2022/8520432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/07/2022] [Indexed: 12/30/2022] Open
Abstract
A selective, sensitive, and environmentally safe spectrophotometry method was developed and validated for the determination of zinc in pharmaceutical substances using natural reagents obtained from the leaves of plant Acacia catechu. Different factors were optimized such as volume of reagent, selection of pH, and stability of the color complex. The drug showed a stable yellowish orange color complex at 550 nm. The greenness of the methods was estimated using an eco-scale tool where the presented method was found to be excellent green with an ecoscore of 84 based on spectrophotometric determination. Also, the greenness of the method was assessed by the Green Analytical Procedure Index and found to be eco-friendly. The method was validated in conformance with ICH guidelines, with acceptable values for linearity, accuracy, precision, LOD, and LOQ. The linearity range for zinc sulphate was 5-25 μg mL-1 with an R 2 value of 0.996. The % RSD for intraday precision and interday precision was less than 2%. The suggested method can be employed for the economic analysis of zinc in its pure form and various formulations. The presented spectrophotometric method is the first analytical method for the analysis of zinc present in zinc sulphate and showed greater ecoscale as compared to the official method.
Collapse
Affiliation(s)
- Hemraj Sharma
- Department of Pharmacy, Shree Medical and Technical College, Bharatpur, Chitwan, Nepal
| | - Arjun Sharma
- Department of Pharmacy, Shree Medical and Technical College, Bharatpur, Chitwan, Nepal
| | - Bimala Sharma
- Department of Pharmacy, Shree Medical and Technical College, Bharatpur, Chitwan, Nepal
| | - Sonu Karna
- Department of Pharmacy, Shree Medical and Technical College, Bharatpur, Chitwan, Nepal
| |
Collapse
|
12
|
Immunomodulation by heavy metals as a contributing factor to inflammatory diseases and autoimmune reactions: Cadmium as an example. Immunol Lett 2021; 240:106-122. [PMID: 34688722 DOI: 10.1016/j.imlet.2021.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/10/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022]
Abstract
Cadmium (Cd) represents a unique hazard because of the long biological half-life in humans (20-30 years). This metal accumulates in organs causing a continuum of responses, with organ disease/failure as extreme outcome. Some of the cellular and molecular alterations in target tissues can be related to immune-modulating potential of Cd. This metal may cause adverse responses in which components of the immune system function as both mediators and effectors of Cd tissue toxicity, which, in combination with Cd-induced alterations in homeostatic reparative activities may contribute to tissue dysfunction. In this work, current knowledge concerning inflammatory/autoimmune disease manifestations found to be related with cadmium exposure are summarized. Along with epidemiological evidence, animal and in vitro data are presented, with focus on cellular and molecular immune mechanisms potentially relevant for the disease susceptibility, disease promotion, or facilitating development of pre-existing pathologies.
Collapse
|
13
|
Ramos P, Pinto E, Santos A, Almeida A. Reference values for trace element levels in the human brain: A systematic review of the literature. J Trace Elem Med Biol 2021; 66:126745. [PMID: 33813265 DOI: 10.1016/j.jtemb.2021.126745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/14/2020] [Accepted: 03/15/2021] [Indexed: 11/25/2022]
Abstract
Some trace elements (TE) are eminently toxic for humans (e.g., Al, Pb, Hg, Cd) and its presence in the central nervous system has been linked to the etiology of neurodegenerative diseases (ND). More recently, the focus has shifted to the potential role of the imbalances on essential TE levels (e.g., Fe, Cu, Zn, Se) within the brain tissue, and they have also been identified as potentially responsible for the cognitive decline associated with normal ageing and the development of some ND, although their definite role remains unclear. Accurately, well-defined reference values for TE levels in human body fluids and tissues are indispensable to identify possible disturbances in individual cases. Moreover, since the brain is a highly heterogeneous organ, with anatomically and physiologically very different areas, a detailed mapping of TE distribution across the brain tissue of normal individuals, with an in-depth analysis of TE levels in the different brain regions, is a mandatory prior work so that the results obtained from patients suffering from ND and other brain diseases can be interpreted. This review aims to compile and summarize the available data regarding TE levels in the different human brain regions of "normal" (non-diseased) individuals in order to contribute to the establishment of robust reference values. Fifty-four studies, published since 1960, were considered. The results showed a great variability between different studies. The potential sources of this variability are discussed. The need for increased harmonization of experimental strategies is highlighted in order to improve the comparability of the data obtained.
Collapse
Affiliation(s)
- Patrícia Ramos
- LAQV / REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Edgar Pinto
- LAQV / REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Department of Environmental Health, School of Health, P.Porto, CISA/Research Center in Environment and Health, 4200-072, Porto, Portugal
| | - Agostinho Santos
- National Institute of Legal Medicine and Forensic Sciences, North Branch, Jardim Carrilho Videira, 4050-167, Porto, Portugal; Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Agostinho Almeida
- LAQV / REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
14
|
Semi-Automated Determination of Heavy Metals in Autopsy Tissue Using Robot-Assisted Sample Preparation and ICP-MS. Molecules 2021; 26:molecules26133820. [PMID: 34201553 PMCID: PMC8270248 DOI: 10.3390/molecules26133820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
The endoprosthetic care of hip and knee joints introduces multiple materials into the human body. Metal containing implant surfaces release degradation products such as particulate wear and corrosion debris, metal-protein complexes, free metallic ions, inorganic metal salts or oxides. Depending on the material composition of the prostheses, a systemic exposure occurs and may result in increasing metal concentrations in body fluids and tissues especially in the case of malfunctions of the arthroplasty components. High concentrations of Cr, Co, Ni, Ti and Al affect multiple organs such as thyroid, heart, lung and cranial nerves and may lead to metallosis, intoxications, poly-neuropathy, retinopathy, cardiomyopathy and the formation of localized pseudo tumors. The determination of the concentration of metals in body fluids and tissues can be used for predicting failure of hip or knee replacements to prevent subsequent severe intoxications. A semi-automated robot-assisted measurement system is presented for the determination of heavy metals in human tissue samples using inductively coupled plasma mass spectrometry (ICP-MS). The manual and automated measurement processes were similarly validated using certified reference material and the results are compared and discussed. The automation system was successfully applied in the determination of heavy metals in human tissue; the first results are presented.
Collapse
|
15
|
Zhang T, Xu Z, Wen L, Lei D, Li S, Wang J, Huang J, Wang N, Durkan C, Liao X, Wang G. Cadmium-induced dysfunction of the blood-brain barrier depends on ROS-mediated inhibition of PTPase activity in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125198. [PMID: 33550130 DOI: 10.1016/j.jhazmat.2021.125198] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/04/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Increasing evidence has demonstrated that cadmium accumulation in the blood increases the risk of neurological diseases. However, how cadmium breaks through the blood-brain barrier (BBB) and is transferred from the blood circulation into the central nervous system is still unclear. In this study, we examined the toxic effect of cadmium chloride (CdCl2) on the development and function of BBB in zebrafish. CdCl2 exposure induced cerebral hemorrhage, increased BBB permeability and promoted abnormal vascular formation by promoting VEGF production in zebrafish brain. Furthermore, in vivo and in vitro experiments showed that CdCl2 altered cell-cell junctional morphology by disrupting the proper localization of VE-cadherin and ZO-1. The potential mechanism involved in the inhibition of protein tyrosine phosphatase (PTPase) mediated by cadmium-induced ROS was confirmed with diphenylene iodonium (DPI), a ROS production inhibitor. Together, these data indicate that BBB is a critical target of cadmium toxicity and provide in vivo etiological evidence of cadmium-induced neurovascular disease in a zebrafish BBB model.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China; Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Zichen Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Lin Wen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Daoxi Lei
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Shuyu Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Jinxuan Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Jinxia Huang
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Nan Wang
- The Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, Cambridge CB30FF, UK.
| | - Colm Durkan
- The Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, Cambridge CB30FF, UK.
| | - Xiaoling Liao
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
16
|
Bi SS, Jin HT, Talukder M, Ge J, Zhang C, Lv MW, Yaqoob Ismail MA, Li JL. The protective effect of nnano-selenium against cadmium-induced cerebellar injury via the heat shock protein pathway in chicken. Food Chem Toxicol 2021; 154:112332. [PMID: 34118349 DOI: 10.1016/j.fct.2021.112332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/25/2021] [Accepted: 06/06/2021] [Indexed: 02/09/2023]
Abstract
Cadmium (Cd) is one of the toxic environmental heavy metals that poses health hazard to animals due to its toxicity. Nano-Selenium (Nano-Se) is a Nano-composite form of Se, which has emerged as a promising therapeutic agent for its protective roles against heavy metals-induced toxicity. Heat shock proteins (HSPs) play a critical role in cellular homeostasis. However, the potential protective effects of Nano-Se against Cd-induced cerebellar toxicity remain to be illustrated. To investigate the toxic effects of Cd on chicken's cerebellum, and the protective effects of Nano-Se against Cd-induced cerebellar toxicity, a total of 80 male chicks were divided into four groups and treated as follows: (A) 0 mg/kg Cd, (B) 1 mg/kg Nano-Se (C) 140 mg/kg Cd + 1 mg/kg Nano-Se (D) 140 mg/kg Cd for 90 days. We tested heat shock protein pathway-related factors including heat shock factors (HSFs) HSF1, HSF2, HSF3 and heat shock proteins (HSPs) HSP10, HSP25, HSP27, HSP40, HSP60, HSP70 and HSP90 expressions. Histopathological results showed that Cd treatment caused degradation of Purkinje cells. In addition, HSFs and HSPs expression decreased significantly in the Cd group. Nano-Se co-treatment with Cd enhanced the expression of HSFs and HSPs. In summary, our findings explicated a potential protective effect of Nano-Se against Cd-induced cerebellar injury in chicken, suggesting that Nano-Se is a promising therapeutic agent for the treatment of Cd toxicity.
Collapse
Affiliation(s)
- Shao-Shuai Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hai-Tao Jin
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150010, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mamoon Ali Yaqoob Ismail
- College of Economics and Management, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
17
|
Xu C, Chen S, Xu M, Chen X, Wang X, Zhang H, Dong X, Zhang R, Chen X, Gao W, Huang S, Chen L. Cadmium Impairs Autophagy Leading to Apoptosis by Ca 2+-Dependent Activation of JNK Signaling Pathway in Neuronal Cells. Neurochem Res 2021; 46:2033-2045. [PMID: 34021889 DOI: 10.1007/s11064-021-03341-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 01/04/2023]
Abstract
Autophagy, a process for self-degradation of intracellular components and dysfunctional organelles, is closely related with neurodegenerative diseases. It has been shown that cadmium (Cd) induces neurotoxicity partly by impairing autophagy. However, the underlying mechanism is not fully elucidated. In this study, we show that Cd induced expansion of autophagosomes with a concomitant abnormal expression of autophagy-related (Atg) proteins in PC12 cells and primary murine neurons. 3-MA, a classical inhibitor of autophagy, attenuated Cd-induced expansion of autophagosomes and apoptosis in the cells. Further investigation demonstrated that Cd activated JNK pathway contributing to autophagosome expansion-dependent neuronal apoptosis. This is supported by the findings that pharmacological inhibition of JNK with SP600125 or expression of dominant negative c-Jun markedly attenuated Cd-induced expansion of autophagosomes and abnormal expression of Atg proteins, as well as apoptosis in PC12 cells and/or primary neurons. Furthermore, we noticed that chelating intracellular free Ca2+ ([Ca2+]i) with BAPTA/AM profoundly blocked Cd-elicited activation of JNK pathway and consequential expansion of autophagosomes, abnormal expression of Atg proteins, and apoptosis in the neuronal cells. Similar events were also seen following prevention of [Ca2+]i elevation with EGTA or 2-APB, implying a Ca2+-dependent mechanism involved. Taken together, the results indicate that Cd impairs autophagy leading to apoptosis by Ca2+-dependent activation of JNK signaling pathway in neuronal cells. Our findings highlight that manipulation of intracellular Ca2+ level and/or JNK activity to ameliorate autophagy may be a promising intervention against Cd-induced neurotoxicity and neurodegeneration.
Collapse
Affiliation(s)
- Chong Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Sujuan Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Ming Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Xiaoling Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Xiaoxue Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Hai Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Xiaoqing Dong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Ruijie Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Xin Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Wei Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130-3932, USA.
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA.
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
18
|
Cilliers K. Trace element alterations in Alzheimer's disease: A review. Clin Anat 2021; 34:766-773. [PMID: 33580904 DOI: 10.1002/ca.23727] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/27/2022]
Abstract
Dyshomeostasis of trace elements have been implicated in the progression of Alzheimer's disease (AD), which is characterized by amyloid-β (Aβ) plaques. Trace elements are particularly associated with the Aβ plaques. Metal-protein attenuating compounds have been developed to inhibit metals from binding to Aβ proteins, which result in Aβ termination, in the hope of improving cognitive functioning. However, there are still some contradicting reports. This review aims to first establish which trace elements are increased or decreased in the brains of Alzheimer's patients, and secondly, to review the effectiveness of clinical trials with metal-protein attenuating compounds for AD. Studies have consistently reported unchanged or increased iron, contradicting reports for zinc, decreased copper, unchanged or decreased manganese, inconsistent results for calcium, and magnesium seems to be unaffected. However, varied results have been reported for all trace elements. Clinical trials using metal-protein attenuating compounds to treat AD have also reported varied results. Copper chelators have repeatedly been used in clinical trials, even though few studies report increased brain copper levels in AD patients. Homeostasis of copper levels is important since copper has a vital role in several enzymes, such as cytochrome c, Cu/Zn superoxide dismutase and ceruloplasmin. Dyshomeostasis of copper levels can lead to increased oxidative stress and neuronal loss. Future studies should assess a variety of trace element levels in moderately and severely affected AD patients since there are contradicting reports. This review thus provides some insight into trace element alterations in the brains of individuals with AD.
Collapse
Affiliation(s)
- Karen Cilliers
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Western Cape, South Africa
| |
Collapse
|
19
|
Planeta K, Kubala-Kukus A, Drozdz A, Matusiak K, Setkowicz Z, Chwiej J. The assessment of the usability of selected instrumental techniques for the elemental analysis of biomedical samples. Sci Rep 2021; 11:3704. [PMID: 33580127 PMCID: PMC7881205 DOI: 10.1038/s41598-021-82179-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
The fundamental role of major, minor and trace elements in different physiological and pathological processes occurring in living organism makes that elemental analysis of biomedical samples becomes more and more popular issue. The most often used tools for analysis of the elemental composition of biological samples include Flame and Graphite Furnace Atomic Absorption Spectroscopy (F-AAS and GF-AAS), Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Each of these techniques has many advantages and limitations that should be considered in the first stage of planning the measurement procedure. Their reliability can be checked in the validation process and the precision, trueness and detection limits of elements belong to the most frequently determined validation parameters. The main purpose of this paper was the discussion of selected instrumental techniques (F-AAS, GF-AAS, ICP-OES and ICP-MS) in term of the achieved validation parameters and the usefulness in the analysis of biological samples. The focus in the detailed literature studies was also put on the methods of preparation of the biomedical samples. What is more based on the own data the usefulness of the total reflection X-ray fluorescence spectroscopy for the elemental analysis of animal tissues was examined. The detection limits of elements, precision and trueness for the technique were determined and compared with the literature data concerning other of the discussed techniques of elemental analysis. Reassuming, the following paper is to serve as a guide and comprehensive source of information concerning the validation parameters achievable in different instrumental techniques used for the elemental analysis of biomedical samples.
Collapse
Affiliation(s)
- Karolina Planeta
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland
| | - Aldona Kubala-Kukus
- Institute of Physics, Jan Kochanowski University, Kielce, Poland
- Holly Cross Cancer Centre, Kielce, Poland
| | - Agnieszka Drozdz
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland
| | - Katarzyna Matusiak
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland
| | - Zuzanna Setkowicz
- Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Joanna Chwiej
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland.
| |
Collapse
|
20
|
Cilliers K, Muller CJF. Multi-element Analysis of Brain Regions from South African Cadavers. Biol Trace Elem Res 2021; 199:425-441. [PMID: 32361883 DOI: 10.1007/s12011-020-02158-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
Trace elements are vital for a variety of functions in the brain. However, an imbalance can result in oxidative stress. It is important to ascertain the normal levels in different brain regions, as such information is still lacking. Therefore, this study aimed to provide baseline trace element concentrations from a South African population, as well as determine trace element differences between sex and brain regions. Samples from the caudate nucleus, putamen, globus pallidus and hippocampus were analysed using inductively coupled plasma mass spectrometry. Aluminium, antimony, arsenic, barium, boron, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, phosphorus, potassium, selenium, silicon, sodium, strontium, vanadium and zinc were assessed. A multiple median regression model was used to determine differences between sex and regions. Twenty-nine male and 13 female cadavers from a Western Cape, South African population were included (mean age 35 years, range 19 to 45). Trace element levels were comparable to those of other populations, although magnesium was considerably lower. While there were no sex differences, significant anatomical regional differences existed; the caudate nucleus and hippocampus were the most similar, and the globus pallidus and hippocampus the most different. In conclusion, this is the first article to report the trace element concentrations of brain regions from a South African population. Low magnesium levels in the brain may be linked to a dietary deficiency, and migraines, depression and epilepsy have been linked to low magnesium levels. Future research should be directed to increase the dietary intake of magnesium.
Collapse
Affiliation(s)
- Karen Cilliers
- Division of Clinical Anatomy, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Western Cape, South Africa.
| | - Christo J F Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Western Cape, South Africa
- Division of Medical Physiology, Faculty of Medicine and Health ScieAnces, Stellenbosch University, Tygerberg, Western Cape, South Africa
| |
Collapse
|
21
|
Aminzadeh A, Salarinejad A. Effects of myricetin against cadmium-induced neurotoxicity in PC12 cells. Toxicol Res (Camb) 2021; 10:84-90. [PMID: 33613976 DOI: 10.1093/toxres/tfaa104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
Cadmium (Cd) is one of the most prevalent toxic metals widely found in the environment. Cd induces toxicity and apoptosis in various organs and cells. The nervous system is one of the primary organs targeted by Cd. Cd toxicity is correlated with induction of severe oxidative stress. Myricetin, a natural product, has been found to exert protective effects against various disease conditions. The present study aimed to evaluate the potential protective effects of myricetin on Cd-induced neurotoxicity in PC12 cells. The cells were pretreated with myricetin in the absence and presence of Cd. The viability of cells was assessed using the MTT assay. Markers of oxidative stress were investigated by the lipid peroxidation (LPO), glutathione (GSH) content, and total antioxidant capacity (TAC). Moreover, activation of caspase 3 was examined by Western blot analysis. Myricetin could significantly enhance the viability of PC12 cells. Pretreatment of the cells with myricetin, prior to Cd exposure, showed a significant decrease in the levels of LPO whereas GSH and TAC levels were increased. In addition, the activity of caspase-3 was notably prevented by myricetin. These findings revealed that myricetin has protective effects on Cd-induced neurotoxicity in PC12 cells, which can be linked to its antioxidant potential, inhibition of LPO, and prevention of caspase-3 activation.
Collapse
Affiliation(s)
- Azadeh Aminzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Haft-Bagh Blvd., P.O. Box 7616911319, Kerman, Iran.,Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Haft-Bagh Blvd., P.O. Box 7616911319, Kerman, Iran
| | - Ayda Salarinejad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Haft-Bagh Blvd., P.O. Box 7616911319, Kerman, Iran
| |
Collapse
|
22
|
Cilliers K, Muller CJF. Effect of Human Immunodeficiency Virus on Trace Elements in the Brain. Biol Trace Elem Res 2021; 199:41-52. [PMID: 32239375 DOI: 10.1007/s12011-020-02129-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/23/2020] [Indexed: 11/27/2022]
Abstract
Comorbidities of human immunodeficiency virus (HIV) include HIV-associated neurocognitive disorder (HAND). Changes in the brain due to HIV include atrophy, hyperintensities, and diffusion changes. However, no research has focused on trace elements concentration changes in the brain due to HIV, as seen in other neurodegenerative diseases. Therefore, the aim of this study was to determine the concentration of several trace elements in the brains of individuals with and without HIV infection. Prior to formalin embalming, blood was drawn and tested in triplicate with Determine HIV-1/2 rapid tests and confirmed with a SD HIV Device 1/2 3.0 rapid HIV Kit. After embalming, tissue was sampled from the caudate nucleus and analyzed using inductively coupled plasma mass spectrometry. A Kruskal-Wallis test was used to determine statistically significant differences between the two groups (p < 0.05). Fifteen HIV-positive and 14 HIV-negative male cadavers were included (mean age 44, range 22 to 61). Cadmium was marginally decreased, possibly due to malnutrition or utilization by the HIV nucleocapsid. Nickel was marginally increased, perhaps due to a reduced capability to remove metals from the body. In conclusion, this article provides the first information on trace element levels in the brains from HIV-infected individuals and postulates that cadmium and nickel may play a role in the pathophysiology of HAND. This information can contribute to finding a treatment for HAND, other than the use of antiretroviral drugs. Future studies should asses the levels of cadmium and nickel in a larger cohort of HIV-infected individuals.
Collapse
Affiliation(s)
- Karen Cilliers
- Division of Clinical Anatomy, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Western Cape, South Africa.
| | - Christo J F Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Western Cape, South Africa
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Western Cape, South Africa
| |
Collapse
|
23
|
Totten MS, Pierce DM, Erikson KM. The influence of sex and strain on trace element dysregulation in the brain due to diet-induced obesity. J Trace Elem Med Biol 2021; 63:126661. [PMID: 33035813 DOI: 10.1016/j.jtemb.2020.126661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND The objective of this study was to identify interaction effects between diet, sex, and strain on trace element dysregulation and gene expression alterations due to diet-induced obesity (DIO) in the hippocampus, striatum, and midbrain. METHODS Male and female C57BL/6 J (B6 J) and DBA/2 J (D2 J) mice were fed either a low fat (10 % kcal) diet (LFD) or high fat (60 % kcal) diet (HFD) for 16 weeks, then assessed for trace element concentrations and gene expression patterns in the brain. RESULTS In the hippocampus, zinc was significantly increased by 48 % in D2 J males but decreased by 44 % in D2 J females, and divalent metal transporter 1 was substantially upregulated in B6 J males due to DIO. In the striatum, iron was significantly elevated in B6 J female mice, and ceruloplasmin was significantly upregulated in D2 J female mice due to DIO. In the midbrain, D2 J males fed a HFD had a 48 % reduction in Cu compared to the LFD group, and D2 J females had a 37 % reduction in Cu compared to the control group. CONCLUSIONS The alteration of trace element homeostasis and gene expression due to DIO was brain-region dependent and was highly influenced by sex and strain. A significant three-way interaction between diet, sex, and strain was discovered for zinc in the hippocampus (for mice fed a HFD, zinc increased in male D2 Js, decreased in female D2 Js, and had no effect in B6 J mice). A significant diet by sex interaction was observed for iron in the striatum (iron increased only in female mice fed a HFD). A main effect of decreased copper in the midbrain was found for the D2 J strain fed a HFD. These results emphasize the importance of considering sex and genetics as biological factors when investigating potential associations between DIO and neurodegenerative disease.
Collapse
Affiliation(s)
- Melissa S Totten
- Department of Nutrition, UNC Greensboro, 1400 Spring Garden Street, Greensboro, NC, 27412, United States.
| | - Derek M Pierce
- Department of Nutrition, UNC Greensboro, 1400 Spring Garden Street, Greensboro, NC, 27412, United States.
| | - Keith M Erikson
- Department of Nutrition, UNC Greensboro, 1400 Spring Garden Street, Greensboro, NC, 27412, United States.
| |
Collapse
|
24
|
Shafaei N, Barkhordar SMA, Rahmani F, Nabi S, Idliki RB, Alimirzaei M, Karimi E, Oskoueian E. Protective Effects of Anethum graveolens Seed's Oil Nanoemulsion Against Cadmium-Induced Oxidative Stress in Mice. Biol Trace Elem Res 2020; 198:583-591. [PMID: 32152873 DOI: 10.1007/s12011-020-02093-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/24/2020] [Indexed: 12/19/2022]
Abstract
The cadmium (Cd) is a toxic heavy metal that induces oxidative stress in both humans and animals. The plant phenolic compounds are capable of alleviating the toxicity of heavy metals. The encapsulation of plant bioactive compounds using nanoemulsion technology could enhance their bioefficacy. In this study, the protective effects of Anethum graveolens seed's oil nanoemulsion (AGN) against cadmium-induced oxidative stress in mice were studied. The results showed that the major bioactive compounds of essential oil were carvone and limonene. The result of particle size analysis revealed the pseudo-spherical droplets with nanometer size (148.8 ± 9.48 nm), homogenous dispersion, and physical colloidal stability. The Cd intoxication in mice (5 mg/kg BW for 30 days) reduced the body weight gain; however, treatment of the mice with different concentration of AGN (0.125, 0.25, and 0.5 mg/L, 30 days) through drinking water improved the body weight loss, liver Cd deposition, lipid peroxidation, cellular antioxidant redox potential, and inflammation in the liver, kidney, and brain of the mice challenged by cadmium-induced oxidative stress. The results of the present study revealed that drinking the essential oil of Anethum graveolens nanoemulsion containing carvone and limonene could be a promising strategy to protect the tissues against cadmium-induced oxidative damage.
Collapse
Affiliation(s)
- Negin Shafaei
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Fatemeh Rahmani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Sajed Nabi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Masoumeh Alimirzaei
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Ehsan Oskoueian
- Mashhad Branch, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education, and Extension Organization (AREEO), Mashhad, Iran.
| |
Collapse
|
25
|
Lei P, Ayton S, Bush AI. The essential elements of Alzheimer's disease. J Biol Chem 2020; 296:100105. [PMID: 33219130 PMCID: PMC7948403 DOI: 10.1074/jbc.rev120.008207] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/05/2023] Open
Abstract
Treatments for Alzheimer’s disease (AD) directed against the prominent amyloid plaque neuropathology are yet to be proved effective despite many phase 3 clinical trials. There are several other neurochemical abnormalities that occur in the AD brain that warrant renewed emphasis as potential therapeutic targets for this disease. Among those are the elementomic signatures of iron, copper, zinc, and selenium. Here, we review these essential elements of AD for their broad potential to contribute to Alzheimer’s pathophysiology, and we also highlight more recent attempts to translate these findings into therapeutics. A reinspection of large bodies of discovery in the AD field, such as this, may inspire new thinking about pathogenesis and therapeutic targets.
Collapse
Affiliation(s)
- Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
26
|
Evidence of cadmium and mercury involvement in the Aβ42 aggregation process. Biophys Chem 2020; 266:106453. [DOI: 10.1016/j.bpc.2020.106453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022]
|
27
|
Krauskopf J, Bergdahl IA, Johansson A, Palli D, Lundh T, Kyrtopoulos SA, de Kok TM, Kleinjans JC. Blood Transcriptome Response to Environmental Metal Exposure Reveals Potential Biological Processes Related to Alzheimer's Disease. Front Public Health 2020; 8:557587. [PMID: 33194959 PMCID: PMC7609776 DOI: 10.3389/fpubh.2020.557587] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/16/2020] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease which is manifested by a progressive and irreversible decline of cognition, memory loss, a shortened attention span, and changes in personality. Aging and genetic pre-dispositions, particularly the presence of a specific form of apolipoprotein E (APOE), are main risk factors of sporadic AD; however, a large body of evidence has shown that multiple environmental factors, including exposure to toxic metals, increase the risk for late onset AD. Lead (Pb) and cadmium (Cd) are ubiquitous toxic metals with a wide range of applications resulting in global distribution in the environment and exposure of all living organisms on earth. In addition to being classified as carcinogenic (Cd) and possibly carcinogenic (Pb) to humans by the International Agency for Research on Cancer, both compounds disrupt metal homeostasis and can cause toxic responses at the cellular and organismal levels. Pb toxicity targets the central nervous system and evidence for that has emerged also for Cd. Recent epidemiological studies show that both metals possibly are etiological factors of multiple neurodegenerative diseases, including Alzheimer's disease (AD). To further explore the association between metal exposure and AD risk we applied whole transcriptome gene expression analysis in peripheral blood leukocytes (PBLs) from 632 subjects of the general population, taken from the EnviroGenomarkers project. We used linear mixed effect models to associate metal exposure to gene expression after adjustment for gender, age, BMI, smoking, and alcohol consumption. For Pb exposure only few associations were identified, including a downregulation of the human eukaryotic translation initiation factor 5 (eIF5). In contrast, Cd exposure, particularly in males, revealed a much stronger transcriptomic response, featuring multiple pathways related to pathomolecular mechanisms of AD, such as endocytosis, neutrophil degranulation, and Interleukin-7 signaling. A gender stratified analysis revealed that the Cd responses were male-specific and included a downregulation of the APOE gene in men. This exploratory study revealed novel hypothetical findings which might contribute to the understanding of the neurotoxic effects of chronic Pb and Cd exposure and possibly improve our knowledge on the molecular mechanisms linking metal exposure to AD risk.
Collapse
Affiliation(s)
- Julian Krauskopf
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Ingvar A. Bergdahl
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | | | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy
| | - Thomas Lundh
- Division of Occupational and Environmental Medicine, Lund University Hospital, Lund, Sweden
| | | | - Theo M. de Kok
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Jos C. Kleinjans
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
28
|
Mahan B, Antonelli MA, Burckel P, Turner S, Chung R, Habekost M, Jørgensen AL, Moynier F. Longitudinal biometal accumulation and Ca isotope composition of the Göttingen minipig brain. Metallomics 2020; 12:1585-1598. [PMID: 33084720 DOI: 10.1039/d0mt00134a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biometals play a critical role in both the healthy and diseased brain's functioning. They accumulate in the normal aging brain, and are inherent to neurodegenerative disorders and their associated pathologies. A prominent example of this is the brain accumulation of metals such as Ca, Fe and Cu (and more ambiguously, Zn) associated with Alzheimer's disease (AD). The natural stable isotope compositions of such metals have also shown utility in constraining biological mechanisms, and in differentiating between healthy and diseased states, sometimes prior to conventional methods. Here we have detailed the distribution of the biologically relevant elements Mg, P, K, Ca, Fe, Cu and Zn in brain regions of Göttingen minipigs ranging in age from three months to nearly six years, including control animals and both a single- and double-transgenic model of AD (PS1, APP/PS1). Moreover, we have characterized the Ca isotope composition of the brain for the first time. Concentration data track rises in brain biometals with age, namely for Fe and Cu, as observed in the normal ageing brain and in AD, and biometal data point to increased soluble amyloid beta (Aβ) load prior to AD plaque identification via brain imaging. Calcium isotope results define the brain as the isotopically lightest permanent reservoir in the body, indicating that brain Ca dyshomeostasis may induce measurable isotopic disturbances in accessible downstream reservoirs such as biofluids.
Collapse
Affiliation(s)
- Brandon Mahan
- Earth and Environmental Science, James Cook University, Townsville, Queensland 4811, Australia. and Thermo Fisher Isotope Development Hub, Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Michael A Antonelli
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75238 Paris, France and Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zürich, 8092 Zürich, Switzerland
| | - Pierre Burckel
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75238 Paris, France
| | - Simon Turner
- Thermo Fisher Isotope Development Hub, Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Roger Chung
- Thermo Fisher Isotope Development Hub, Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Mette Habekost
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Frédéric Moynier
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75238 Paris, France
| |
Collapse
|
29
|
Vasefi M, Ghaboolian-Zare E, Abedelwahab H, Osu A. Environmental toxins and Alzheimer's disease progression. Neurochem Int 2020; 141:104852. [PMID: 33010393 DOI: 10.1016/j.neuint.2020.104852] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/05/2020] [Accepted: 09/18/2020] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, which causes progressive memory loss and cognitive decline. Effective strategies to treat or prevent remains one of the most challenging undertakings in the medical field. AD is a complex and multifactorial disease that involves several risk factors. Aging and genetic factors both play important roles in the onset of the AD, however; certain environmental factors have been reported to increase the risk of AD. Chronic exposure to toxins has been seen as an environmental factor that may increase the risk of developing a neurodegenerative disease such as AD. Exposure to metals and biotoxins produced by bacteria, molds, and viruses may contribute to the cognitive decline and pathophysiology associated with AD. Toxins may contribute to the pathology of the disease through various mechanisms such as deposition of amyloid-beta (Aβ) plaques and tangles in the brain, induction of apoptosis, inflammation, or oxidative damage. Here, we will review how toxins affect brain physiology with a focus on mechanisms by which toxins may contribute to the development and progression of AD. A better understanding of these mechanisms may help contribute towards the development of an effective strategy to slow the progression of AD.
Collapse
Affiliation(s)
- Maryam Vasefi
- Department Biology, Lamar University, Beaumont, TX, United States.
| | | | | | - Anthony Osu
- Department Biology, Lamar University, Beaumont, TX, United States
| |
Collapse
|
30
|
Kabir MT, Uddin MS, Zaman S, Begum Y, Ashraf GM, Bin-Jumah MN, Bungau SG, Mousa SA, Abdel-Daim MM. Molecular Mechanisms of Metal Toxicity in the Pathogenesis of Alzheimer’s Disease. Mol Neurobiol 2020; 58:1-20. [DOI: 10.1007/s12035-020-02096-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022]
|
31
|
Xie Z, Wu H, Zhao J. Multifunctional roles of zinc in Alzheimer’s disease. Neurotoxicology 2020; 80:112-123. [DOI: 10.1016/j.neuro.2020.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
|
32
|
Zhao R, Yu Q, Hou L, Dong X, Zhang H, Chen X, Zhou Z, Ma J, Huang S, Chen L. Cadmium induces mitochondrial ROS inactivation of XIAP pathway leading to apoptosis in neuronal cells. Int J Biochem Cell Biol 2020; 121:105715. [PMID: 32035180 DOI: 10.1016/j.biocel.2020.105715] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/21/2022]
Abstract
Cadmium (Cd), a heavy metal pollutant, contributes to neurodegenerative disorders. Recently, we have demonstrated that Cd induction of reactive oxygen species (ROS) causes apoptosis in neuronal cells. Whether X-linked inhibitor of apoptosis protein (XIAP) is involved in Cd-induced ROS-dependent neuronal apoptosis remains unclear. Here, we show that Cd-induced ROS reduced the expression of XIAP, which resulted in up-regulation of murine double minute 2 homolog (MDM2) and down-regulation of p53, leading to apoptosis in PC12 cells and primary neurons. Inhibition of MDM2 with Nutlin-3a reversed Cd-induced reduction of p53 and substantially rescued cells from excess ROS-dependent death. Overexpression of XIAP protected against Cd induction of ROS-dependent neuronal apoptosis. Inhibition of XIAP by Embelin strengthened Cd-induced ROS and apoptosis in the cells. Furthermore, we found that Cd inactivation of XIAP pathway was attributed to Cd induction of mitochondrial ROS, as evidenced by using a mitochondrial superoxide indicator MitoSOX and a mitochondria-targeted antioxidant Mito-TEMPO. Taken together, these results indicate that Cd induces mitochondrial ROS inactivation of XIAP-MDM2-p53 pathway leading to apoptosis in neuronal cells. Our findings suggest that activators of XIAP or modulation of XIAP-MDM2-p53 pathway by antioxidants may be exploited for the prevention of Cd-induced oxidative stress and neurodegenerative diseases.
Collapse
Affiliation(s)
- Rui Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Qianyun Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Long Hou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Xiaoqing Dong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Hai Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Xiaoling Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Zhihan Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Jing Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA.
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China.
| |
Collapse
|
33
|
Birla H, Minocha T, Kumar G, Misra A, Singh SK. Role of Oxidative Stress and Metal Toxicity in the Progression of Alzheimer's Disease. Curr Neuropharmacol 2020; 18:552-562. [PMID: 31969104 PMCID: PMC7457422 DOI: 10.2174/1570159x18666200122122512] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/18/2019] [Accepted: 01/14/2020] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is one of the life-threatening neurodegenerative disorders in the elderly (>60 years) and incurable across the globe to date. AD is caused by the involvement of various genetic, environmental and lifestyle factors that affect neuronal cells to degenerate over the period of time. The oxidative stress is engaged in the pathogenesis of various disorders and its key role is also linked to the etiology of AD. AD is attributed by neuronal loss, abnormal accumulation of Amyloid-β (Aβ) and neurofibrillary tangles (NFTs) with severe memory impairments and other cognitive dysfunctions which lead to the loss of synapses and neuronal death and eventual demise of the individual. Increased production of reactive oxygen species (ROS), loss of mitochondrial function, altered metal homeostasis, aberrant accumulation of senile plaque and mitigated antioxidant defense mechanism all are indulged in the progression of AD. In spite of recent advances in biomedical research, the underlying mechanism of disruption of redox balance and the actual source of oxidative stress is still obscure. This review highlights the generation of ROS through different mechanisms, the role of some important metals in the progression of AD and free radical scavenging by endogenous molecule and supplementation of nutrients in AD.
Collapse
Affiliation(s)
| | | | | | | | - Sandeep Kumar Singh
- Address correspondence to this author at the Indian Scientific Education and Technology Foundation, Lucknow-226002, India;E-mails: ;
| |
Collapse
|
34
|
Yun D, Chae JB, So H, Lee H, Kim KT, Kim C. Sensing of zinc ions and sulfide using a highly practical and water-soluble fluorescent sensor: applications in test kits and zebrafish. NEW J CHEM 2020. [DOI: 10.1039/c9nj05057d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A practical fluorescent sensor was synthesized for recognition of Zn2+ and S2− and applied in various applications such as in live zebrafish.
Collapse
Affiliation(s)
- Dongju Yun
- Department of Fine Chem
- Seoul National University of Sci. and Tech
- Seoul 137-743
- Korea
| | - Ju Byeong Chae
- Department of Fine Chem
- Seoul National University of Sci. and Tech
- Seoul 137-743
- Korea
| | - Haeri So
- Department of Fine Chem
- Seoul National University of Sci. and Tech
- Seoul 137-743
- Korea
| | - Hyojin Lee
- Department of Environmental Engineering
- Seoul National Univ. of Sci. and Tech
- Seoul 01811
- Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering
- Seoul National Univ. of Sci. and Tech
- Seoul 01811
- Korea
| | - Cheal Kim
- Department of Fine Chem
- Seoul National University of Sci. and Tech
- Seoul 137-743
- Korea
| |
Collapse
|
35
|
Qu Y, Wu Y, Wang C, Zhao K, Wu H. A selective fluorescence probe for copper(II) ion in aqueous solution based on a 1,8-naphthalimide Schiff base derivative. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2019. [DOI: 10.1515/znb-2019-0095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Abstract
In order to realize real-time monitoring of Cu2+, a new fluorescent probe HL, a Schiff base derivative of N-n-butyl-4-[2]-1,8-naphthalimide, has been designed and synthesized. In methanol-HEPES [2-(4-(2-hydroxyethyl)-1-piperazinyl)-ethanesulfonic acid] solution (1:1, v/v, pH = 7.4) HL showed excellent selectivity towards Cu2+ over other common coexisting metal ions. The fluorescence intensity for HL showed a good linearity with the concentration of Cu2+ ions in the range of 0.5–5.0 μm. Based on combined fluorescence titration, Job’s plot analysis, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry results, Cu2+ forms a 1:2 complex with L. The fluorescence intensity of HL exhibits significant quenching after binding with Cu2+, owing to the strong, intrinsic paramagnetic behavior of Cu2+. Ultimately, in order to test the performance of the synthesized probe, HL was preliminarily applied to the determination of Cu2+ in the Yellow River and in tap water with satisfying results.
Collapse
Affiliation(s)
- Yao Qu
- School of Chemical and Biological Engineering , Lanzhou Jiaotong University , Lanzhou, Gansu, 730070 , P.R. China
| | - Yancong Wu
- School of Chemical and Biological Engineering , Lanzhou Jiaotong University , Lanzhou, Gansu, 730070 , P.R. China
| | - Cong Wang
- School of Chemical and Biological Engineering , Lanzhou Jiaotong University , Lanzhou, Gansu, 730070 , P.R. China
| | - Kun Zhao
- School of Chemical and Biological Engineering , Lanzhou Jiaotong University , Lanzhou, Gansu, 730070 , P.R. China
| | - Huilu Wu
- School of Chemical and Biological Engineering , Lanzhou Jiaotong University , Lanzhou, Gansu, 730070 , P.R. China
| |
Collapse
|
36
|
Capriello T, Grimaldi MC, Cofone R, D'Aniello S, Ferrandino I. Effects of aluminium and cadmium on hatching and swimming ability in developing zebrafish. CHEMOSPHERE 2019; 222:243-249. [PMID: 30708158 DOI: 10.1016/j.chemosphere.2019.01.140] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 05/23/2023]
Abstract
Aluminium and cadmium are biologically non-essential metals with a role in neurodegenerative and neuromuscular diseases. As an attractive model for neurobehavioural studies, zebrafish at 6 h post fertilization were exposed to 9, 18, 36 and 72 μM CdCl2 and 50, 100 and 200 μM AlCl3, respectively, for 72 h, and motility such as distance moved, mean velocity, cumulative movement, meander and heading were measured by DanioVision equipment. The hatching time was also analysed. A delay in the exit from the chorion was observed in all treated larvae with respect to the controls. CdCl2 acted on the exit from the chorion of larvae with a dose-dependent delay. By contrast, the delay caused by AlCl3 was greater at low concentrations. A dose-dependent reduction in swimming performance was observed in the larvae exposed to CdCl2. Instead, for those exposed to AlCl3, swimming performance improved at higher concentrations although values were in general lower than those of control. All the parameters had a similar trend except the meander parameter which showed a dose-dependent reduction. These data show that cadmium and aluminium can delay hatching and alter swimming ability in the early developmental stages of zebrafish, albeit with different effects, suggesting that exposure to sublethal concentrations of both metals can change behavioural parameters.
Collapse
Affiliation(s)
- Teresa Capriello
- Department of Biology, University of Naples "Federico II", Naples, Italy.
| | | | - Rita Cofone
- Department of Biology, University of Naples "Federico II", Naples, Italy.
| | - Salvatore D'Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Ida Ferrandino
- Department of Biology, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
37
|
Xu L, Zhang W, Liu X, Zhang C, Wang P, Zhao X. Circulatory Levels of Toxic Metals (Aluminum, Cadmium, Mercury, Lead) in Patients with Alzheimer's Disease: A Quantitative Meta-Analysis and Systematic Review. J Alzheimers Dis 2019; 62:361-372. [PMID: 29439342 DOI: 10.3233/jad-170811] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Environmental exposure to toxic metals has been postulated to play a role in the pathophysiological processes of Alzheimer's disease (AD). However, the circulatory levels of toxic metals in AD patients are not consistent in previous studies. OBJECTIVE To systematically assess levels of toxic metals (aluminum, mercury, cadmium, lead) in the circulation (blood, serum/plasma) of AD patients and controls. METHODS PubMed, Web of Science, Science Direct, Cochrane Library, and the China National Knowledge Infrastructure (CNKI) were systematically searched to identify studies published up to January 1, 2017. Meta-analyses were performed using random-effects models and the pooled standardized mean difference (SMD) were reported with 95% confidence intervals (CI). RESULTS We identified 17, 7, 8, and 10 studies for aluminum, mercury, cadmium, and lead, respectively. Meta-analyses showed significantly elevated circulatory levels of aluminum (SMD = 1.08, 95% CI: 0.66, 1.50), mercury (SMD = 0.55, 95% CI, 0.15, 0.95), and cadmium (SMD = 0.62, 95% CI: 0.12, 1.11), whereas lower levels of lead (SMD = -0.23, 95% CI: -0.38, -0.07) in AD patients than in controls. Publication bias was only observed for aluminum studies, but the "trim and fill" analysis showed that the publication bias did not alter the direction of the effect. Sensitivity analyses showed no studies from the pooled analysis changed the results. CONCLUSION Compared to controls, circulatory levels of aluminum, mercury, and cadmium are significantly higher but the levels of lead were reduced in AD patients. These findings suggest that elevated aluminum, mercury, and cadmium in the circulation, especially in serum may play a role in the progression of AD.
Collapse
Affiliation(s)
- Lin Xu
- Department of Toxicology, School of Public Health, Shandong University, Jinan, China
| | - Wenchao Zhang
- Department of Epidemiology, School of Public Health, Shandong University, Jinan, China
| | - Xianchen Liu
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Cuili Zhang
- Department of Toxicology, School of Public Health, Shandong University, Jinan, China
| | - Pin Wang
- Department of Neurology, The Second Hospital of Shandong University, Jinan, China
| | - Xiulan Zhao
- Department of Toxicology, School of Public Health, Shandong University, Jinan, China
| |
Collapse
|
38
|
Liu F, Fan C, Pu S. A new “turn-on” fluorescent chemosensor for Zn2+ based on a diarylethene derivative and its practical applications. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.11.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Yuan Y, Yang J, Chen J, Zhao S, Wang T, Zou H, Wang Y, Gu J, Liu X, Bian J, Liu Z. Alpha-lipoic acid protects against cadmium-induced neuronal injury by inhibiting the endoplasmic reticulum stress eIF2α-ATF4 pathway in rat cortical neurons in vitro and in vivo. Toxicology 2019; 414:1-13. [DOI: 10.1016/j.tox.2018.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/05/2018] [Accepted: 12/29/2018] [Indexed: 10/27/2022]
|
40
|
Huat TJ, Camats-Perna J, Newcombe EA, Valmas N, Kitazawa M, Medeiros R. Metal Toxicity Links to Alzheimer's Disease and Neuroinflammation. J Mol Biol 2019; 431:1843-1868. [PMID: 30664867 DOI: 10.1016/j.jmb.2019.01.018] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/11/2022]
Abstract
As the median age of the population increases, the number of individuals with Alzheimer's disease (AD) and the associated socio-economic burden are predicted to worsen. While aging and inherent genetic predisposition play major roles in the onset of AD, lifestyle, physical fitness, medical condition, and social environment have emerged as relevant disease modifiers. These environmental risk factors can play a key role in accelerating or decelerating disease onset and progression. Among known environmental risk factors, chronic exposure to various metals has become more common among the public as the aggressive pace of anthropogenic activities releases excess amount of metals into the environment. As a result, we are exposed not only to essential metals, such as iron, copper, zinc and manganese, but also to toxic metals including lead, aluminum, and cadmium, which perturb metal homeostasis at the cellular and organismal levels. Herein, we review how these metals affect brain physiology and immunity, as well as their roles in the accumulation of toxic AD proteinaceous species (i.e., β-amyloid and tau). We also discuss studies that validate the disruption of immune-related pathways as an important mechanism of toxicity by which metals can contribute to AD. Our goal is to increase the awareness of metals as players in the onset and progression of AD.
Collapse
Affiliation(s)
- Tee Jong Huat
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia; Centre for Stem Cell Ageing and Regenerative Engineering, The University of Queensland, Brisbane, Australia.
| | - Judith Camats-Perna
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Estella A Newcombe
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Nicholas Valmas
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Masashi Kitazawa
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA, USA
| | - Rodrigo Medeiros
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
41
|
Azam S, Louis GS, Miksovska J. Cadmium association with DREAM promotes DREAM interactions with intracellular partners in a similar manner to its physiological ligand, calcium. Metallomics 2019; 11:1115-1127. [DOI: 10.1039/c9mt00059c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cd2+exposure has been associated with neurodegenerative diseases and other pathologies, but the underlying mechanism through which it exerts toxic effects remain unresolved.
Collapse
Affiliation(s)
- Samiol Azam
- Department of Chemistry and Biochemistry, Florida International University
- Miami
- USA
| | - Gessica St Louis
- Department of Chemistry and Biochemistry, Florida International University
- Miami
- USA
| | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry, Florida International University
- Miami
- USA
- Biomolecular Sciences Institute, Florida International University
- Miami
| |
Collapse
|
42
|
Soltys DT, Pereira CP, Rowies FT, Farfel JM, Grinberg LT, Suemoto CK, Leite RE, Rodriguez RD, Ericson NG, Bielas JH, Souza-Pinto NC. Lower mitochondrial DNA content but not increased mutagenesis associates with decreased base excision repair activity in brains of AD subjects. Neurobiol Aging 2019; 73:161-170. [DOI: 10.1016/j.neurobiolaging.2018.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/13/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022]
|
43
|
Zhang H, Dong X, Zhao R, Zhang R, Xu C, Wang X, Liu C, Hu X, Huang S, Chen L. Cadmium results in accumulation of autophagosomes-dependent apoptosis through activating Akt-impaired autophagic flux in neuronal cells. Cell Signal 2018; 55:26-39. [PMID: 30578829 DOI: 10.1016/j.cellsig.2018.12.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 01/08/2023]
Abstract
Environmental exposure to cadmium (Cd) links to neurodegenerative disorders. Autophagy plays an important role in controlling cell survival/death. However, how autophagy contributes to Cd's neurotoxicity remains enigmatic. Here, we show that Cd induced significant increases in autophagosomes with a concomitant elevation of LC3-II and p62 in PC12 cells and primary neurons. Using autophagy inhibitor 3-MA, we demonstrated that Cd-increased autophagosomes contributed to neuronal apoptosis. Impairment of Cd on autophagic flux was evidenced by co-localization of mCherry and GFP tandem-tagged LC3 puncta in the cells. This is further supported by the findings that administration of chloroquine (CQ) potentiated the basic and Cd-elevated LC3-II and p62 levels, autophagosome accumulation and cell apoptosis, whereas rapamycin relieved the effects in the cells in response to Cd. Subsequently, we noticed that Cd evoked the phosphorylation of Akt and BECN1. Silencing BECN1 and especially expression of mutant BECN1 (Ser295A) attenuated Cd-increased autophagosomes and cell death. Of note, inhibition of Akt with Akt inhibitor X, or ectopic expression of dominant negative Akt (dn-Akt), in the presence or absence of 3-MA, significantly alleviated Cd-triggered phosphorylation of Akt and BECN1, autophagosomes, and apoptosis. Importantly, we found that Cd activation of Akt functioned in impairing autophagic flux. Collectively, these results indicate that Cd results in accumulation of autophagosomes-dependent apoptosis through activating Akt-impaired autophagic flux in neuronal cells. Our findings underscore that inhibition of Akt to improve autophagic flux is a promising strategy against Cd-induced neurotoxicity and neurodegeneration.
Collapse
Affiliation(s)
- Hai Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiaoqing Dong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Rui Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Ruijie Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Chong Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiaoxue Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Chunxiao Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiaoyu Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA.
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
44
|
Trans-resveratrol Inhibits Tau Phosphorylation in the Brains of Control and Cadmium Chloride-Treated Rats by Activating PP2A and PI3K/Akt Induced-Inhibition of GSK3β. Neurochem Res 2018; 44:357-373. [DOI: 10.1007/s11064-018-2683-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
|
45
|
Branca JJV, Morucci G, Maresca M, Tenci B, Cascella R, Paternostro F, Ghelardini C, Gulisano M, Di Cesare Mannelli L, Pacini A. Selenium and zinc: Two key players against cadmium-induced neuronal toxicity. Toxicol In Vitro 2018; 48:159-169. [PMID: 29408665 DOI: 10.1016/j.tiv.2018.01.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 11/16/2022]
Abstract
Cadmium (Cd), a worldwide occupational pollutant, is an extremely toxic heavy metal, capable of damaging several organs, including the brain. Its toxicity has been related to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. The neurotoxic potential of Cd has been attributed to the changes induced in the brain enzyme network involved in counteracting oxidative stress. On the other hand, it is also known that trace elements, such as zinc (Zn) and selenium (Se), required for optimal brain functions, appears to have beneficial effects on the prevention of Cd intoxication. Based on this protective effect of Zn and Se, we aimed to investigate whether these elements could protect neuronal cells from Cd-induced excitotoxicity. The experiments, firstly carried out on SH-SY5Y catecholaminergic neuroblastoma cell line, demonstrated that the treatment with 10 μM cadmium chloride (CdCl2) for 24 h caused significant modifications both in terms of oxidative stress and neuronal sprouting, triggered by endoplasmic reticulum (ER) stress. The evaluation of the effectiveness of 50 μM of zinc chloride (ZnCl2) and 100 nM sodium selenite (Na2SeO3) treatments showed that both elements were able to attenuate the Cd-dependent neurotoxicity. However, considering that following induction with retinoic acid (RA), the neuroblastoma cell line undergoes differentiation into a cholinergic neurons, our second aim was to verify the zinc and selenium efficacy also in this neuronal phenotype. Our data clearly demonstrated that, while zinc played a crucial role on neuroprotection against Cd-induced neurotoxicity independently from the cellular phenotype, selenium is ineffective in differentiated cholinergic cells, supporting the notion that the molecular events occurring in differentiated SH-SY5Y cells are critical for the response to specific stimuli.
Collapse
Affiliation(s)
- Jacopo J V Branca
- Department of Experimental and Clinical Medicine, Histology and Anatomy Section, University of Firenze, Firenze, Italy.
| | - Gabriele Morucci
- Department of Experimental and Clinical Medicine, Histology and Anatomy Section, University of Firenze, Firenze, Italy
| | - Mario Maresca
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Firenze, Firenze, Italy
| | - Barbara Tenci
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Firenze, Firenze, Italy
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Ferdinando Paternostro
- Department of Experimental and Clinical Medicine, Histology and Anatomy Section, University of Firenze, Firenze, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Firenze, Firenze, Italy
| | - Massimo Gulisano
- Department of Experimental and Clinical Medicine, Histology and Anatomy Section, University of Firenze, Firenze, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Firenze, Firenze, Italy
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Histology and Anatomy Section, University of Firenze, Firenze, Italy
| |
Collapse
|
46
|
Moyano P, García JM, Lobo M, Anadón MJ, Sola E, Pelayo A, García J, Frejo MT, Pino JD. Cadmium alters heat shock protein pathways in SN56 cholinergic neurons, leading to Aβ and phosphorylated Tau protein generation and cell death. Food Chem Toxicol 2018; 121:297-308. [PMID: 30213552 DOI: 10.1016/j.fct.2018.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/21/2018] [Accepted: 09/10/2018] [Indexed: 11/28/2022]
Abstract
Cadmium, a neurotoxic environmental compound, produces cognitive disorders, although the mechanism remains unknown. Cadmium induces a more pronounced cell death on cholinergic neurons from basal forebrain (BF), mediated, in part, by increase in Aβ and total and phosphorylated Tau protein levels, which may explain cadmium effects on learning and memory processes. Cadmium downregulates the expression of heat shock proteins (HSPs) HSP 90, HSP70 and HSP27, and of HSF1, the master regulator of the HSP pathway. HSPs proteins reduce the production of Aβ and phosphorylated Tau proteins and avoid cell death pathways induction. Thus, we hypothesized that cadmium induced the production of Aβ and Tau proteins by HSP pathway disruption through HSF1 expression alteration, leading to BF cholinergic neurons cell death. Our results show that cadmium downregulates HSF1, leading to HSP90, HSP70 and HSP27 gene expression downregulation in BF SN56 cholinergic neurons. In addition, cadmium induced Aβ and total and phosphorylated Tau proteins generation, mediated partially by HSP90, HSP70 and HSP27 disruption, leading to cell death. These results provide new understanding of the mechanisms contributing to cadmium harmful effects on cholinergic neurons.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - José Manuel García
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Margarita Lobo
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - María José Anadón
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Emma Sola
- Department of Pathological Anatomy, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Adela Pelayo
- Department of Pathological Anatomy, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Jimena García
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - María Teresa Frejo
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Javier Del Pino
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
47
|
Shamloo A, Asadbegi M, Khandan V, Amanzadi A. Designing a new multifunctional peptide for metal chelation and Aβ inhibition. Arch Biochem Biophys 2018; 653:1-9. [DOI: 10.1016/j.abb.2018.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/28/2018] [Accepted: 06/07/2018] [Indexed: 10/14/2022]
|
48
|
Qu Y, Liu Y, Chen L, Zhu Y, Xiao X, Wang D, Zhu Y. Nobiletin prevents cadmium-induced neuronal apoptosis by inhibiting reactive oxygen species and modulating JNK/ERK1/2 and Akt/mTOR networks in rats. Neurol Res 2018; 40:211-220. [PMID: 29334873 DOI: 10.1080/01616412.2018.1424685] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Youyang Qu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Yu Liu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Li Chen
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Yanmei Zhu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Xingjun Xiao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Di Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Yulan Zhu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| |
Collapse
|
49
|
Wessels I, Maywald M, Rink L. Zinc as a Gatekeeper of Immune Function. Nutrients 2017; 9:E1286. [PMID: 29186856 PMCID: PMC5748737 DOI: 10.3390/nu9121286] [Citation(s) in RCA: 371] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 12/27/2022] Open
Abstract
After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc "importers" (ZIP 1-14), zinc "exporters" (ZnT 1-10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate "zinc waves", and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Martina Maywald
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| |
Collapse
|
50
|
|