1
|
Lawless RD, McKnight CD, O’Grady KP, Combes AJE, Rogers BP. Detecting macromolecular differences of the CSF in low disability multiple sclerosis using quantitative MT MRI at 3T. Mult Scler J Exp Transl Clin 2023; 9:20552173231211396. [PMID: 38021451 PMCID: PMC10644741 DOI: 10.1177/20552173231211396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Background Imaging investigation of cerebrospinal fluid (CSF) in multiple sclerosis (MS) is understudied. Development of noninvasive methods to detect pathological CSF changes would have a profound effect on MS diagnosis and would offer insight into MS pathophysiology and mechanisms of neurological impairment. Objective We propose magnetization transfer (MT) MRI as a tool to detect macromolecular changes in spinal CSF. Methods MT and quantitative MT (qMT) data were acquired in the cervical region in 27 people with relapsing-remitting multiple sclerosis (pwRRMS) and 38 age and sex-matched healthy controls (HCs). MT ratio (MTR), the B1, B0, and R1 corrected qMT-derived pool size ratio (PSR) were quantified in the spinal cord and CSF of each group. Results Both CSF MTR and CSF qMT-derived PSR were significantly increased in pwRRMS compared to HC (p = 0.027 and p = 0.020, respectively). CSF PSR of pwRRMS was correlated to Expanded Disability Status Scale Scores (p = 0.045, R = 0.352). Conclusion Our findings demonstrate increased CSF macromolecular content in pwRRMS and link CSF macromolecular content with clinical impairment. This highlights the potential role of CSF in processing products of demyelination.
Collapse
Affiliation(s)
- Richard D Lawless
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Colin D McKnight
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristin P O’Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Anna JE Combes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
2
|
Bittner S, Pape K, Klotz L, Zipp F. Implications of immunometabolism for smouldering MS pathology and therapy. Nat Rev Neurol 2023:10.1038/s41582-023-00839-6. [PMID: 37430070 DOI: 10.1038/s41582-023-00839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/12/2023]
Abstract
Clinical symptom worsening in patients with multiple sclerosis (MS) is driven by inflammation compartmentalized within the CNS, which results in chronic neuronal damage owing to insufficient repair mechanisms. The term 'smouldering inflammation' summarizes the biological aspects underlying this chronic, non-relapsing and immune-mediated mechanism of disease progression. Smouldering inflammation is likely to be shaped and sustained by local factors in the CNS that account for the persistence of this inflammatory response and explain why current treatments for MS do not sufficiently target this process. Local factors that affect the metabolic properties of glial cells and neurons include cytokines, pH value, lactate levels and nutrient availability. This Review summarizes current knowledge of the local inflammatory microenvironment in smouldering inflammation and how it interacts with the metabolism of tissue-resident immune cells, thereby promoting inflammatory niches within the CNS. The discussion highlights environmental and lifestyle factors that are increasingly recognized as capable of altering immune cell metabolism and potentially responsible for smouldering pathology in the CNS. Currently approved MS therapies that target metabolic pathways are also discussed, along with their potential for preventing the processes that contribute to smouldering inflammation and thereby to progressive neurodegenerative damage in MS.
Collapse
Affiliation(s)
- Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Katrin Pape
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
3
|
Lorefice L, Pitzalis M, Murgia F, Fenu G, Atzori L, Cocco E. Omics approaches to understanding the efficacy and safety of disease-modifying treatments in multiple sclerosis. Front Genet 2023; 14:1076421. [PMID: 36793897 PMCID: PMC9922720 DOI: 10.3389/fgene.2023.1076421] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
From the perspective of precision medicine, the challenge for the future is to improve the accuracy of diagnosis, prognosis, and prediction of therapeutic responses through the identification of biomarkers. In this framework, the omics sciences (genomics, transcriptomics, proteomics, and metabolomics) and their combined use represent innovative approaches for the exploration of the complexity and heterogeneity of multiple sclerosis (MS). This review examines the evidence currently available on the application of omics sciences to MS, analyses the methods, their limitations, the samples used, and their characteristics, with a particular focus on biomarkers associated with the disease state, exposure to disease-modifying treatments (DMTs), and drug efficacies and safety profiles.
Collapse
Affiliation(s)
- Lorena Lorefice
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- *Correspondence: Lorena Lorefice,
| | - Maristella Pitzalis
- Institute for Genetic and Biomedical Research, National Research Council, Cagliari, Italy
| | - Federica Murgia
- Dpt of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giuseppe Fenu
- Department of Neurosciences, ARNAS Brotzu, Cagliari, Italy
| | - Luigi Atzori
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
4
|
Liu Z, Waters J, Rui B. Metabolomics as a promising tool for improving understanding of multiple sclerosis: A review of recent advances. Biomed J 2022; 45:594-606. [PMID: 35042018 PMCID: PMC9486246 DOI: 10.1016/j.bj.2022.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system that usually affects young adults. The development of MS is closely related to the changes in the metabolome. Metabolomics studies have been performed using biofluids or tissue samples from rodent models and human patients to reveal metabolic alterations associated with MS progression. This review aims to provide an overview of the applications of metabolomics that for the investigations of the perturbed metabolic pathways in MS and to reveal the potential of metabolomics in personalizing treatments. In conclusion, informative variations of metabolites can be potential biomarkers in advancing our understanding of MS pathogenesis for MS diagnosis, predicting the progression of the disease, and estimating drug effects. Metabolomics will be a promising technique for improving clinical care in MS.
Collapse
Affiliation(s)
- Zhicheng Liu
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs School of Pharmacy, Anhui Medical University, Hefei, China.
| | - Jeffrey Waters
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Bin Rui
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA.
| |
Collapse
|
5
|
Mohamed AAB, Algahalan HA, Thabit MN. Correlation between functional MRI techniques and early disability in ambulatory patients with relapsing–remitting MS. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Abstract
Background
Multiple sclerosis (MS) is a common neurological disorder which can lead to an occasional damage to the central nervous system. Conventional magnetic resonance imaging (cMRI) is an important modality in the diagnosis of MS; however, correlation between cMRI findings and clinical impairment is weak. Non-conventional MRI techniques including apparent diffusion coefficient (ADC) and magnetic resonance spectroscopy (MRS) investigate the metabolic changes over the course of MS and overcome the limits of cMRI.
A total of 80 patients with MS and 20 age and sex-matched healthy control subjects were enrolled in this cross-sectional study. Ambulatory patients with relapsing–remitting MS (RRMS) were recruited. Expanded Disability Status Scale (EDSS) was used to assess the disability and the patients were categorized into three groups “no disability”, “minimal disability” and “moderate disability”. All patients underwent cMRI techniques. ADC was measured in MS plaques and in normal appearing white matter (NAWM) adjacent and around the plaque. All metabolites concentrations were expressed as ratios including N-acetyl-aspartate/creatine (NAA/Cr), choline/N-acetyl-aspartate (Cho/NAA) and choline/creatine (Cho/Cr). ADC and metabolite concentrations were measured in the normal white matter of 20 healthy control subjects.
Results
The study was carried on 80 MS patients [36 males (45%) and 44 females (55%)] and 20 healthy control [8 males (40%) and 12 females (60%)]. The ADC values and MRS parameters in NAWM of patients with MS were significantly different from those of the control group. The number of the plaques on T2 images and black holes were significantly higher at “Minimal disability” group. Most of the enhanced plaques were at the “Moderate disability” group with P value < 0.001. The mean of ADC in the group 1, 2 and 3 of disability was 1.12 ± 0.19, 1.50 ± 0.35, 1.51 ± 0.36, respectively, with P value < 0. 001. In the group 1, 2 and 3 of disability, the mean of NAA/Cr ratio at the plaque was 1.34 ± 0.44, 1.59 ± 0.51 and 1.11 ± 0.15, respectively, with P value equal 0.001.
Conclusion
The non-conventional quantitative MRI techniques are useful tools for detection of early disability in MS patients.
Collapse
|
6
|
Rispoli MG, Valentinuzzi S, De Luca G, Del Boccio P, Federici L, Di Ioia M, Digiovanni A, Grasso EA, Pozzilli V, Villani A, Chiarelli AM, Onofrj M, Wise RG, Pieragostino D, Tomassini V. Contribution of Metabolomics to Multiple Sclerosis Diagnosis, Prognosis and Treatment. Int J Mol Sci 2021; 22:11112. [PMID: 34681773 PMCID: PMC8541167 DOI: 10.3390/ijms222011112] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolomics-based technologies map in vivo biochemical changes that may be used as early indicators of pathological abnormalities prior to the development of clinical symptoms in neurological conditions. Metabolomics may also reveal biochemical pathways implicated in tissue dysfunction and damage and thus assist in the development of novel targeted therapeutics for neuroinflammation and neurodegeneration. Metabolomics holds promise as a non-invasive, high-throughput and cost-effective tool for early diagnosis, follow-up and monitoring of treatment response in multiple sclerosis (MS), in combination with clinical and imaging measures. In this review, we offer evidence in support of the potential of metabolomics as a biomarker and drug discovery tool in MS. We also use pathway analysis of metabolites that are described as potential biomarkers in the literature of MS biofluids to identify the most promising molecules and upstream regulators, and show novel, still unexplored metabolic pathways, whose investigation may open novel avenues of research.
Collapse
Affiliation(s)
- Marianna Gabriella Rispoli
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy; (G.D.L.); (M.D.I.)
| | - Silvia Valentinuzzi
- Analytical Biochemistry and Proteomics Research Unit, Centre for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (P.D.B.); (L.F.)
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giovanna De Luca
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy; (G.D.L.); (M.D.I.)
| | - Piero Del Boccio
- Analytical Biochemistry and Proteomics Research Unit, Centre for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (P.D.B.); (L.F.)
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Luca Federici
- Analytical Biochemistry and Proteomics Research Unit, Centre for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (P.D.B.); (L.F.)
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Di Ioia
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy; (G.D.L.); (M.D.I.)
| | - Anna Digiovanni
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy; (G.D.L.); (M.D.I.)
| | - Eleonora Agata Grasso
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Valeria Pozzilli
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy; (G.D.L.); (M.D.I.)
| | - Alessandro Villani
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
| | - Antonio Maria Chiarelli
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
| | - Marco Onofrj
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy; (G.D.L.); (M.D.I.)
| | - Richard G. Wise
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
| | - Damiana Pieragostino
- Analytical Biochemistry and Proteomics Research Unit, Centre for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (P.D.B.); (L.F.)
- Department of Paediatrics, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Valentina Tomassini
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy; (G.D.L.); (M.D.I.)
| |
Collapse
|
7
|
Smith JA, Nicaise AM, Ionescu RB, Hamel R, Peruzzotti-Jametti L, Pluchino S. Stem Cell Therapies for Progressive Multiple Sclerosis. Front Cell Dev Biol 2021; 9:696434. [PMID: 34307372 PMCID: PMC8299560 DOI: 10.3389/fcell.2021.696434] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system characterized by demyelination and axonal degeneration. MS patients typically present with a relapsing-remitting (RR) disease course, manifesting as sporadic attacks of neurological symptoms including ataxia, fatigue, and sensory impairment. While there are several effective disease-modifying therapies able to address the inflammatory relapses associated with RRMS, most patients will inevitably advance to a progressive disease course marked by a gradual and irreversible accrual of disabilities. Therapeutic intervention in progressive MS (PMS) suffers from a lack of well-characterized biological targets and, hence, a dearth of successful drugs. The few medications approved for the treatment of PMS are typically limited in their efficacy to active forms of the disease, have little impact on slowing degeneration, and fail to promote repair. In looking to address these unmet needs, the multifactorial therapeutic benefits of stem cell therapies are particularly compelling. Ostensibly providing neurotrophic support, immunomodulation and cell replacement, stem cell transplantation holds substantial promise in combatting the complex pathology of chronic neuroinflammation. Herein, we explore the current state of preclinical and clinical evidence supporting the use of stem cells in treating PMS and we discuss prospective hurdles impeding their translation into revolutionary regenerative medicines.
Collapse
Affiliation(s)
- Jayden A. Smith
- Cambridge Innovation Technologies Consulting (CITC) Limited, Cambridge, United Kingdom
| | - Alexandra M. Nicaise
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Rosana-Bristena Ionescu
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Regan Hamel
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Stefano Pluchino
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Esmael A, Talaat M, Egila H, Eltoukhy K. Mitochondrial dysfunction and serum lactate as a biomarker for the progression and disability in MS and its correlation with the radiological findings. Neurol Res 2021; 43:582-590. [PMID: 33657991 DOI: 10.1080/01616412.2021.1893567] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective: To study the serum lactate level in MS and to explore its correlation with the progression and disability in multiple sclerosis (MS), and the important role of mitochondrial dysfunction in the pathogenesis of MS.Methods: This case-control study included 80 participants, involved 50 MS patients and 30 normal healthy controls. Detailed history taking, complete neurological examination, and clinical evaluation of the disability using the Expanded Disability Status Scale (EDSS) were done for all patients. Level of serum lactate was measured in both groups and was correlated with EDSS, MS subtypes, MRI brain, and MRS findings.Results: Serum lactate in MS patients was about three and half times higher than serum lactate levels of healthy controls (22.87 ± 5.92 mg/dl versus 6.39 ± 0.9 6.39 ± 0.91, p < 0.001). Importantly, serum lactate values were increased in MS cases with a progressive course compared with MS cases with RR course. Also, there were linearly correlations linking serum lactate levels and the duration of MS (r = 0.342, P = 0.015), relapses numbers (r = 0.335, P = 0.022), and EDSS (r = 0.483, P < 0.001). Also, there were strong positive correlations between serum lactate and Lipid/Lactate (r = 0.461, P = 0.001), periventricular lesion (r = 0.453, P = 0.005), and moderate positive correlations between serum lactate and juxtacortical lesion (r = 0.351, P = 0.02), and infratentorial lesion (r = 0.355, P = 0.02).Conclusion: Measurement of serum lactate may be helpful in MS and this supports the hypothesis of the critical role of mitochondrial dysfunction and axonal damage in MS.Registration of Clinical Trial Research: ClinicalTrials.gov ID: NCT04210960.
Collapse
Affiliation(s)
- Ahmed Esmael
- Neurology Department, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia, Egypt
| | - Mona Talaat
- Diagnostic Radiology Department, Faculty of Medicine, Kafrelsheikh University, Kafr Ash Shaykh, Egypt
| | - Hosam Egila
- Neurology Department, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia, Egypt
| | - Khaled Eltoukhy
- Neurology Department, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia, Egypt
| |
Collapse
|
9
|
Zahoor I, Rui B, Khan J, Datta I, Giri S. An emerging potential of metabolomics in multiple sclerosis: a comprehensive overview. Cell Mol Life Sci 2021; 78:3181-3203. [PMID: 33449145 PMCID: PMC8038957 DOI: 10.1007/s00018-020-03733-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/14/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the nervous system that primarily affects young adults. Although the exact etiology of the disease remains obscure, it is clear that alterations in the metabolome contribute to this process. As such, defining a reliable and disease-specific metabolome has tremendous potential as a diagnostic and therapeutic strategy for MS. Here, we provide an overview of studies aimed at identifying the role of metabolomics in MS. These offer new insights into disease pathophysiology and the contributions of metabolic pathways to this process, identify unique markers indicative of treatment responses, and demonstrate the therapeutic effects of drug-like metabolites in cellular and animal models of MS. By and large, the commonly perturbed pathways in MS and its preclinical model include lipid metabolism involving alpha-linoleic acid pathway, nucleotide metabolism, amino acid metabolism, tricarboxylic acid cycle, d-ornithine and d-arginine pathways with collective role in signaling and energy supply. The metabolomics studies suggest that metabolic profiling of MS patient samples may uncover biomarkers that will advance our understanding of disease pathogenesis and progression, reduce delays and mistakes in diagnosis, monitor the course of disease, and detect better drug targets, all of which will improve early therapeutic interventions and improve evaluation of response to these treatments.
Collapse
Affiliation(s)
- Insha Zahoor
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA. .,Department of Neurology, Henry Ford Hospital, Education & Research Building, Room 4023, 2799 W Grand Blvd, Detroit, MI, 48202, USA.
| | - Bin Rui
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Junaid Khan
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Indrani Datta
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA. .,Department of Neurology, Henry Ford Hospital, Education & Research Building, Room 4051, 2799 W Grand Blvd, Detroit, MI, 48202, USA.
| |
Collapse
|
10
|
das Neves SP, Sousa JC, Sousa N, Cerqueira JJ, Marques F. Altered astrocytic function in experimental neuroinflammation and multiple sclerosis. Glia 2020; 69:1341-1368. [PMID: 33247866 DOI: 10.1002/glia.23940] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that affects about 2.5 million people worldwide. In MS, the patients' immune system starts to attack the myelin sheath, leading to demyelination, neurodegeneration, and, ultimately, loss of vital neurological functions such as walking. There is currently no cure for MS and the available treatments only slow the initial phases of the disease. The later-disease mechanisms are poorly understood and do not directly correlate with the activity of immune system cells, the main target of the available treatments. Instead, evidence suggests that disease progression and disability are better correlated with the maintenance of a persistent low-grade inflammation inside the CNS, driven by local glial cells, like astrocytes and microglia. Depending on the context, astrocytes can (a) exacerbate inflammation or (b) promote immunosuppression and tissue repair. In this review, we will address the present knowledge that exists regarding the role of astrocytes in MS and experimental animal models of the disease.
Collapse
Affiliation(s)
- Sofia Pereira das Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - João Carlos Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center, Braga, Portugal
| | - João José Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center, Braga, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
11
|
Park SJ, Choi JW. Brain energy metabolism and multiple sclerosis: progress and prospects. Arch Pharm Res 2020; 43:1017-1030. [PMID: 33119885 DOI: 10.1007/s12272-020-01278-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease accompanied with nerve pain and paralysis. Although various pathogenic causes of MS have been suggested, including genetic and environmental factors, how MS occurs remains unclear. Moreover, MS should be diagnosed based on clinical experiences because of no disease-specific biomarker and currently available treatments for MS just can reduce relapsing frequency or severity with little effects on disease disability. Therefore, more efforts are required to identify pathophysiology of MS and diagnosis markers. Recent evidence indicates another aspect of MS pathogenesis, energy failure in the central nervous system (CNS). For instance, inflammation that is a characteristic MS symptom and occurs frequently in the CNS of MS patients can result into energy failure in mitochondria and cytosol. Indeed, metabolomics studies for MS have reported energy failure in oxidative phosphorylation and alteration of aerobic glycolysis. Therefore, studies on the metabolism in the CNS may provide another insight for understanding complexity of MS and pathogenesis, which would facilitate the discovery of promising strategies for developing therapeutics to treat MS. This review will provide an overview on recent progress of metabolomic studies for MS, with a focus on the fluctuation of energy metabolism in MS.
Collapse
Affiliation(s)
- Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Korea.
| | - Ji Woong Choi
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Korea.
| |
Collapse
|
12
|
Donatti A, Canto AM, Godoi AB, da Rosa DC, Lopes-Cendes I. Circulating Metabolites as Potential Biomarkers for Neurological Disorders-Metabolites in Neurological Disorders. Metabolites 2020; 10:E389. [PMID: 33003305 PMCID: PMC7601919 DOI: 10.3390/metabo10100389] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
There are, still, limitations to predicting the occurrence and prognosis of neurological disorders. Biomarkers are molecules that can change in different conditions, a feature that makes them potential tools to improve the diagnosis of disease, establish a prognosis, and monitor treatments. Metabolites can be used as biomarkers, and are small molecules derived from the metabolic process found in different biological media, such as tissue samples, cells, or biofluids. They can be identified using various strategies, targeted or untargeted experiments, and by different techniques, such as high-performance liquid chromatography, mass spectrometry, or nuclear magnetic resonance. In this review, we aim to discuss the current knowledge about metabolites as biomarkers for neurological disorders. We will present recent developments that show the need and the feasibility of identifying such biomarkers in different neurological disorders, as well as discuss relevant research findings in the field of metabolomics that are helping to unravel the mechanisms underlying neurological disorders. Although several relevant results have been reported in metabolomic studies in patients with neurological diseases, there is still a long way to go for the clinical use of metabolites as potential biomarkers in these disorders, and more research in the field is needed.
Collapse
Affiliation(s)
- Amanda Donatti
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Tessália Vieira de Camargo, 126 Cidade Universitária “Zeferino Vaz”, Campinas SP 13083-887, Brazil; (A.D.); (A.M.C.); (A.B.G.); (D.C.d.R.)
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas SP 13083-887, Brazil
| | - Amanda M. Canto
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Tessália Vieira de Camargo, 126 Cidade Universitária “Zeferino Vaz”, Campinas SP 13083-887, Brazil; (A.D.); (A.M.C.); (A.B.G.); (D.C.d.R.)
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas SP 13083-887, Brazil
| | - Alexandre B. Godoi
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Tessália Vieira de Camargo, 126 Cidade Universitária “Zeferino Vaz”, Campinas SP 13083-887, Brazil; (A.D.); (A.M.C.); (A.B.G.); (D.C.d.R.)
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas SP 13083-887, Brazil
| | - Douglas C. da Rosa
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Tessália Vieira de Camargo, 126 Cidade Universitária “Zeferino Vaz”, Campinas SP 13083-887, Brazil; (A.D.); (A.M.C.); (A.B.G.); (D.C.d.R.)
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas SP 13083-887, Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Tessália Vieira de Camargo, 126 Cidade Universitária “Zeferino Vaz”, Campinas SP 13083-887, Brazil; (A.D.); (A.M.C.); (A.B.G.); (D.C.d.R.)
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas SP 13083-887, Brazil
| |
Collapse
|
13
|
Abstract
Multiple sclerosis (MS) is associated with changes in the metabolome. Numerous studies employing varying metabolomics platforms have examined a range of biological material ranging from brain tissue to urine and demonstrated consistently alterations in multiple metabolic pathways in MS. We review not only the studies that describe the ability of metabolomics to differentiate MS patients from healthy controls and other neurological disease but also discuss the potential of metabolomics-based methods to build predictive models that are able to stage disease, monitor progression, and select the most appropriate therapy. The increasing number of impressive claims for the capacity of metabolomics to distinguish between different types of demyelinating disease suggests that the provision of such tests may be close at hand. Besides the ability to provide potential diagnostic and prognostic biomarkers, metabolomics also provides us with unique insights into the pathophysiology of the disease and helps identify metabolic pathways that may be potential therapeutic targets. Future studies will integrate metabolomics data with other omics techniques to provide further insight into the source of these metabolic abnormalities and help with identification of the most promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Pavan Bhargava
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
14
|
Mariani CL, Nye CJ, Tokarz DA, Green L, Lau J, Zidan N, Early PJ, Guevar J, Muñana KR, Olby NJ, Miles S. Cerebrospinal fluid lactate in dogs with inflammatory central nervous system disorders. J Vet Intern Med 2019; 33:2701-2708. [PMID: 31549740 PMCID: PMC6872616 DOI: 10.1111/jvim.15606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/20/2019] [Indexed: 02/01/2023] Open
Abstract
Background Cerebrospinal fluid (CSF) lactate is frequently used as a biomarker in humans with inflammatory central nervous system (CNS) disorders including bacterial meningitis and autoimmune disorders such as multiple sclerosis. Hypothesis Cerebrospinal fluid lactate concentrations are increased in a subset of dogs with inflammatory CNS disorders. Animals One hundred two client‐owned dogs diagnosed with inflammatory CNS disease. Methods Case series. Cases were identified both prospectively at the time of diagnosis and retrospectively by review of a CSF biorepository. Cerebrospinal fluid lactate was analyzed with a commercially available, handheld lactate monitor. Subcategories of inflammatory disease were created for comparison (eg, steroid‐responsive meningitis arteritis, meningoencephalitis of unknown etiology). Results Cerebrospinal fluid lactate concentrations were above reference range in 47% of dogs (median, 2.5 mmol/L; range, 1.0‐11.7 mmol/L). There was no significant difference in lactate concentrations between disease subcategories (P = .48). Significant but weak correlations were noted between CSF lactate concentration and nucleated cell count (r = .33, P < .001), absolute large mononuclear cell count (r = .44, P < .001), absolute small mononuclear cell count (r = .39, P < .001), absolute neutrophil cell count (r = .24, P = .01), and protein (r = .44, P < .001). No correlation was found between CSF lactate concentration and CSF red blood cell count (P = .58). There was no significant association of CSF lactate concentration with survival (P = .27). Conclusions and Clinical Importance Cerebrospinal fluid lactate concentrations could serve as a rapid biomarker of inflammatory CNS disease in dogs.
Collapse
Affiliation(s)
- Christopher L Mariani
- Comparative Neuroimmunology and Neuro-oncology Laboratory, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina.,Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Carolyn J Nye
- Comparative Neuroimmunology and Neuro-oncology Laboratory, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Debra A Tokarz
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Lauren Green
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Jeanie Lau
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Natalia Zidan
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Peter J Early
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Julien Guevar
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Karen R Muñana
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Natasha J Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Sarita Miles
- Veterinary Specialty Hospital of the Carolinas, Cary, North Carolina
| |
Collapse
|
15
|
Pareek V, Nath B, Roy PK. Role of Neuroimaging Modality in the Assessment of Oxidative Stress in Brain: A Comprehensive Review. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:372-381. [DOI: 10.2174/1871527318666190507102340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022]
Abstract
Background & Objective:Oxidative stress (OS) is the secondary source of an injury in consequence to the earlier caused primary injury; it is the condition of an imbalance between oxidants and antioxidants within the physiological system. OS causes alterations in proteins and DNA structure, leading to inflammation, apoptotic cell death, and tissue damage. Neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease, Glioma-induced neurodegeneration and the normal aging-related neuro-degeneration are primarily associated with the increased OS. The present review article is committed to delivering a comprehensive overview of the current neuroimaging modalities which estimates an indirect correlate of OS in the brain. OS-induced changes in white matter tracts and the gray matter volumes are reviewed assessing the role of diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) respectively. Further, the role of magnetic resonance spectroscopy (MRS) to assess the OS-induced alterations of chemical moieties, and thus the resultant structural implications in the neurological disorders are also briefly as well as precisely reviewed.Conclusions:In the present review article we present an overview of the role of neuroimaging modalities in the diagnosis, and longitudinal assessment during treatment of the OS induced changes.
Collapse
Affiliation(s)
- Vikas Pareek
- National Neuroimaging Facility, Computational Neuroscience & Neuroimaging Department, National Brain Research Center, Manesar, Haryana, 122052, India
| | - Banshi Nath
- CERVO Brain Research Centre, Quebec QC, Canada
| | - Prasun K. Roy
- Computational Neuroscience & Neuro-Imaging Laboratory, School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 122005, India
| |
Collapse
|
16
|
Liu J, Zhang L, He B, zhuang JH, Xu J, huang LY, Peng H. Roles of neuroimage in toxic encephalopathy induced by 1, 2-Dichloroethane. Clin Neurol Neurosurg 2019; 184:105398. [DOI: 10.1016/j.clineuro.2019.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 05/05/2019] [Accepted: 06/23/2019] [Indexed: 10/26/2022]
|
17
|
Camara-Lemarroy CR, Metz L, Meddings JB, Sharkey KA, Wee Yong V. The intestinal barrier in multiple sclerosis: implications for pathophysiology and therapeutics. Brain 2019; 141:1900-1916. [PMID: 29860380 DOI: 10.1093/brain/awy131] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/24/2018] [Indexed: 12/12/2022] Open
Abstract
Biological barriers are essential for the maintenance of homeostasis in health and disease. Breakdown of the intestinal barrier is an essential aspect of the pathophysiology of gastrointestinal inflammatory diseases, such as inflammatory bowel disease. A wealth of recent studies has shown that the intestinal microbiome, part of the brain-gut axis, could play a role in the pathophysiology of multiple sclerosis. However, an essential component of this axis, the intestinal barrier, has received much less attention. In this review, we describe the intestinal barrier as the physical and functional zone of interaction between the luminal microbiome and the host. Besides its essential role in the regulation of homeostatic processes, the intestinal barrier contains the gut mucosal immune system, a guardian of the integrity of the intestinal tract and the whole organism. Gastrointestinal disorders with intestinal barrier breakdown show evidence of CNS demyelination, and content of the intestinal microbiome entering into the circulation can impact the functions of CNS microglia. We highlight currently available studies suggesting that there is intestinal barrier dysfunction in multiple sclerosis. Finally, we address the mechanisms by which commonly used disease-modifying drugs in multiple sclerosis could alter the intestinal barrier and the microbiome, and we discuss the potential of barrier-stabilizing strategies, including probiotics and stabilization of tight junctions, as novel therapeutic avenues in multiple sclerosis.
Collapse
Affiliation(s)
- Carlos R Camara-Lemarroy
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Luanne Metz
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan B Meddings
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
18
|
Haarmann A, Hähnel L, Schuhmann M, Buttmann M. Age-adjusted CSF β2-microglobulin and lactate are increased and ACE is decreased in patients with multiple sclerosis, but only lactate correlates with clinical disease duration and severity. J Neuroimmunol 2018; 323:19-27. [DOI: 10.1016/j.jneuroim.2018.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 12/18/2022]
|
19
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Demyelination in Multiple Sclerosis: Reprogramming Energy Metabolism and Potential PPARγ Agonist Treatment Approaches. Int J Mol Sci 2018; 19:ijms19041212. [PMID: 29659554 PMCID: PMC5979570 DOI: 10.3390/ijms19041212] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 12/20/2022] Open
Abstract
Demyelination in multiple sclerosis (MS) cells is the site of several energy metabolic abnormalities driven by dysregulation between the opposed interplay of peroxisome proliferator-activated receptor γ (PPARγ) and WNT/β-catenin pathways. We focus our review on the opposing interactions observed in demyelinating processes in MS between the canonical WNT/β-catenin pathway and PPARγ and their reprogramming energy metabolism implications. Demyelination in MS is associated with chronic inflammation, which is itself associated with the release of cytokines by CD4+ Th17 cells, and downregulation of PPARγ expression leading to the upregulation of the WNT/β-catenin pathway. Upregulation of WNT/β-catenin signaling induces activation of glycolytic enzymes that modify their energy metabolic behavior. Then, in MS cells, a large portion of cytosolic pyruvate is converted into lactate. This phenomenon is called the Warburg effect, despite the availability of oxygen. The Warburg effect is the shift of an energy transfer production from mitochondrial oxidative phosphorylation to aerobic glycolysis. Lactate production is correlated with increased WNT/β-catenin signaling and demyelinating processes by inducing dysfunction of CD4+ T cells leading to axonal and neuronal damage. In MS, downregulation of PPARγ decreases insulin sensitivity and increases neuroinflammation. PPARγ agonists inhibit Th17 differentiation in CD4+ T cells and then diminish release of cytokines. In MS, abnormalities in the regulation of circadian rhythms stimulate the WNT pathway to initiate the demyelination process. Moreover, PPARγ contributes to the regulation of some key circadian genes. Thus, PPARγ agonists interfere with reprogramming energy metabolism by directly inhibiting the WNT/β-catenin pathway and circadian rhythms and could appear as promising treatments in MS due to these interactions.
Collapse
Affiliation(s)
- Alexandre Vallée
- Délégation à la Recherche Clinique et à l'Innovation (DRCI), Hôpital Foch, 92150 Suresnes, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 77100 Meaux, France.
| | - Rémy Guillevin
- Data Analysis and Computations Through Imaging Modeling-Mathématiques (DACTIM), Unité mixte de recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348 (Laboratoire de Mathématiques et Application), University of Poitiers, Centre Hospitalier Universitaire (CHU) de Poitiers, 86000 Poitiers, France.
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, University of Picardie Jules Verne (UPJV), 80000 Amiens, France.
- LMA (Laboratoire de Mathématiques et Applications), Unité mixte de recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348, Université de Poitiers, 86000 Poitiers, France.
| |
Collapse
|
20
|
Wang C, Han X, Liu F, Patterson TA, Hanig JP, Paule MG, Slikker W. Lipid profiling as an effective approach for identifying biomarkers/adverse events associated with pediatric anesthesia. Toxicol Appl Pharmacol 2018; 354:191-195. [PMID: 29550513 DOI: 10.1016/j.taap.2018.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/20/2018] [Accepted: 03/12/2018] [Indexed: 12/13/2022]
Abstract
Adverse effects related to central nervous system (CNS) function in pediatric populations may, at times, be difficult, if not impossible to evaluate. Prolonged anesthetic exposure affects brain excitability and anesthesia during the most sensitive developmental stages and has been associated with mitochondrial dysfunction, aberrant lipid metabolism and synaptogenesis, subsequent neuronal damage, as well as long-term behavioral deficits. There has been limited research evaluating whether and how anesthetic agents affect cellular lipids, the most abundant components of the brain other than water. Therefore, this review discusses: (1) whether the observed anesthetic-induced changes in lipid profiles seen in preclinical studies represents early signs of neurotoxicity; (2) the potential mechanisms underlying anesthetic-induced brain injury; and (3) whether lipid biomarker(s) identified in preclinical studies can serve as markers for the early clinical detection of anesthetic-induced neurotoxicity.
Collapse
Affiliation(s)
- Cheng Wang
- Division of Neurotoxicology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Xianlin Han
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Fang Liu
- Division of Neurotoxicology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR 72079, USA
| | - Tucker A Patterson
- National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR 72079, USA
| | - Joseph P Hanig
- Center for Drug Evaluation and Research/Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Merle G Paule
- Division of Neurotoxicology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR 72079, USA
| | - William Slikker
- National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
21
|
Abdelhak A, Hottenrott T, Mayer C, Hintereder G, Zettl UK, Stich O, Tumani H. CSF profile in primary progressive multiple sclerosis: Re-exploring the basics. PLoS One 2017; 12:e0182647. [PMID: 28797088 PMCID: PMC5552348 DOI: 10.1371/journal.pone.0182647] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/21/2017] [Indexed: 12/14/2022] Open
Abstract
Objective The aim of this study was to report the basic cerebrospinal fluid (CSF) profile in patients with primary progressive multiple sclerosis (PPMS). Methods The results of CSF analysis from 254 patients with PPMS were collected at four university hospitals in Germany. Routine CSF parameters and different indices of intrathecal immunoglobulin synthesis were evaluated. We assessed possible correlations between the various CSF parameters and the expanded disability status scale (EDSS) both at the time of lumbar puncture and during the course of the disease. Results The median cell count and albumin concentration in the CSF did not deviate from normal values. The CSF-serum albumin-quotient (QALB) was elevated in 29.6% of the patients, while intrathecal immunoglobulin G (IgG) oligoclonal bands (OCBs) were detected in 91.1% of the patients. CSF-lactate levels as well as local IgM- and IgA-synthesis were correlated with the yearly disease progression rate, as assessed by EDSS. Conclusion We present the results of the hitherto largest and most detailed CSF biomarker profile in a cohort of 254 patients with PPMS. As reported previously, OCBs are the most sensitive marker for intrathecal IgG synthesis. CSF-lactate concentrations are positively correlated with the progression rate, which might suggest that mitochondrial dysfunction plays a relevant role in PPMS. The negative correlation between intrathecally produced IgM and IgA and disease progression may indicate their hitherto unexplored protective role.
Collapse
Affiliation(s)
| | - Tilman Hottenrott
- Department of Neurology, University Hospital Freiburg, Freiburg, Germany
| | - Christoph Mayer
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Germany
| | - Gudrun Hintereder
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Germany
| | - Uwe K Zettl
- Department of Neurology, Neuroimmunological Section, University Hospital Rostock, Rostock, Germany
| | - Oliver Stich
- Department of Neurology, University Hospital Freiburg, Freiburg, Germany
| | | |
Collapse
|
22
|
Hyperpolarized 13C MR metabolic imaging can detect neuroinflammation in vivo in a multiple sclerosis murine model. Proc Natl Acad Sci U S A 2017; 114:E6982-E6991. [PMID: 28760957 DOI: 10.1073/pnas.1613345114] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Proinflammatory mononuclear phagocytes (MPs) play a crucial role in the progression of multiple sclerosis (MS) and other neurodegenerative diseases. Despite advances in neuroimaging, there are currently limited available methods enabling noninvasive detection of MPs in vivo. Interestingly, upon activation and subsequent differentiation toward a proinflammatory phenotype MPs undergo metabolic reprogramming that results in increased glycolysis and production of lactate. Hyperpolarized (HP) 13C magnetic resonance spectroscopic imaging (MRSI) is a clinically translatable imaging method that allows noninvasive monitoring of metabolic pathways in real time. This method has proven highly useful to monitor the Warburg effect in cancer, through MR detection of increased HP [1-13C]pyruvate-to-lactate conversion. However, to date, this method has never been applied to the study of neuroinflammation. Here, we questioned the potential of 13C MRSI of HP [1-13C]pyruvate to monitor the presence of neuroinflammatory lesions in vivo in the cuprizone mouse model of MS. First, we demonstrated that 13C MRSI could detect a significant increase in HP [1-13C]pyruvate-to-lactate conversion, which was associated with a high density of proinflammatory MPs. We further demonstrated that the increase in HP [1-13C]lactate was likely mediated by pyruvate dehydrogenase kinase 1 up-regulation in activated MPs, resulting in regional pyruvate dehydrogenase inhibition. Altogether, our results demonstrate a potential for 13C MRSI of HP [1-13C]pyruvate as a neuroimaging method for assessment of inflammatory lesions. This approach could prove useful not only in MS but also in other neurological diseases presenting inflammatory components.
Collapse
|
23
|
Kim HH, Jeong IH, Hyun JS, Kong BS, Kim HJ, Park SJ. Metabolomic profiling of CSF in multiple sclerosis and neuromyelitis optica spectrum disorder by nuclear magnetic resonance. PLoS One 2017; 12:e0181758. [PMID: 28746356 PMCID: PMC5528902 DOI: 10.1371/journal.pone.0181758] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/06/2017] [Indexed: 11/19/2022] Open
Abstract
Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are inflammatory diseases of the central nervous system. Although several studies have characterized the metabolome in the cerebrospinal fluid (CSF) from MS and NMOSD patients, comparative analyses between them and between the relapse and the remission of each disease have not been performed. Both univariate and multivariate analyses were used to compare 1H-NMR spectra of CSF from MS, NMOSD, and healthy controls (HCs). The statistical analysis showed alterations of eight metabolites that were dependent on the disease. Levels of 2-hydroxybutyrate, acetone, formate, and pyroglutamate were higher and levels of acetate and glucose were lower in both MS and NMOSD. Citrate was lower in MS patients, whereas lactate was higher in only NMOSD specifically. The shared feature of metabolic changes between MS and NMOSD may be related to altered energy metabolism and fatty acid biosynthesis in the brain. Another analysis to characterize relapse and remission status showed that isoleucine and valine were down-regulated in MS relapse compared to MS remission. The other metabolites identified in the disease comparison showed the same alterations regardless of disease activity. These findings would be helpful in understanding the biological background of these diseases, and distinguishing between MS and NMOSD, as well as determining the disease activity.
Collapse
Affiliation(s)
- Hyun-Hwi Kim
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Korea
| | - In Hye Jeong
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Ja-Shil Hyun
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Korea
| | - Byung Soo Kong
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Korea
| |
Collapse
|
24
|
Fluvoxamine stimulates oligodendrogenesis of cultured neural stem cells and attenuates inflammation and demyelination in an animal model of multiple sclerosis. Sci Rep 2017; 7:4923. [PMID: 28687730 PMCID: PMC5501834 DOI: 10.1038/s41598-017-04968-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/22/2017] [Indexed: 11/08/2022] Open
Abstract
Multiple Sclerosis (MS) require medications controlling severity of the pathology and depression, affecting more than half of the patients. In this study, the effect of antidepressant drug fluvoxamine, a selective serotonin reuptake inhibitor, was investigated in vitro and in vivo. Nanomolar concentrations of fluvoxamine significantly increased cell viability and proliferation of neural stem cells (NSCs) through increasing mRNA expression of Notch1, Hes1 and Ki-67, and protein levels of NICD. Also, physiological concentrations of fluvoxamine were optimal for NSC differentiation toward oligodendrocytes, astrocytes and neurons. In addition, fluvoxamine attenuated experimental autoimmune encephalomyelitis (EAE) severity, a rat MS model, by significantly decreasing its clinical scores. Moreover, fluvoxamine treated EAE rats showed a decrease in IFN-γ serum levels and an increase in IL-4, pro- and anti-inflammatory cytokines respectively, compared to untreated EAE rats. Furthermore, immune cell infiltration and demyelination plaque significantly decreased in spinal cords of fluvoxamine-treated rats, which was accompanied by an increase in protein expression of MBP and GFAP positive cells and a decrease in lactate serum levels, a new biomarker of MS progression. In summary, besides its antidepressant activity, fluvoxamine stimulates proliferation and differentiation of NSCs particularly toward oligodendrocytes, a producer of CNS myelin.
Collapse
|
25
|
Liu T, He Z, Tian X, Kamal GM, Li Z, Liu Z, Liu H, Xu F, Wang J, Xiang H. Specific patterns of spinal metabolites underlying α-Me-5-HT-evoked pruritus compared with histamine and capsaicin assessed by proton nuclear magnetic resonance spectroscopy. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1222-1230. [PMID: 28344131 DOI: 10.1016/j.bbadis.2017.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 12/29/2022]
Abstract
The mechanism behind itching is not well understood. Proton nuclear magnetic resonance (1H-NMR) spectroscopic analysis of spinal cord extracts provides a quick modality for evaluating the specific metabolic activity of α-Me-5-HT-evoked pruritus mice. In the current study, four groups of young adult male C57Bl/6 mice were investigated; one group treated with saline, while the other groups intradermally injected with α-Me-5-HT (histamine independent pruritogen), histamine (histamine dependent pruritogen) and capsaicin (algogenic substance), respectively. The intradermal microinjection of α-Me-5-HT and histamine resulted in a dramatic increase in the itch behavior. Furthermore, the results of NMR studies of the spinal cord extracts revealed that the metabolites show very different patterns for these different drugs, especially when comparing α-Me-5-HT and capsaicin. All the animals in the groups of α-Me-5-HT and capsaicin were completely separated using the metabolite parameters and principal component analysis. For α-Me-5-HT, the concentrations of glutamate, GABA, glycine and aspartate increased significantly, especially for GABA (increased 17.2%, p=0.008). Furthermore, the concentration of NAA increased, but there was no significant difference (increased 11.3%, p=0.191) compared to capsaicin (decreased 29.1%, p=0.002). Thus the application of magnetic resonance spectroscopy technique, coupled with statistical analysis, could further explain the mechanism behind itching evoked by α-Me-5-HT or other drugs. It can thus improve our understanding of itch pathophysiology and pharmacological therapies which may contribute to itch relief.
Collapse
Affiliation(s)
- Taotao Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China; Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Zhigang He
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xuebi Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Ghulam Mustafa Kamal
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhixiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Zeyuan Liu
- College of Life Science, Wuhan University, Wuhan, Hubei 430076, PR China
| | - Huili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei 430071, PR China
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Hongbing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
26
|
Ghareghani M, Dokoohaki S, Ghanbari A, Farhadi N, Zibara K, Khodadoust S, Parishani M, Ghavamizadeh M, Sadeghi H. Melatonin exacerbates acute experimental autoimmune encephalomyelitis by enhancing the serum levels of lactate: A potential biomarker of multiple sclerosis progression. Clin Exp Pharmacol Physiol 2016; 44:52-61. [DOI: 10.1111/1440-1681.12678] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/25/2016] [Accepted: 09/27/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Majid Ghareghani
- Cellular and Molecular Research Center; Faculty of Medicine; Yasuj University of Medical Sciences; Yasuj Iran
| | - Shima Dokoohaki
- Cellular and Molecular Research Center; Faculty of Medicine; Yasuj University of Medical Sciences; Yasuj Iran
| | - Amir Ghanbari
- Cellular and Molecular Research Center; Faculty of Medicine; Yasuj University of Medical Sciences; Yasuj Iran
| | - Naser Farhadi
- Cellular and Molecular Research Center; Faculty of Medicine; Yasuj University of Medical Sciences; Yasuj Iran
| | - Kazem Zibara
- ER045; Laboratory of Stem Cells; EDST; Biology Department; Faculty of Sciences; Lebanese University; Beirut Lebanon
| | - Saeid Khodadoust
- Department of Chemistry; Behbahan Khatam Alanbia University of Technology; Behbahan Iran
| | - Mohammad Parishani
- Cellular and Molecular Research Center; Faculty of Medicine; Yasuj University of Medical Sciences; Yasuj Iran
| | - Mehdi Ghavamizadeh
- Cellular and Molecular Gerash Research center; Gerash University of Medical Science; Gerash Iran
| | - Heibatollah Sadeghi
- Cellular and Molecular Research Center; Faculty of Medicine; Yasuj University of Medical Sciences; Yasuj Iran
| |
Collapse
|
27
|
Ghareghani M, Ghanbari A, Dokoohaki S, Farhadi N, Hosseini SM, Mohammadi R, Sadeghi H. Methylprednisolone improves lactate metabolism through reduction of elevated serum lactate in rat model of multiple sclerosis. Biomed Pharmacother 2016; 84:1504-1509. [PMID: 27884750 DOI: 10.1016/j.biopha.2016.11.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 10/30/2016] [Accepted: 11/11/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Some studies have demonstrated elevated concentrations of lactate both in the cerebrospinal fluid (CSF) and blood samples of multiple sclerosis (MS) patients as a pathological condition. We designed an experimental study first to investigate the serum level of lactate as a biomarker of MS progression and also to investigate the effect of methylprednisolone on serum lactate. METHODS Experimental autoimmune encephalomyelitis (EAE) was inducted in Lewis rats, and then rats were treated intraperitoneally with methylprednisolone (30mg/kg/d), at the disease onset, and the clinical scores were recorded. After seven days of treatment, the serum levels of lactate were determined using high performance liquid chromatography (HPLC). Moreover, lymphocyte infiltration and the demyelinated area was analysed in spinal cord. RESULTS Compared to the untreated-EAE rats, methylprednisolone remarkably improved the clinical score of EAE and ameliorated the spinal cord inflammation and demyelination. In addition, the marked decline in IFN-γ and the increase in IL-4 confirmed improvement in the rats treated with methylprednisolone. Measurement of lactate using HPLC indicated enhancement in the serum level of lactate in the untreated-EAE rats; the lactate level significantly decreased after methylprednisolone therapy. Moreover, serum lactates and disease severity were correlated positively and significantly. CONCLUSION These data confirmed for the first time, that methylprednisolone can decreases the enhanced level of serum lactate in EAE model. In addition, it was shown that measurement of serum lactate could be an inexpensive and accurate laboratory test to determine the response to treatment and to assess disease severity in MS patients.
Collapse
Affiliation(s)
- Majid Ghareghani
- Cellular and Molecular Research Centre, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran; Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amir Ghanbari
- Cellular and Molecular Research Centre, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Shima Dokoohaki
- Cellular and Molecular Research Centre, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Naser Farhadi
- Cellular and Molecular Research Centre, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Reza Mohammadi
- Medicinal Plants Research Centre, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Heibatollah Sadeghi
- Cellular and Molecular Research Centre, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
28
|
Albanese M, Zagaglia S, Landi D, Boffa L, Nicoletti CG, Marciani MG, Mandolesi G, Marfia GA, Buttari F, Mori F, Centonze D. Cerebrospinal fluid lactate is associated with multiple sclerosis disease progression. J Neuroinflammation 2016; 13:36. [PMID: 26863878 PMCID: PMC4750170 DOI: 10.1186/s12974-016-0502-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Altered cerebrospinal fluid (CSF) levels of lactate have been described in neurodegenerative diseases and related to mitochondrial dysfunction and neuronal degeneration. We investigated the relationship between CSF lactate levels, disease severity, and biomarkers associated with neuroaxonal damage in patients with multiple sclerosis (MS). METHODS One-hundred eighteen subjects with relapsing-remitting multiple sclerosis (RRMS) were included, along with one-hundred fifty seven matched controls. CSF levels of lactate, tau protein, and neurofilament light were detected at the time of diagnosis. Patients were followed-up for a mean of 5 years. Progression index (PI), multiple sclerosis severity scale (MSSS), and Bayesian risk estimate for multiple sclerosis (BREMS) were assessed as clinical measures of disease severity and progression. Differences between groups and correlation between CSF lactate, disease severity and CSF biomarkers of neuronal damage were explored. RESULTS CSF lactate was higher in RRMS patients compared to controls. A negative correlation was found between lactate levels and disease duration. Patients with higher CSF lactate concentration had significantly higher PI, MSSS, and BREMS scores at long-term follow-up. Furthermore, CSF lactate correlated positively and significantly with CSF levels of both tau protein and neurofilament light protein. CONCLUSIONS Measurement of CSF lactate may be helpful, in conjunction with other biomarkers of tissue damage, as an early predictor of disease severity in RRMS patients. A better understanding of the alterations of mitochondrial metabolic pathways associated to RRMS severity may pave the way to new therapeutic targets to contrast axonal damage and disease severity.
Collapse
Affiliation(s)
- Maria Albanese
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy.,IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli, IS, Italy
| | - Sara Zagaglia
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy.,Clinica di Neurologia, Università Politecnica delle Marche, 60100, Ancona, Italy
| | - Doriana Landi
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy.,IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli, IS, Italy
| | - Laura Boffa
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy
| | - Carolina G Nicoletti
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy
| | - Maria Grazia Marciani
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy
| | | | - Girolama A Marfia
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy.,IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli, IS, Italy
| | - Fabio Buttari
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy.,IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli, IS, Italy
| | - Francesco Mori
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy.,IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli, IS, Italy
| | - Diego Centonze
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy. .,IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli, IS, Italy.
| |
Collapse
|
29
|
Cocco E, Murgia F, Lorefice L, Barberini L, Poddighe S, Frau J, Fenu G, Coghe G, Murru MR, Murru R, Del Carratore F, Atzori L, Marrosu MG. (1)H-NMR analysis provides a metabolomic profile of patients with multiple sclerosis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2015; 3:e185. [PMID: 26740964 PMCID: PMC4694073 DOI: 10.1212/nxi.0000000000000185] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/01/2015] [Indexed: 11/15/2022]
Abstract
Objective: To investigate the metabolomic profiles of patients with multiple sclerosis (MS) and to define the metabolic pathways potentially related to MS pathogenesis. Methods: Plasma samples from 73 patients with MS (therapy-free for at least 90 days) and 88 healthy controls (HC) were analyzed by 1H-NMR spectroscopy. Data analysis was conducted with principal components analysis followed by a supervised analysis (orthogonal partial least squares discriminant analysis [OPLS-DA]). The metabolites were identified and quantified using Chenomx software, and the receiver operating characteristic (ROC) curves were calculated. Results: The model obtained with the OPLS-DA identified predictive metabolic differences between the patients with MS and HC (R2X = 0.615, R2Y = 0.619, Q2 = 0.476; p < 0.001). The differential metabolites included glucose, 5-OH-tryptophan, and tryptophan, which were lower in the MS group, and 3-OH-butyrate, acetoacetate, acetone, alanine, and choline, which were higher in the MS group. The suitability of the model was evaluated using an external set of samples. The values returned by the model were used to build the corresponding ROC curve (area under the curve of 0.98). Conclusion: NMR metabolomic analysis was able to discriminate different metabolic profiles in patients with MS compared with HC. With the exception of choline, the main metabolic changes could be connected to 2 different metabolic pathways: tryptophan metabolism and energy metabolism. Metabolomics appears to represent a promising noninvasive approach for the study of MS.
Collapse
Affiliation(s)
- Eleonora Cocco
- Department of Public Health (E.C., L.L., L.B., S.P., J.F., G.F., G.C., M.R.M., R.M.), Clinical and Molecular Medicine, Department of Biomedical Sciences (F.M., F.D.C., L.A.), and Department of Medical Science (M.G.M.), University of Cagliari, Cagliari, Italy
| | - Federica Murgia
- Department of Public Health (E.C., L.L., L.B., S.P., J.F., G.F., G.C., M.R.M., R.M.), Clinical and Molecular Medicine, Department of Biomedical Sciences (F.M., F.D.C., L.A.), and Department of Medical Science (M.G.M.), University of Cagliari, Cagliari, Italy
| | - Lorena Lorefice
- Department of Public Health (E.C., L.L., L.B., S.P., J.F., G.F., G.C., M.R.M., R.M.), Clinical and Molecular Medicine, Department of Biomedical Sciences (F.M., F.D.C., L.A.), and Department of Medical Science (M.G.M.), University of Cagliari, Cagliari, Italy
| | - Luigi Barberini
- Department of Public Health (E.C., L.L., L.B., S.P., J.F., G.F., G.C., M.R.M., R.M.), Clinical and Molecular Medicine, Department of Biomedical Sciences (F.M., F.D.C., L.A.), and Department of Medical Science (M.G.M.), University of Cagliari, Cagliari, Italy
| | - Simone Poddighe
- Department of Public Health (E.C., L.L., L.B., S.P., J.F., G.F., G.C., M.R.M., R.M.), Clinical and Molecular Medicine, Department of Biomedical Sciences (F.M., F.D.C., L.A.), and Department of Medical Science (M.G.M.), University of Cagliari, Cagliari, Italy
| | - Jessica Frau
- Department of Public Health (E.C., L.L., L.B., S.P., J.F., G.F., G.C., M.R.M., R.M.), Clinical and Molecular Medicine, Department of Biomedical Sciences (F.M., F.D.C., L.A.), and Department of Medical Science (M.G.M.), University of Cagliari, Cagliari, Italy
| | - Giuseppe Fenu
- Department of Public Health (E.C., L.L., L.B., S.P., J.F., G.F., G.C., M.R.M., R.M.), Clinical and Molecular Medicine, Department of Biomedical Sciences (F.M., F.D.C., L.A.), and Department of Medical Science (M.G.M.), University of Cagliari, Cagliari, Italy
| | - Giancarlo Coghe
- Department of Public Health (E.C., L.L., L.B., S.P., J.F., G.F., G.C., M.R.M., R.M.), Clinical and Molecular Medicine, Department of Biomedical Sciences (F.M., F.D.C., L.A.), and Department of Medical Science (M.G.M.), University of Cagliari, Cagliari, Italy
| | - Maria Rita Murru
- Department of Public Health (E.C., L.L., L.B., S.P., J.F., G.F., G.C., M.R.M., R.M.), Clinical and Molecular Medicine, Department of Biomedical Sciences (F.M., F.D.C., L.A.), and Department of Medical Science (M.G.M.), University of Cagliari, Cagliari, Italy
| | - Raffaele Murru
- Department of Public Health (E.C., L.L., L.B., S.P., J.F., G.F., G.C., M.R.M., R.M.), Clinical and Molecular Medicine, Department of Biomedical Sciences (F.M., F.D.C., L.A.), and Department of Medical Science (M.G.M.), University of Cagliari, Cagliari, Italy
| | - Francesco Del Carratore
- Department of Public Health (E.C., L.L., L.B., S.P., J.F., G.F., G.C., M.R.M., R.M.), Clinical and Molecular Medicine, Department of Biomedical Sciences (F.M., F.D.C., L.A.), and Department of Medical Science (M.G.M.), University of Cagliari, Cagliari, Italy
| | - Luigi Atzori
- Department of Public Health (E.C., L.L., L.B., S.P., J.F., G.F., G.C., M.R.M., R.M.), Clinical and Molecular Medicine, Department of Biomedical Sciences (F.M., F.D.C., L.A.), and Department of Medical Science (M.G.M.), University of Cagliari, Cagliari, Italy
| | - Maria Giovanna Marrosu
- Department of Public Health (E.C., L.L., L.B., S.P., J.F., G.F., G.C., M.R.M., R.M.), Clinical and Molecular Medicine, Department of Biomedical Sciences (F.M., F.D.C., L.A.), and Department of Medical Science (M.G.M.), University of Cagliari, Cagliari, Italy
| |
Collapse
|
30
|
Application of metabolomics in autoimmune diseases: Insight into biomarkers and pathology. J Neuroimmunol 2015; 279:25-32. [DOI: 10.1016/j.jneuroim.2015.01.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/09/2014] [Accepted: 01/05/2015] [Indexed: 12/31/2022]
|
31
|
Botas A, Campbell HM, Han X, Maletic-Savatic M. Metabolomics of Neurodegenerative Diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 122:53-80. [DOI: 10.1016/bs.irn.2015.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
García-Díaz B, Riquelme R, Varela-Nieto I, Jiménez AJ, de Diego I, Gómez-Conde AI, Matas-Rico E, Aguirre JÁ, Chun J, Pedraza C, Santín LJ, Fernández O, Rodríguez de Fonseca F, Estivill-Torrús G. Loss of lysophosphatidic acid receptor LPA1 alters oligodendrocyte differentiation and myelination in the mouse cerebral cortex. Brain Struct Funct 2014; 220:3701-20. [PMID: 25226845 DOI: 10.1007/s00429-014-0885-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/08/2014] [Indexed: 12/16/2022]
Abstract
Lysophosphatidic acid (LPA) is an intercellular signaling lipid that regulates multiple cellular functions, acting through specific G-protein coupled receptors (LPA(1-6)). Our previous studies using viable Malaga variant maLPA1-null mice demonstrated the requirement of the LPA1 receptor for normal proliferation, differentiation, and survival of the neuronal precursors. In the cerebral cortex LPA1 is expressed extensively in differentiating oligodendrocytes, in parallel with myelination. Although exogenous LPA-induced effects have been investigated in myelinating cells, the in vivo contribution of LPA1 to normal myelination remains to be demonstrated. This study identified a relevant in vivo role for LPA1 as a regulator of cortical myelination. Immunochemical analysis in adult maLPA1-null mice demonstrated a reduction in the steady-state levels of the myelin proteins MBP, PLP/DM20, and CNPase in the cerebral cortex. The myelin defects were confirmed using magnetic resonance spectroscopy and electron microscopy. Stereological analysis limited the defects to adult differentiating oligodendrocytes, without variation in the NG2+ precursor cells. Finally, a possible mechanism involving oligodendrocyte survival was demonstrated by the impaired intracellular transport of the PLP/DM20 myelin protein which was accompanied by cellular loss, suggesting stress-induced apoptosis. These findings describe a previously uncharacterized in vivo functional role for LPA1 in the regulation of oligodendrocyte differentiation and myelination in the CNS, underlining the importance of the maLPA1-null mouse as a model for the study of demyelinating diseases.
Collapse
Affiliation(s)
- Beatriz García-Díaz
- Laboratorio de Investigación, UGC Intercentros de Neurociencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional de Málaga y Virgen de la Victoria, Hospital Civil, Pabellón 5, Planta Sótano, Plaza del Hospital Civil s/n, 29009, Málaga, Spain.,Department of Neurology, H. Houston Merritt Clinical Research Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Raquel Riquelme
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28029, Madrid, Spain
| | - Isabel Varela-Nieto
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28029, Madrid, Spain
| | - Antonio Jesús Jiménez
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29071, Málaga, Spain
| | - Isabel de Diego
- Departamento de Anatomía y Medicina Legal, Universidad de Málaga, 29071, Málaga, Spain
| | - Ana Isabel Gómez-Conde
- ECAI de Microscopía, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional de Málaga y Virgen de la Victoria, 29010, Málaga, Spain
| | - Elisa Matas-Rico
- Laboratorio de Investigación, UGC Intercentros de Neurociencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional de Málaga y Virgen de la Victoria, Hospital Civil, Pabellón 5, Planta Sótano, Plaza del Hospital Civil s/n, 29009, Málaga, Spain.,Division of Cell Biology I, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
| | - José Ángel Aguirre
- Departamento de Fisiología Humana y Educación Físico Deportiva, Universidad de Málaga, 29071, Málaga, Spain
| | - Jerold Chun
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Centre, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Carmen Pedraza
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29071, Málaga, Spain
| | - Luis Javier Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29071, Málaga, Spain
| | - Oscar Fernández
- Neurology Service, UGC Intercentros de Neurociencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional de Málaga y Virgen de la Victoria, Universidad de Málaga, 29010, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Laboratorio de Medicina Regenerativa, UGC de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, 29010, Málaga, Spain
| | - Guillermo Estivill-Torrús
- Laboratorio de Investigación, UGC Intercentros de Neurociencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional de Málaga y Virgen de la Victoria, Hospital Civil, Pabellón 5, Planta Sótano, Plaza del Hospital Civil s/n, 29009, Málaga, Spain. .,ECAI de Microscopía, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional de Málaga y Virgen de la Victoria, 29010, Málaga, Spain.
| |
Collapse
|
33
|
Angiogenesis in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol Commun 2014; 2:84. [PMID: 25047180 PMCID: PMC4149233 DOI: 10.1186/s40478-014-0084-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/09/2014] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis, the formation of new vessels, is found in Multiple Sclerosis (MS) demyelinating lesions following Vascular Endothelial Growth Factor (VEGF) release and the production of several other angiogenic molecules. The increased energy demand of inflammatory cuffs and damaged neural cells explains the strong angiogenic response in plaques and surrounding white matter. An angiogenic response has also been documented in an experimental model of MS, experimental allergic encephalomyelitis (EAE), where blood–brain barrier disruption and vascular remodelling appeared in a pre-symptomatic disease phase. In both MS and EAE, VEGF acts as a pro-inflammatory factor in the early phase but its reduced responsivity in the late phase can disrupt neuroregenerative attempts, since VEGF naturally enhances neuron resistance to injury and regulates neural progenitor proliferation, migration, differentiation and oligodendrocyte precursor cell (OPC) survival and migration to demyelinated lesions. Angiogenesis, neurogenesis and oligodendroglia maturation are closely intertwined in the neurovascular niches of the subventricular zone, one of the preferential locations of inflammatory lesions in MS, and in all the other temporary vascular niches where the mutual fostering of angiogenesis and OPC maturation occurs. Angiogenesis, induced either by CNS inflammation or by hypoxic stimuli related to neurovascular uncoupling, appears to be ineffective in chronic MS due to a counterbalancing effect of vasoconstrictive mechanisms determined by the reduced axonal activity, astrocyte dysfunction, microglia secretion of free radical species and mitochondrial abnormalities. Thus, angiogenesis, that supplies several trophic factors, should be promoted in therapeutic neuroregeneration efforts to combat the progressive, degenerative phase of MS.
Collapse
|
34
|
Amorini AM, Nociti V, Petzold A, Gasperini C, Quartuccio E, Lazzarino G, Di Pietro V, Belli A, Signoretti S, Vagnozzi R, Lazzarino G, Tavazzi B. Serum lactate as a novel potential biomarker in multiple sclerosis. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1137-43. [DOI: 10.1016/j.bbadis.2014.04.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/13/2014] [Accepted: 04/04/2014] [Indexed: 12/26/2022]
|
35
|
Reinke SN, Broadhurst DI, Sykes BD, Baker GB, Catz I, Warren KG, Power C. Metabolomic profiling in multiple sclerosis: insights into biomarkers and pathogenesis. Mult Scler 2014; 20:1396-400. [DOI: 10.1177/1352458513516528] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Metabolomics enables the provision of sensitive bio-markers of disease. We performed 800 MHz 1H-nuclear magnetic resonance (NMR) spectroscopic analyses of cerebrospinal fluid (CSF) specimens to identify biomarkers of multiple sclerosis (MS), yielding reproducible detection of 15 metabolites from MS ( n=15) and non-MS ( n=17) patients. Mean levels of choline, myo-inositol and threonate were increased, whereas 3-hydroxybutyrate, citrate, phenylalanine, 2-hydroxyisovalerate and mannose were decreased in MS-derived CSF ( p<0.05), suggesting alterations to energy and phospholipid metabolism. Multivariate hierarchal cluster analysis indicated a high correlation within the metabolite profiles, significantly clustering samples into the two clinical groups, which was corroborated using principal components analysis. CSF metabolomics have the capacity to yield quantitative biomarkers and insights into the pathogenesis of MS.
Collapse
Affiliation(s)
- SN Reinke
- Department of Medicine, University of Alberta, Canada
| | - DI Broadhurst
- Department of Medicine, University of Alberta, Canada
| | - BD Sykes
- Department of Biochemistry, University of Alberta, Canada
| | - GB Baker
- Department of Psychiatry, University of Alberta, Canada
| | - I Catz
- Department of Medicine, University of Alberta, Canada
| | - KG Warren
- Department of Medicine, University of Alberta, Canada
| | - C Power
- Department of Medicine, University of Alberta, Canada
- Department of Psychiatry, University of Alberta, Canada
| |
Collapse
|
36
|
Moussallieh FM, Elbayed K, Chanson JB, Rudolf G, Piotto M, De Seze J, Namer IJ. Serum analysis by 1H nuclear magnetic resonance spectroscopy: a new tool for distinguishing neuromyelitis optica from multiple sclerosis. Mult Scler 2013; 20:558-65. [PMID: 24080986 DOI: 10.1177/1352458513504638] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Neuromyelitis optica (NMO) and multiple sclerosis (MS), two inflammatory demyelinating diseases, are characterized by different therapeutic strategies. Currently, the only biological diagnostic tool available to distinguish NMO from MS is the specific serum autoantibody that targets aquaporin 4, but its sensitivity is low. OBJECTIVE To assess the diagnostic accuracy of metabolomic biomarker profiles in these two neurological conditions, compared to control patients. METHODS We acquired serum spectra (47 MS, 44 NMO and 42 controls) using proton nuclear magnetic resonance ((1)H-NMR) spectroscopy. We used multivariate pattern recognition analysis to identify disease-specific metabolic profiles. RESULTS The (1)H-NMR spectroscopic analysis evidenced two metabolites, originating probably from astrocytes, scyllo-inositol and acetate, as promising serum biomarkers of MS and NMO, respectively. In 87.8% of MS patients, scyllo-inositol increased 0.15 to 3-fold, compared to controls and in 74.3% of NMO patients, acetate increased 0.4 to 7-fold, compared to controls. Using these two metabolites simultaneously, we can discriminate MS versus NMO patients (sensitivity, 94.3%; specificity, 90.2%). CONCLUSION This study demonstrates the potential of (1)H-NMR spectroscopy of serum as a novel, promising analytical tool to discriminate populations of patients affected by NMO or MS.
Collapse
|
37
|
Morris G, Maes M. Myalgic encephalomyelitis/chronic fatigue syndrome and encephalomyelitis disseminata/multiple sclerosis show remarkable levels of similarity in phenomenology and neuroimmune characteristics. BMC Med 2013; 11:205. [PMID: 24229326 PMCID: PMC3847236 DOI: 10.1186/1741-7015-11-205] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 08/15/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND 'Encephalomyelitis disseminata' (multiple sclerosis) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are both classified as diseases of the central nervous system by the World Health Organization. This review aims to compare the phenomenological and neuroimmune characteristics of MS with those of ME/CFS. DISCUSSION There are remarkable phenomenological and neuroimmune overlaps between both disorders. Patients with ME/CFS and MS both experience severe levels of disabling fatigue and a worsening of symptoms following exercise and resort to energy conservation strategies in an attempt to meet the energy demands of day-to-day living. Debilitating autonomic symptoms, diminished cardiac responses to exercise, orthostatic intolerance and postural hypotension are experienced by patients with both illnesses. Both disorders show a relapsing-remitting or progressive course, while infections and psychosocial stress play a large part in worsening of fatigue symptoms. Activated immunoinflammatory, oxidative and nitrosative (O+NS) pathways and autoimmunity occur in both illnesses. The consequences of O+NS damage to self-epitopes is evidenced by the almost bewildering and almost identical array of autoantibodies formed against damaged epitopes seen in both illnesses. Mitochondrial dysfunctions, including lowered levels of ATP, decreased phosphocreatine synthesis and impaired oxidative phosphorylation, are heavily involved in the pathophysiology of both MS and ME/CFS. The findings produced by neuroimaging techniques are quite similar in both illnesses and show decreased cerebral blood flow, atrophy, gray matter reduction, white matter hyperintensities, increased cerebral lactate and choline signaling and lowered acetyl-aspartate levels. SUMMARY This review shows that there are neuroimmune similarities between MS and ME/CFS. This further substantiates the view that ME/CFS is a neuroimmune illness and that patients with MS are immunologically primed to develop symptoms of ME/CFS.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Pembrey, Llanelli, UK
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - Michael Maes
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Deakin University, Geelong, Australia
| |
Collapse
|
38
|
NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: A review. Anal Chim Acta 2012; 750:82-97. [DOI: 10.1016/j.aca.2012.05.049] [Citation(s) in RCA: 303] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/25/2012] [Accepted: 05/26/2012] [Indexed: 01/09/2023]
|
39
|
The role of metabolomics in neurological disease. J Neuroimmunol 2012; 248:48-52. [DOI: 10.1016/j.jneuroim.2012.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 01/18/2012] [Indexed: 12/14/2022]
|
40
|
Mandal R, Guo AC, Chaudhary KK, Liu P, Yallou FS, Dong E, Aziat F, Wishart DS. Multi-platform characterization of the human cerebrospinal fluid metabolome: a comprehensive and quantitative update. Genome Med 2012; 4:38. [PMID: 22546835 PMCID: PMC3446266 DOI: 10.1186/gm337] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 04/03/2012] [Accepted: 04/30/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human cerebral spinal fluid (CSF) is known to be a rich source of small molecule biomarkers for neurological and neurodegenerative diseases. In 2007, we conducted a comprehensive metabolomic study and performed a detailed literature review on metabolites that could be detected (via metabolomics or other techniques) in CSF. A total of 308 detectable metabolites were identified, of which only 23% were shown to be routinely identifiable or quantifiable with the metabolomics technologies available at that time. The continuing advancement in analytical technologies along with the growing interest in CSF metabolomics has led us to re-visit the human CSF metabolome and to re-assess both its size and the level of coverage than can be achieved with today's technologies. METHODS We used five analytical platforms, including nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), direct flow injection-mass spectrometry (DFI-MS/MS) and inductively coupled plasma-mass spectrometry (ICP-MS) to perform quantitative metabolomics on multiple human CSF samples. This experimental work was complemented with an extensive literature review to acquire additional information on reported CSF compounds, their concentrations and their disease associations. RESULTS NMR, GC-MS and LC-MS methods allowed the identification and quantification of 70 CSF metabolites (as previously reported). DFI-MS/MS allowed the quantification of 78 metabolites (6 acylcarnitines, 13 amino acids, hexose, 42 phosphatidylcholines, 2 lyso-phosphatidylcholines and 14 sphingolipids), while ICP-MS provided quantitative results for 33 metal ions in CSF. Literature analysis led to the identification of 57 more metabolites. In total, 476 compounds have now been confirmed to exist in human CSF. CONCLUSIONS The use of improved metabolomic and other analytical techniques has led to a 54% increase in the known size of the human CSF metabolome over the past 5 years. Commonly available metabolomic methods, when combined, can now routinely identify and quantify 36% of the 'detectable' human CSF metabolome. Our experimental works measured 78 new metabolites that, as per our knowledge, have not been reported to be present in human CSF. An updated CSF metabolome database containing the complete set of 476 human CSF compounds, their concentrations, related literature references and links to their known disease associations is freely available at the CSF metabolome database.
Collapse
Affiliation(s)
- Rupasri Mandal
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB Canada T6G 2E8
| | - An Chi Guo
- Department of Computing Sciences, University of Alberta, Athabasca Hall, Edmonton, AB Canada T6G 2E8
| | - Kruti K Chaudhary
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB Canada T6G 2E8
| | - Philip Liu
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB Canada T6G 2E8
| | - Faizath S Yallou
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB Canada T6G 2E8
| | - Edison Dong
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB Canada T6G 2E8
| | - Farid Aziat
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB Canada T6G 2E8
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB Canada T6G 2E8
- Department of Computing Sciences, University of Alberta, Athabasca Hall, Edmonton, AB Canada T6G 2E8
- National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, AB, Canada T6G 2M9
| |
Collapse
|
41
|
Nevedomskaya E, Mayboroda OA, Deelder AM. Cross-platform analysis of longitudinal data in metabolomics. MOLECULAR BIOSYSTEMS 2011; 7:3214-22. [PMID: 21947311 DOI: 10.1039/c1mb05280b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metabolic profiling is considered to be a very promising tool for diagnostic purposes, for assessing nutritional status and response to drugs. However, it is also evident that human metabolic profiles have a complex nature, influenced by many external factors. This, together with the understanding of the difficulty to assign people to distinct groups and a general move in clinical science towards personalized medicine, raises the interest to explore individual and variable metabolic features for each individual separately in longitudinal study design. In the current paper we have analyzed a set of metabolic profiles of a selection of six urine samples per person from a set of healthy individuals by (1)H NMR and reversed-phase UPLC-MS. We have demonstrated that the method for recovery of individual metabolic phenotypes can give complementary information to another established method for analysis of longitudinal data--multilevel component analysis. We also show that individual metabolic signatures can be found not only in (1)H NMR data, as has been demonstrated before, but also even more strongly in LC-MS data.
Collapse
Affiliation(s)
- Ekaterina Nevedomskaya
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, NL-2300 RC Leiden, The Netherlands.
| | | | | |
Collapse
|
42
|
Abstract
Multiple sclerosis is a debilitating disease of the central nervous system that has been characteristically classified as an immune-mediated destruction of myelin, the protective coating on nerve fibers. Although the mechanisms responsible for the immune attack to central nervous system myelin have been the subject of intense investigation, more recent studies have focused on the neurodegenerative component, which is cause of clinical disability in young adults and appears to be only partially controlled by immunomodulatory therapies. Here, we review distinct, but not mutually exclusive, mechanisms of pathogenesis of axonal damage in multiple sclerosis patients that are either consequent to long-term demyelination or independent from it. We propose that the complexity of axonal degeneration and the heterogeneity of the underlying pathogenetic mechanisms should be taken into consideration for the design of targeted therapeutic intervention.
Collapse
Affiliation(s)
- Jeffery D Haines
- Departments of Neuroscience Neurology and Genetics and Genomics, Mount Sinai School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
43
|
Paling D, Golay X, Wheeler-Kingshott C, Kapoor R, Miller D. Energy failure in multiple sclerosis and its investigation using MR techniques. J Neurol 2011; 258:2113-27. [DOI: 10.1007/s00415-011-6117-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/18/2011] [Accepted: 05/20/2011] [Indexed: 12/22/2022]
|
44
|
Kolokolova TN, Savel’ev OY, Sergeev NM. Metabolic analysis of human biological fluids by 1H NMR spectroscopy. JOURNAL OF ANALYTICAL CHEMISTRY 2011. [DOI: 10.1134/s1061934808020020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Kolokolova TN, Savel’ev OY, Sergeev NM, Shpigun OA, Sokolov KV, Skvortsova VI. Nuclear magnetic resonance spectroscopy in solving the analytical problems of medicine: Analysis of cerebrospinal fluid. JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.1134/s106193481010014x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Sinclair AJ, Viant MR, Ball AK, Burdon MA, Walker EA, Stewart PM, Rauz S, Young SP. NMR-based metabolomic analysis of cerebrospinal fluid and serum in neurological diseases--a diagnostic tool? NMR IN BIOMEDICINE 2010; 23:123-132. [PMID: 19691132 DOI: 10.1002/nbm.1428] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We sought to evaluate the diagnostic accuracy of metabolomic biomarker profiles in neurological conditions (idiopathic intracranial hypertension (IIH), multiple sclerosis (MS) and cerebrovascular disease (CVD) compared to controls with either no neurological disease or mixed neurological diseases). Spectra of CSF (n = 87) and serum (n = 72) were acquired using (1)H NMR spectroscopy. Multivariate pattern recognition analysis was used to identify disease-specific metabolite biomarker profiles. The metabolite profiles were then used to predict the diagnosis of a second cohort of patients (n = 25). CSF metabolite profiles were able to predict diagnosis with a sensitivity and specificity of 80% for both IIH and MS. The CVD serum metabolite profile was 75% sensitive and specific. On analysing the second patient cohort, the established metabolite biomarker profiles generated from the first cohort showed moderate ability to segregate patients with IIH and MS (sensitivity:specificity of 63:75% and 67:75%, respectively). These findings suggest that NMR spectroscopic metabolic profiling of CSF and serum can identify differences between IIH, MS, CVD and mixed neurological diseases. Metabolomics may, therefore, have the potential to be developed into a clinically useful diagnostic tool. The identification of disease-unique metabolites may also impart information on disease pathology.
Collapse
Affiliation(s)
- Alexandra J Sinclair
- Academic Unit of Ophthalmology, School of Immunity and Inflammation, University of Birmingham, Birmingham, UK.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Metabolomics: moving to the clinic. J Neuroimmune Pharmacol 2009; 5:4-17. [PMID: 19399626 DOI: 10.1007/s11481-009-9156-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 04/06/2009] [Indexed: 12/12/2022]
Abstract
Assessment of a biological system by means of global and non-targeted metabolite profiling--metabolomics or metabonomics--provides the investigator with molecular information that is close to the phenotype in question in the sense that metabolites are an ultimate product of gene, mRNA, and protein activity. Over the last few years, there has been a rapidly growing number of metabolomics applications aimed at finding biomarkers which could assist diagnosis, provide therapy guidance, and evaluate response to therapy for particular diseases. Also, within the fields of drug discovery, drug toxicology, and personalized pharmacology, metabolomics is emerging as a powerful tool. This review seeks to update the reader on analytical strategies, biomarker findings, and implications of metabolomics for the clinic. Particular attention is paid to recent biomarkers found related to neurological, cardiovascular, and cancer diseases. Moreover, the impact of metabolomics in the drug discovery and development process is examined.
Collapse
|
48
|
Regenold WT, Phatak P, Makley MJ, Stone RD, Kling MA. Cerebrospinal fluid evidence of increased extra-mitochondrial glucose metabolism implicates mitochondrial dysfunction in multiple sclerosis disease progression. J Neurol Sci 2008; 275:106-12. [PMID: 18783801 DOI: 10.1016/j.jns.2008.07.032] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 07/22/2008] [Accepted: 07/31/2008] [Indexed: 11/25/2022]
Abstract
In contrast to relapse, the mechanisms of multiple sclerosis (MS) disease progression are less understood and appear not to be exclusively inflammatory in nature. In this pilot study we investigated the relationship between disturbed CNS energy metabolism and MS disease progression. We tested the hypothesis that cerebrospinal fluid (CSF) concentrations of sorbitol, fructose, and lactate, all metabolites of extra-mitochondrial glucose metabolism, would be elevated in secondary progressive (SP) MS patients and would be associated with worsening neurologic disability. We measured metabolite concentrations by gas chromatographic/mass spectrometric and enzymatic methods in archived CSF samples from 85 MS patients [31 relapsing-remitting (RR) and 54 SP patients] and 18 healthy controls. We found that concentrations of all three metabolites, but not concentrations of glucose or myoinositol, were significantly increased in CSF from SP and, to a lesser degree, RR patients, compared to controls. Furthermore, CSF concentrations of sorbitol and fructose (polyol pathway metabolites), but not lactate (anaerobic glycolysis metabolite), correlated positively and significantly with Expanded Disability Status Scale (EDSS) score, an index of neurologic disability in MS patients. We conclude that extra-mitochondrial glucose metabolism is increased in MS patients and is associated with disease progression evidenced by increasing EDSS score. As extra-mitochondrial glucose metabolism increases with impaired mitochondrial metabolism of glucose, these findings implicate mitochondrial dysfunction in the pathogenesis of MS disease progression. CSF metabolic profiling may be useful in clarifying the role of mitochondrial pathology in progression and in targeting and monitoring therapies for disease progression that aim to preserve or boost mitochondrial glucose metabolism.
Collapse
Affiliation(s)
- William T Regenold
- University of Maryland School of Medicine, Department of Psychiatry, Division of Geriatric Psychiatry, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
49
|
Wishart DS, Lewis MJ, Morrissey JA, Flegel MD, Jeroncic K, Xiong Y, Cheng D, Eisner R, Gautam B, Tzur D, Sawhney S, Bamforth F, Greiner R, Li L. The human cerebrospinal fluid metabolome. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 871:164-73. [PMID: 18502700 DOI: 10.1016/j.jchromb.2008.05.001] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 04/23/2008] [Accepted: 05/02/2008] [Indexed: 11/30/2022]
Abstract
With continuing improvements in analytical technology and an increased interest in comprehensive metabolic profiling of biofluids and tissues, there is a growing need to develop comprehensive reference resources for certain clinically important biofluids, such as blood, urine and cerebrospinal fluid (CSF). As part of our effort to systematically characterize the human metabolome we have chosen to characterize CSF as the first biofluid to be intensively scrutinized. In doing so, we combined comprehensive NMR, gas chromatography-mass spectrometry (GC-MS) and liquid chromatography (LC) Fourier transform-mass spectrometry (FTMS) methods with computer-aided literature mining to identify and quantify essentially all of the metabolites that can be commonly detected (with today's technology) in the human CSF metabolome. Tables containing the compounds, concentrations, spectra, protocols and links to disease associations that we have found for the human CSF metabolome are freely available at http://www.csfmetabolome.ca.
Collapse
Affiliation(s)
- David S Wishart
- Department of Computing Science, University of Alberta, Edmonton, AB, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lutz NW, Viola A, Malikova I, Confort-Gouny S, Audoin B, Ranjeva JP, Pelletier J, Cozzone PJ. Inflammatory multiple-sclerosis plaques generate characteristic metabolic profiles in cerebrospinal fluid. PLoS One 2007; 2:e595. [PMID: 17611627 PMCID: PMC1899231 DOI: 10.1371/journal.pone.0000595] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Accepted: 06/10/2007] [Indexed: 12/29/2022] Open
Abstract
Background Multiple sclerosis (MS), an inflammatory disease of the central nervous system, manifests itself in numerous forms and stages. A number of brain metabolic alterations have been reported for MS patients vs. control subjects. However, metabolite profiles of cerebrospinal fluid (CSF) are not consistent among the published MS studies, most probably due to variations in the patient cohorts studied. We undertook the first investigation of highly homogeneous MS patient cohorts to determine characteristic effects of inflammatory MS plaques on the CSF metabolome, including only patients with clinically isolated syndrome (CIS) with or without inflammatory brain plaques, and controls. Methodology/Principal Findings CSF obtained by lumbar puncture was analyzed by proton magnetic resonance spectroscopy. 27 metabolites were quantified. Differences between groups of control subjects (n = 10), CIS patients with (n = 21) and without (n = 12) inflammatory plaques were evaluated by univariate statistics and principal component analysis (PCA). Seven metabolites showed statistically significant inter-group differences (p<0.05). Interestingly, a significant increase in β-hydroxyisobutyrate (BHIB) was detected in CIS with vs. without active plaques, but not when comparing either CIS group with control subjects. Moreover, a significant correlation was found, for the first time, between CSF lactate concentration and the number of inflammatory MS brain plaques. In contrast, fructose concentrations were equally enhanced in CIS with or without active plaques. PCA based on all 27 metabolites yielded group-specific clusters. Conclusions/Significance CSF metabolic profiles suggest a close link between MS plaque activity in CIS patients on the one hand and organic-acid metabolism on the other. Our detection of increased BHIB levels points to a hitherto unsuspected role for this compound in MS with active plaques, and serves as a basis for further investigation. The metabolic effects described in our study are crucial elements in the explanation of biochemical mechanisms involved in specific MS manifestations.
Collapse
Affiliation(s)
- Norbert W Lutz
- Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS 6612, Faculté de Médecine de la Timone, Université de la Méditerranée, Marseille, France.
| | | | | | | | | | | | | | | |
Collapse
|