1
|
Dopamine receptor cooperativity synergistically drives dyskinesia, motor behavior, and striatal GABA neurotransmission in hemiparkinsonian rats. Neuropharmacology 2020; 174:108138. [DOI: 10.1016/j.neuropharm.2020.108138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022]
|
2
|
Vajdi-Hokmabad R, Ziaee M, Sadigh-Eteghad S, Sandoghchian Shotorbani S, Mahmoudi J. Modafinil Improves Catalepsy in a Rat 6-Hydroxydopamine Model of Parkinson's Disease; Possible Involvement of Dopaminergic Neurotransmission. Adv Pharm Bull 2017; 7:359-365. [PMID: 29071217 PMCID: PMC5651056 DOI: 10.15171/apb.2017.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 07/13/2017] [Accepted: 07/16/2017] [Indexed: 01/11/2023] Open
Abstract
Purpose: Modafinil is a vigilance-enhancing drug licensed for narcolepsy. The use of modafinil leads to various neuromodulatory effects with very low abuse potential. A body of evidence suggested that modafinil may have anti-parkinsonian effects. This study was designed to evaluate whether modafinil could improve motor dysfunction in the 6-hydroxydopamine (6-OHDA)-induced rat model of Parkinson’s disease. Methods: Male Wistar rats (180-220 g, n= 98) were used in this study. Parkinsonism was induced by injection of 6-hydroxydopamine (10 μg/2μl in 0.2 % ascorbic acid-saline) into the right striatum. Parkinsonian rats received intraperitoneal (ip) injections of modafinil (50, 75, and 100 mg/kg) and catalepsy-like immobility was assessed by the bar test (BT). Furthermore, involvement of dopamine D1 and D2 receptors in modafinil’s anti-parkinsonian effects was studied. For this purpose, parkinsonian animals were pretreated with SCH23390 and raclopride (the dopamine D1 and D2 receptor anatgonists, respectively) or SCH23390 + raclopride, and then assessed by the BT. Results: Modafinil (100 mg/kg) showed anti-cataleptic effects in the BT. Notably, the effect of modafinil in the BT was reversed in parkinsonian rats pretreated with raclopride (1.25 mg/kg) and/or SCH23390 + raclopride (0.75 and 1.25 mg/kg, respectively), but not in those pretreated with SCH23390 (0.75 mg/kg). Conclusion: Acute administration of modafinil improves 6-OHDA-induced motor impairment possibly through activation of dopamine D2 receptors.
Collapse
Affiliation(s)
- Reza Vajdi-Hokmabad
- Department of veterinary, Miyaneh branch, Islamic Azad University, Miyaneh, Iran
| | - Mojtaba Ziaee
- Medicinal Plant Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Antipova VA, Holzmann C, Schmitt O, Wree A, Hawlitschka A. Botulinum Neurotoxin A Injected Ipsilaterally or Contralaterally into the Striatum in the Rat 6-OHDA Model of Unilateral Parkinson's Disease Differently Affects Behavior. Front Behav Neurosci 2017; 11:119. [PMID: 28680396 PMCID: PMC5478737 DOI: 10.3389/fnbeh.2017.00119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/06/2017] [Indexed: 12/30/2022] Open
Abstract
Parkinson's disease (PD) is one of the most frequent neurodegenerative disorders. The loss of dopaminergic neurons in the substantia nigra leads to a disinhibition of cholinergic interneurons in the striatum. Pharmacotherapeutical strategies of PD-related hypercholinism have numerous adverse side effects. We previously showed that ipsilateral intrastriatal injections of 1 ng in unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats inhibit apomorphine-induced rotation behavior significantly up to 6 months. In this study, we extended the behavioral testing of ipsilateral botulinum neurotoxin A (BoNT-A)-injection and additionally investigated the impact of intrastriatal BoNT-A-injections contralateral to the 6-OHDA-lesioned hemisphere on the basal ganglia circuity and motor functions. We hypothesized that the interhemispheric differences of acetylcholine (ACh) concentration seen in unilateral hemi-PD should be differentially and temporally influenced by the ipsilateral or contralateral injection of BoNT-A. Hemi-PD rats were injected with 1 ng BoNT-A or vehicle substance into either the ipsilateral or contralateral striatum 6 weeks after 6-OHDA-lesion and various behaviors were tested. In hemi-PD rats intrastriatal ipsilateral BoNT-A-injections significantly reduced apomorphine-induced rotations and increased amphetamine-induced rotations, but showed no significant improvement of forelimb usage and akinesia, lateralized sensorimotor integration and also no effect on spontaneous locomotor activity. However, intrastriatal BoNT-A-injections contralateral to the lesion led to a significant increase of the apomorphine-induced turning rate only 2 weeks after the treatment. The apomorphine-induced rotation rate decreases thereafter to a value below the initial rotation rate. Amphetamine-induced rotations were not significantly changed after BoNT-A-application in comparison to sham-treated animals. Forelimb usage was temporally improved by contralateral BoNT-A-injection at 2 weeks after BoNT-A. Akinesia and lateralized sensorimotor integration were also improved, but contralateral BoNT-A-injection had no significant effect on spontaneous locomotor activity. These long-ranging and different effects suggest that intrastriatally applied BoNT-A acts not only as an inhibitor of ACh release but also has long-lasting impact on transmitter expression and thereby on the basal ganglia circuitry. Evaluation of changes of transmitter receptors is subject of ongoing studies of our group.
Collapse
Affiliation(s)
- Veronica A. Antipova
- Institute of Anatomy, Rostock University Medical CenterRostock, Germany
- Institute of Macroscopic and Clinical Anatomy, Medical University of GrazGraz, Austria
| | - Carsten Holzmann
- Institute of Medical Genetics, Rostock University Medical CenterRostock, Germany
| | - Oliver Schmitt
- Institute of Anatomy, Rostock University Medical CenterRostock, Germany
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical CenterRostock, Germany
| | | |
Collapse
|
4
|
Yin LL, Geng XC, Zhu XZ. The involvement of RGS9 in l-3,4-dihydroxyphenylalanine-induced dyskinesias in unilateral 6-OHDA lesion rat model. Brain Res Bull 2011; 86:367-72. [PMID: 21963945 DOI: 10.1016/j.brainresbull.2011.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 11/16/2022]
Abstract
Chronic dopamine (DA) replacement therapy with L-3,4-dihydroxyphenylalanine (L-DOPA) in Parkinson's disease (PD) often leads to abnormal involuntary movements (AIMs) known as L-DOPA-induced dyskinesia (LID), mediated by DA receptors. However, mechanisms underlying LID occurrence are still unclear. Regulator of G-protein signaling RGS9, a member of the RGS family of GTPase accelerating proteins, is expressed specifically in the striatum, has been reported participated in LID. L-DOPA-induced AIMs can be modeled in rats with 6-hydroxydopamine (6-OHDA) lesions by chronic injection of L-DOPA. Herein, we compared the rotational responses and AIMs in 6-OHDA lesioned rats with L-DOPA/benserazide (10/2.5 mg/kg, once per day, i.p.) administration for 14 days whereas control animals received injections of saline. Furthermore, whether sub-chronic L-DOPA treatment impact RGS9 mRNA or protein expression in 6-OHDA lesion rats were also evaluated. As results shown, rotational behavior was not increased significantly, while an obvious AIMs were observed in rats with L-DOPA/benserazide (10/2.5mg/kg, i.p.) administration sub-chronically. In addition, expressions of RGS9 protein or mRNA analyzed by Western blot or real-time PCR with striatal extracts increased significantly after L-DOPA/benserazide. These data demonstrate that RGS9 expression can be modulated by sub-chronic L-DOPA/benserazide administration and increased RGS9 expression in striatum may be one of the reasons for the side effects such as dyskinesia induced by L-DOPA therapy.
Collapse
Affiliation(s)
- Lin-Lin Yin
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, 45 Changchun Street, Beijing 100053, PR China.
| | | | | |
Collapse
|
5
|
Lane EL, Daly CS, Smith GA, Dunnett SB. Context-driven changes in L-DOPA-induced behaviours in the 6-OHDA lesioned rat. Neurobiol Dis 2011; 42:99-107. [PMID: 21220017 DOI: 10.1016/j.nbd.2011.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/07/2010] [Accepted: 01/02/2011] [Indexed: 10/18/2022] Open
Abstract
Both contralateral rotational behaviour and dyskinetic abnormal involuntary movements (AIMs) are induced by the administration of l-DOPA in the unilateral 6-OHDA lesioned rat model of Parkinson's disease. Since rotational responses can be conditioned to environmental cues we have investigated the extent to which drug-induced AIMS may also be conditioned by exteroceptive cues and experience. In Experiment I, 6-OHDA lesioned rats received repeated daily injections of l-DOPA either in their home cage (control) or in association with a brief (20 mins) exposure to the rotometers (paired). To assess conditioning, all animals then received two tests in the rotometer bowls. Following injection of saline the paired group both rotated more contralaterally and displayed manifest AIMs, neither of which were exhibited by the control rats. Moreover, following injection of l-DOPA, the paired group showed a trend for increased AIMs compared to controls. Two further studies provided longer exposure to the conditioning environments in counterbalanced designs. Although, using these parameters, re-exposure in the presence of saline did not induce context-dependent AIMs, a strong context-specific component of the sensitised response to l-DOPA was seen; chronic administration of drug produced a significantly stronger behavioural response in animals paired with a particular environment for drug administration than controls. This data suggests that part of the sensitisation of behavioural responding to l-DOPA administration is not solely a pharmacological phenomenon, but is also conditioned to the environmental context in which the drug is administered. This has clear implications for the clinical observation and experimental measurement of drug-induced dyskinesia in Parkinson's disease patients and animal models.
Collapse
Affiliation(s)
- E L Lane
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, CF10 3AX, UK.
| | | | | | | |
Collapse
|
6
|
Pelled G, Bergman H, Ben-Hur T, Goelman G. Manganese-enhanced MRI in a rat model of Parkinson's disease. J Magn Reson Imaging 2007; 26:863-70. [PMID: 17896372 DOI: 10.1002/jmri.21051] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To measure intra- and inter-hemispheric connectivity within the basal ganglia (BG) nuclei in healthy and in unilateral 6-hydroxydopamine (6-OHDA) Parkinson disease rat model in order to test the BG interhemispheric connectivity hypothesis. MATERIAL AND METHODS The manganese-enhanced MRI (MEMRI) method with direct injection of manganese chloride into the entopeduncular (EP), substantia nigra (SN), and the Habenula nuclei in unilateral 6-OHDA (N = 22) and sham-operated (N = 16) rat groups was used. MEMRI measurements were applied before, 3, 24, and 48 hours post-manganese injection. Signal enhancements in T1-weighted images were compared between groups. RESULTS Manganese injection into the EP nucleus resulted with bihemispheric signal enhancements in the habenular complex (Hab) at both groups with stronger enhancements in the 6-OHDA group. It also exhibited lower sensorimotor cortex signal enhancement in the 6-OHDA rat group. SN manganese injection caused enhanced anteroventral thalamic and habenular nuclei signals in the 6-OHDA rat group. Manganese habenula injection revealed enhanced interpeduncular (IP) and raphe nuclei signals of the 6-OHDA rat group. CONCLUSION Modulations in the effective intra- and interhemispheric BG connectivity in unilateral 6-OHDA Parkinson's disease (PD) rat model support the BG interhemispheric connectivity hypothesis and suggest a linkage between the dopaminergic and serotonergic systems in PD, in line with clinical symptoms.
Collapse
Affiliation(s)
- Galit Pelled
- MRI/MRS Laboratory, Human Biology Research Center, Department of Medical Biophysics and Nuclear Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | |
Collapse
|
7
|
Ishida Y, Kawai K, Magata Y, Takeda R, Hashiguchi H, Abe H, Mukai T, Saji H. Changes in dopamine D2 receptors and 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine uptake in the brain of 6-hydroxydopamine-lesioned rats. NEURODEGENER DIS 2006; 1:109-12. [PMID: 16908982 DOI: 10.1159/000080051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Accepted: 11/04/2003] [Indexed: 01/02/2023] Open
Abstract
We studied tracer distributions in positron emission tomography of ligands for dopamine D1 receptors ([11C]SCH23390) and D2 receptors ([11C]raclopride) and the dopamine precursor analog 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine ([18F]FDOPA), as a measurement of presynaptic dopaminergic function, in the brain after 6-hydroxydopamine lesioning of the medial forebrain bundle in rats. The unilateral lesions were confirmed behaviorally by methamphetamine-induced rotation 2 weeks after lesioning, and the brains were analyzed by tissue dissection following an intravenous bolus of each tracer 3 weeks after lesioning. [11C]Raclopride, but not [11C]SCH23390, showed a higher accumulation in the striatum on the lesion side compared with that on the non-lesioned (intact) side. On the other hand, a lower accumulation of [18F]FDOPA was found in the striatum and cerebral cortex on the lesion side. Our studies demonstrate upregulation of dopamine D2 receptors in the striatum and a decrease in FDOPA uptake in both the striatum and cerebral cortex ipsilateral to the 6-hydroxydopamine lesions. Therefore, the combination of a D2 antagonist and FDOPA may provide a potentially useful method for assessing the effects of dopamine depletion in Parkinson's disease.
Collapse
Affiliation(s)
- Yasushi Ishida
- Department of Psychiatry, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ishida Y, Kawai K, Magata Y, Abe H, Yoshimoto M, Takeda R, Hashiguchi H, Mukai T, Saji H. Alteration of striatal [11C]raclopride and 6-[18F]fluoro-l-3,4-dihydroxyphenylalanine uptake precedes development of methamphetamine-induced rotation following unilateral 6-hydroxydopamine lesions of medial forebrain bundle in rats. Neurosci Lett 2005; 389:30-4. [PMID: 16043286 DOI: 10.1016/j.neulet.2005.06.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 06/15/2005] [Accepted: 06/28/2005] [Indexed: 11/27/2022]
Abstract
We studied the positron emission tomography (PET) tracer distributions of ligands for dopamine D1 receptors ([11C]SCH23390) and D2 receptors ([11C]raclopride) and of the dopamine precursor analog 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine ([18F]FDOPA) in the brain after 6-hydroxydopamine (6-OHDA) lesions of the medial forebrain bundle in rats. The number of methamphetamine-induced rotation was higher at 14 days than at 3 days after the 6-OHDA lesions. The brains of 6-OHDA-treated rats were analyzed by tissue dissection following i.v. bolus of each tracer at 3 days (acute stage) or 3 weeks (chronic stage) postlesion. [11C]Raclopride, but not [11C]SCH23390, showed higher accumulation in the striatum on the lesion side than on the non-lesion (intact) side both at 3 days and 3 weeks postlesion. On the other hand, lower accumulation of [18F]FDOPA was observed in the striatum on the lesion side at 3 days postlesion and in both the striatum and cerebral cortex on the lesion side at 3 weeks postlesion. Our studies demonstrate that an increase in [11C]raclopride and a decrease in [18F]FDOPA uptake in the denervated striatum is evident even at 3 days after the 6-OHDA lesions when the methamphetamine-induced rotational behavior is not established.
Collapse
Affiliation(s)
- Yasushi Ishida
- Department of Psychiatry, Miyazaki Medical College, University of Miyazaki, 5200 Kihara, Miyazaki-gun, Miyazaki 889-1692, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Padilla S, Marshall RS, Hunter DL, Oxendine S, Moser VC, Southerland SB, Mailman RB. Neurochemical effects of chronic dietary and repeated high-level acute exposure to chlorpyrifos in rats. Toxicol Sci 2005; 88:161-71. [PMID: 16081522 DOI: 10.1093/toxsci/kfi274] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Very little is known about the effects of chronic exposure to relatively low levels of anticholinesterase insecticides or how the effects of chronic exposure compare to those of higher, intermittent exposure. To that end, adult male rats were fed an anticholinesterase insecticide, chlorpyrifos (CPF), for 1 year at three levels of dietary exposure: 0, 1, or 5 mg/kg/day (0+oil, 1+oil, and 5+oil). In addition, half of each of these groups also received a bolus dosage of CPF in corn oil ("spiked" animals; 60 mg/kg initially and 45 mg/kg thereafter) every 2 months (0+CPF, 1+CPF, 5+CPF). Animals were analyzed after 6 or 12 months of dosing, and again 3 months after cessation of dosing (i.e., "recovery" animals-six experimental groups with n = 4-6/group/time point). Cholinesterase (ChE) activity was measured in retina, whole blood, plasma, red blood cells, diaphragm, and brain [pons, striatum, and the rest of the brain (referred to simply as "brain")]. Muscarinic receptor density was assessed in retina, pons, and brain, whereas dopamine transporter density and the levels of dopamine and its metabolites were assessed in striatum. Cholinesterase activity at 6 and 12 months was not different in any of the tissues, indicating that a steady state had been reached prior to 6 months. The 1+oil group animals showed ChE inhibition only in the blood, whereas the 5+oil group exhibited > or = 50% ChE inhibition in all tissues tested. One day after the bolus dose, all three groups (0+CPF, 1+CPF, 5+CPF) showed > or = 70% ChE inhibition in all tissues. Muscarinic receptor density decreased only in the brain of the 5+oil and 5+CPF groups, whereas dopamine transporter density increased only at 6 months in all three spiked groups. Striatal dopamine or dopamine metabolite levels did not change at any time. Three months after CPF dosing ended, all end points had returned to control levels. These data indicate that, although chronic feeding with or without intermittent spiked dosages with CPF produces substantial biochemical changes in a dose- and tissue-related manner, there are no persistent biochemical changes.
Collapse
Affiliation(s)
- Stephanie Padilla
- Neurotoxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Pelled G, Bergman H, Ben-Hur T, Goelman G. Reduced basal activity and increased functional homogeneity in sensorimotor and striatum of a Parkinson's disease rat model: a functional MRI study. Eur J Neurosci 2005; 21:2227-32. [PMID: 15869519 DOI: 10.1111/j.1460-9568.2005.04035.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Functional neuro-imaging studies of Parkinson's disease (PD) patients and animal models show inconsistent cortical responses to sensory stimulation: some present increased sensorimotor cortex activation contradicting classical basal ganglia-cortex circuitry models, whereas others show decreased activation. As functional neuro-imaging activation is defined as the signal difference between stimulation ON and stimulation OFF, reduced 'activation' can point to either increased neuronal activity during stimulation ON or to decreased basal neuronal activity during stimulation OFF. A unique non-invasive method that uses the temporal and the spatial variances of functional magnetic resonance imaging signal is employed here to compare basal neuronal activity levels and 'functional homogeneity' between groups. Based on the assumption that the temporal variance reflects average neuronal activity, the variance of activity within a predefined region is defined as the region's 'functional homogeneity', which is assumed to estimate neuronal synchronization. Comparison of temporal and spatial variances of the sensorimotor cortex and the striatum in the 6-hydroxydopamine (6-OHDA) PD rat model and a control rat group show bilaterally decreased temporal and spatial variances in the 6-OHDA rat group, suggesting bilateral reduction of basal neuronal activity levels together with an increase in local neuronal synchronization in line with classical basal ganglia-cortex circuit models.
Collapse
Affiliation(s)
- Galit Pelled
- MRI/MRS lab, the Human Biology Research Center, Department of Medical Biophysics, Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | |
Collapse
|
11
|
Wang Q, Wang PH, McLachlan C, Wong PTH. Simvastatin reverses the downregulation of dopamine D1 and D2 receptor expression in the prefrontal cortex of 6-hydroxydopamine-induced Parkinsonian rats. Brain Res 2005; 1045:229-33. [PMID: 15910782 DOI: 10.1016/j.brainres.2005.03.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 03/14/2005] [Accepted: 03/15/2005] [Indexed: 11/17/2022]
Abstract
Sprague-Dawley rats with unilateral lesion of the medial forebrain bundle by 6-hydroxydopamine showed marked decrease in the expression of dopamine D1 and D2 receptors in the prefrontal cortex. Simvastatin (10 mg/kg/day for 4 weeks) restored receptor expression to control levels. Given the association of dopaminergic dysfunction in the prefrontal cortex and cognitive deficits in Parkinson's disease, these findings may have implication in the treatment of cognitive decline in advanced Parkinson's disease.
Collapse
Affiliation(s)
- Q Wang
- Department of Pharmacology, Faculty of Medicine, National University of Singapore, 18 Medical Drive, 117597 Singapore
| | | | | | | |
Collapse
|
12
|
Pelled G, Bergman H, Goelman G. Bilateral overactivation of the sensorimotor cortex in the unilateral rodent model of Parkinson's disease - a functional magnetic resonance imaging study. Eur J Neurosci 2002; 15:389-94. [PMID: 11849305 DOI: 10.1046/j.0953-816x.2001.01866.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Functional magnetic resonance imaging (fMRI) is used to investigate the basal ganglia (BG)-cortex circuit using a rat model of Parkinson's disease (PD). The model involves a unilateral destruction of the right substantia nigra by intranigral injection of the dopaminergic neurotoxin 6-hydroxydopamine. Volume of cortical activity was measured by the blood oxygenation level-dependent contrast method while applying electrical forepaw stimulation. The main findings are the following. (i) Contrary to the predictions of the classic model but in line with recent experimental results (positron emission tomography, fMRI and electrophysiology), an increased cortical activity in the sensorimotor cortex of PD rats compared with sham-operated or normal rats was found. (ii) A diffuse neuronal activity at large cortical areas that were not related directly to the stimulation used, was observed. (iii) No difference was found between the lesion and the nonlesion hemispheres when the left or the right forepaw was stimulated; both cortices show significant overactivation of the sensorimotor cortices in addition to diffuse cortical activation. The last finding could be explained by either corticocortical connections or by bilateral BG-cortex connections. These finding suggest that the mutual influence of the two hemispheres is important in the pathophysiology of the BG-cortex circuit and might be crucial in predicting treatments.
Collapse
Affiliation(s)
- Galit Pelled
- MRI/MRS Laboratory, Human Biology Research Center, Department of Medical Biophysics and Nuclear Medicine, Hadassah Hebrew University Hospital, Ein-Karem, Jerusalem, 91120, Israel
| | | | | |
Collapse
|
13
|
Araki T, Matsubara M, Fujihara K, Kato H, Imai Y, Itoyama Y. Gamma-aminobutyric acidA and benzodiazepine receptor alterations in the rat brain after unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. Neurol Res 2002; 24:107-12. [PMID: 11783749 DOI: 10.1179/016164102101199486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Gamma-aminobutyric acidA (GABA(A)) and benzodiazepine (BZ) receptors and dopamine uptake sites in 6-hydroxydopamine-treated rat brains were studied by receptor autoradiography using [3H]muscimol, [3H]flunitrazepam and [3H]mazindol binding, respectively. The rats were unilaterally lesioned in the medial forebrain bundle and the brains were analyzed at 1, 2, 4 and 8 weeks post-lesion. Degeneration of the nigrostriatal pathway after 6-hydroxydopamine treatment caused a significant loss of dopamine uptake sites in the ipsilateral striatum and substantia nigra (SN) in the lesioned animals. In the contralateral side, however, dopamine uptake sites showed no significant changes in the brain throughout the experiments. On the other hand, no significant changes in GABA(A) receptors were observed in the brain of both the ipsilateral and contralateral sides during post-lesion. In contrast, BZ receptors were observed significantly increased in the ventromedial part of striatum of the ipsilateral side from 2 to 4 weeks post-lesion. Furthermore, a transient increase in BZ receptors was found in the ipsilateral SN only at 2 weeks post-lesion. In contralateral side, most regions examined showed no significant changes in BZ receptors throughout the experiments except for a transient increase in the SN at 1 week post-lesion. These results demonstrate that 6-hydroxydopamine can cause severe functional damage in dopamine uptake sites in the nigrostriatal pathway. Our results also suggest that the change in BZ receptors is more pronounced than that in GABA(A) receptors in the brain after 6-hydroxydopamine treatment. Furthermore, our findings suggest that the increase in BZ receptors in the brain of 6-hydroxydopamine-treated model may be due to the additional disruption of the nigrostriatal dopamine system. Thus, investigations into possible changes in neurotransmitter receptors other than dopaminergic receptors appear to be important for the elucidation of pathogenesis of Parkinsons disease.
Collapse
Affiliation(s)
- T Araki
- Department of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Science and Medicine, Aoba-yama, Sendai, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Araki T, Tanji H, Kato H, Imai Y, Mizugaki M, Itoyama Y. Sequential changes of [H]forskolin, [H]cyclohexyladenosine and [H]PN200-110 binding sites in the brain of 6-hydroxydopamine-lesioned rats. ACTA PHYSIOLOGICA SCANDINAVICA 2000; 169:71-8. [PMID: 10759613 DOI: 10.1046/j.1365-201x.2000.00690.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Receptor autoradiographic technique was studied to investigate sequential changes in adenylyl cyclase, adenosine A1 receptors and L-type calcium channels in the striatum and substantia nigra 1-8 weeks after unilateral 6-hydroxydopamine injection of the medial forebrain bundle in rats. [3H]Forskolin, [3H]cyclohexyladenosine (CHA) and [3H]PN200-110 were used to label adenylyl cyclase, adenosine A1 receptors and L-type calcium channels, respectively. The degeneration of the nigrostriatal pathway caused a significant increase in [3H]forskolin binding in the striatum of both the ipsilateral and contralateral sides from 2 to 4 weeks post-lesion. The ipsilateral substantia nigra showed a transient increase in [3H]forskolin binding 4 weeks post-lesion. In contrast, [3H]CHA binding showed no significant change in most brain areas after lesioning. On the other hand, a conspicuous decrease in [3H]PN200-110 binding was observed in the dorsolateral striatum of ipsilateral side 4 weeks post-lesion. Thereafter, the striatum of both the ipsilateral and contralateral sides showed a significant decrease in [3H]PN200-110 binding 8 weeks post-lesion. These results demonstrate that unilateral 6-hydroxydopamine into the medial forebrain bundle of rats can experimentally cause a significant increase in adenylyl cyclase binding sites in the striatum and substantia nigra, whereas no conspicuous change in adenosine A1 receptors is observed in these areas during post-lesion. In contrast, L-type calcium channels were progressively damaged in the striatum after unilateral 6-hydroxydopamine treatment. These findings suggest that adenylyl cyclase and calcium system may contribute to the degeneration processes of the dopaminergic neurones.
Collapse
Affiliation(s)
- T Araki
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Koga E, Momiyama T. Presynaptic dopamine D2-like receptors inhibit excitatory transmission onto rat ventral tegmental dopaminergic neurones. J Physiol 2000; 523 Pt 1:163-73. [PMID: 10673553 PMCID: PMC2269797 DOI: 10.1111/j.1469-7793.2000.t01-2-00163.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/1999] [Accepted: 11/18/1999] [Indexed: 11/29/2022] Open
Abstract
1. The effects of dopamine (DA) on non-NMDA glutamatergic transmission onto dopaminergic neurones in the ventral tegmental area (VTA) were examined in rat midbrain slices using the whole-cell patch-clamp technique. EPSCs in dopaminergic neurones evoked by focal stimulation within the VTA were reversibly blocked by 5 microM CNQX in the presence of bicuculline (20 microM), strychnine (0.5 microM) and D-amino-5-phosphonopentanoic acid (D-AP5, 25 microM). 2. Bath application of DA reduced the amplitude of EPSCs up to 65.1 +/- 9. 52% in a concentration-dependent manner between 0.3-1000 microM (IC50, 16.0 microM) without affecting the holding current at -60 mV measured using a Cs+-filled electrode. 3. The effect of DA on evoked EPSCs was mimicked by the D2-like receptor agonist quinpirole but not by the D1-like receptor agonist SKF 81297, and was antagonized by the D2-like receptor antagonist sulpiride (KB, 0.96 microM), but not by the D1-like receptor antagonist SCH 23390 (KB, 228.6 microM). 4. Dopamine (30 microM) reduced the mean frequency of spontaneous miniature EPSCs (mEPSCs) without affecting their mean amplitude, and the DA-induced effect on the mEPSCs was dependent on the external Ca2+ concentration. 5. These results suggest that afferent glutamatergic fibres which terminate on VTA dopaminergic neurones possess presynaptic D2-like receptors, activation of which inhibits glutamate release by reducing Ca2+ influx.
Collapse
Affiliation(s)
- E Koga
- Department of Physiology, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | | |
Collapse
|
16
|
Araki T, Tanji H, Kato H, Mizugaki M, Itoyama Y. Alterations of second messenger systems in the rat brain after 6-hydroxydopamine lesions of the medial forebrain bundle. Eur J Pharm Sci 1999; 8:261-7. [PMID: 10425376 DOI: 10.1016/s0928-0987(99)00017-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We studied the sequential changes in second messenger systems in the striatum and substantia nigra (SN) after 6-hydroxydopamine lesions of the medial forebrain bundle in rats. The animals were unilaterally lesioned in the medial forebrain bundle and the brains were analyzed at 1, 2, 4 and 8 weeks postlesion. [3H]Phorbol-12, 13-dibutyrate (PDBu), [3H]forskolin and [3H]rolipram were used to label protein kinase C (PKC), adenylyl cyclase and calcium/calmodulin-independent cyclic-AMP phosphodiesterase, respectively. The degeneration of nigrostriatal pathway produced a significant increase in [3H]PDBu binding in the ventromedial part of the ipsilateral striatum from 2 to 8 weeks postlesion. In the contralateral side, [3H]PDBu binding showed a transient increase in the SN only 4 weeks after lesioning. [3H]Forskolin binding showed a significant increase in the ipsilateral and contralateral striatum from 2 to 4 weeks postlesion. In the ipsilateral SN, a significant increase in [3H]forskolin binding was observed at 4 weeks after lesioning. However, no significant change in [3H]forskolin binding was observed in the contralateral SN during postlesion. On the other hand, [(3)H]rolipram binding showed no conspicuous alteration in the brain during postlesion. These results demonstrate that rats made hemiparkinsonism by unilateral 6-hydroxydopamine injection have a significant increase in [3H]PDBu and [3H]forskolin binding in the striatum and/or SN, whereas no significant change in [3H]rolipram binding is observed in these areas during postlesion. Our findings also suggest that the increase in [3H]forskolin binding is more pronounced than that in [3H]PDBu binding in the brain after unilateral 6-hydroxydopamine injection. Thus, our studies may provide valuable information concerning degeneration of the nigrostriatal pathway such as Parkinson's disease.
Collapse
Affiliation(s)
- T Araki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan.
| | | | | | | | | |
Collapse
|
17
|
Abstract
We examined the sequential changes in neurotensin receptors in the striatum and substantia nigra of mouse brains lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) by receptor autoradiography, in comparison with the alterations in dopamine uptake sites. The mice received four intraperitoneal injections of MPTP (10 mg/kg) at 1-h intervals and then the brains were analyzed at 6 h and 1, 3, 7, and 21 days after the treatments. [3H]Neurotensin and [3H]mazindol were used to label neurotensin receptors and dopamine uptake sites, respectively. [3H]Neurotensin binding was significantly decreased in the striatum from 6 h to 21 days after MPTP treatment. In the substantia nigra, pars reticulata also showed a significant decrease in [3H]neurotensin binding from 3 to 21 days post-MPTP treatment. However, no significant change in [3H]neurotensin binding was observed in the pars compacta even after 21 days. On the other hand, [3H]mazindol binding was markedly decreased in the striatum and substantia nigra from 6 h to 21 days after MPTP treatment. These results indicate that neurotoxin MPTP can produce a severe decrease in neurotensin receptors and dopamine uptake sites in the striatum and substantia nigra of mice. Thus, our findings provide evidence that the dysfunction in neurotensin receptors may be involved in the degenerative processes causing Parkinson's disease.
Collapse
Affiliation(s)
- H Tanji
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | |
Collapse
|