1
|
Slominski RM, Kim TK, Janjetovic Z, Brożyna AA, Podgorska E, Dixon KM, Mason RS, Tuckey RC, Sharma R, Crossman DK, Elmets C, Raman C, Jetten AM, Indra AK, Slominski AT. Malignant Melanoma: An Overview, New Perspectives, and Vitamin D Signaling. Cancers (Basel) 2024; 16:2262. [PMID: 38927967 PMCID: PMC11201527 DOI: 10.3390/cancers16122262] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Melanoma, originating through malignant transformation of melanin-producing melanocytes, is a formidable malignancy, characterized by local invasiveness, recurrence, early metastasis, resistance to therapy, and a high mortality rate. This review discusses etiologic and risk factors for melanoma, diagnostic and prognostic tools, including recent advances in molecular biology, omics, and bioinformatics, and provides an overview of its therapy. Since the incidence of melanoma is rising and mortality remains unacceptably high, we discuss its inherent properties, including melanogenesis, that make this disease resilient to treatment and propose to use AI to solve the above complex and multidimensional problems. We provide an overview on vitamin D and its anticancerogenic properties, and report recent advances in this field that can provide solutions for the prevention and/or therapy of melanoma. Experimental papers and clinicopathological studies on the role of vitamin D status and signaling pathways initiated by its active metabolites in melanoma prognosis and therapy are reviewed. We conclude that vitamin D signaling, defined by specific nuclear receptors and selective activation by specific vitamin D hydroxyderivatives, can provide a benefit for new or existing therapeutic approaches. We propose to target vitamin D signaling with the use of computational biology and AI tools to provide a solution to the melanoma problem.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Department of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Tae-Kang Kim
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Zorica Janjetovic
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Ewa Podgorska
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Katie M. Dixon
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Rebecca S. Mason
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Robert C. Tuckey
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia;
| | - Rahul Sharma
- Department of Biomedical Informatics and Data Science, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - David K. Crossman
- Department of Genetics and Bioinformatics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Craig Elmets
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Chander Raman
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anton M. Jetten
- Cell Biology Section, NIEHS—National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrzej T. Slominski
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, Veteran Administration Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
2
|
Calik J, Dzięgiel P, Sauer N. Case report: Exceptional disease progression in a 70-year-old patient: generalized melanosis and melanuria in the course of metastatic melanoma - a case study. Front Oncol 2024; 14:1332362. [PMID: 38347840 PMCID: PMC10859400 DOI: 10.3389/fonc.2024.1332362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024] Open
Abstract
This case study documents an extraordinary disease progression in a 70-year-old patient diagnosed with metastatic melanoma. The patient's condition advanced to an unusual manifestation characterized by generalized melanosis and melanuria, a rare and foreboding complication of metastatic melanoma. The clinical presentation involved rapid-onset skin darkening, primarily affecting the face and torso, along with darkened urine, marking the onset of melanuria. Despite extensive diagnostic evaluations, including abdominal ultrasound, neck ultrasound, thoracic CT scans, and endoscopic examinations, the exact metastatic sites remained elusive, demonstrating the diagnostic challenges associated with this condition. Laboratory tests revealed abnormal hematological and biochemical markers, along with elevated S100 protein levels, indicating disease progression. The patient underwent a surgical skin biopsy that confirmed the diagnosis of metastatic melanoma, leading to a multidisciplinary approach to treatment. Following this, the patient-initiated chemotherapy with dacarbazine (DTIC). Regrettably, this was necessitated by the absence of reimbursement for BRAF and MEK inhibitors as well as immunotherapy, and it subsequently led to rapid disease progression and a decline in the patient's clinical condition. The patient's condition further complicated with erysipelas and increased distress, ultimately leading to their unfortunate demise. This case highlights the aggressive nature of generalized melanosis, characterized by a rapid clinical course, substantial pigmentation, and limited response to conventional chemotherapy. Importantly, the patient had a BRAF mutation, emphasizing the urgency of exploring alternative treatment strategies. Patients with a BRAF mutation are excellent candidates for BRAF and MEK inhibitor treatment, potentially allowing them to extend their lifespan if this therapy were available. The challenges encountered in diagnosing, managing, and treating this aggressive form of metastatic melanoma underline the need for early detection, tailored therapeutic approaches, and ongoing research efforts to improve patient outcomes in such cases.
Collapse
Affiliation(s)
- Jacek Calik
- Department of Clinical Oncology, Wroclaw Medical University, Wrocław, Poland
- Old Town Clinic, Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wrocław, Poland
- Department of Human Biology, Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, Wrocław, Poland
| | - Natalia Sauer
- Old Town Clinic, Wroclaw, Poland
- Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
3
|
Logesh R, Prasad SR, Chipurupalli S, Robinson N, Mohankumar SK. Natural tyrosinase enzyme inhibitors: A path from melanin to melanoma and its reported pharmacological activities. Biochim Biophys Acta Rev Cancer 2023; 1878:188968. [PMID: 37657683 DOI: 10.1016/j.bbcan.2023.188968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023]
Abstract
The skin containing melanin pigment acts as a protective barrier and counteracts the UVR and other environmental stressors to maintain or restore disrupted cutaneous homeostasis. The production of melanin pigment is dependent on tyrosine levels. L-tyrosine and L-dihydroxyphenylalanine (L-DOPA) can serve both as a substrates and intermediates of melanin synthetic pathway and as inducers and positive regulators of melanogenesis. The biosynthesis of melanin is stimulated upon exposure to UVR, which can also stimulate local production of hormonal factors, which can stimulate melanoma development by altering the chemical properties of eu- and pheomelanin. The process of melanogenesis can be altered by several pathways. One involves activation of POMC, with the production of POMC peptides including MSH and ACTH, which increase intracellular cAMP levels, which activates the MITF, and helps to stimulate tyrosinase (TYR) expression and activity. Defects in OCA1 to 4 affects melanogenic activity via posttranslational modifications resulting in proteasomal degradation and reducing pigmentation. Further, altering, the MITF factor, helps to regulate the expression of MRGE in melanoma, and helps to increase the TYR glycosylation in ER. CRH stimulates POMC peptides that regulate melanogenesis and also by itself can stimulate melanogenesis. The POMC, P53, ACTH, MSH, MC1R, MITF, and 6-BH4 are found to be important regulators for pigmentation. Melanogenesis can affect melanoma behaviour and inhibit immune responses. Therefore, we reviewed natural products that would alter melanin production. Our special focus was on targeting melanin synthesis and TYR enzyme activity to inhibit melanogenesis as an adjuvant therapy of melanotic melanoma. Furthermore, this review also outlines the current updated pharmacological studies targeting the TYR enzyme from natural sources and its consequential effects on melanin production.
Collapse
Affiliation(s)
- Rajan Logesh
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India.
| | - Sagar Rajendra Prasad
- Department of Pharmacognosy, Varadaraja Institute of Pharmaceutical Education and Research, Tumkur 572102, Karnataka, India
| | - Sandhya Chipurupalli
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
| | - Nirmal Robinson
- Cellular Stress and Immune Response Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Suresh Kumar Mohankumar
- Pharmacy, Swansea University Medical School, Singleton Park, Swansea University, Wales SA2 8PP, United Kingdom
| |
Collapse
|
4
|
Hassan M, Shahzadi S, Kloczkowski A. Tyrosinase Inhibitors Naturally Present in Plants and Synthetic Modifications of These Natural Products as Anti-Melanogenic Agents: A Review. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010378. [PMID: 36615571 PMCID: PMC9822343 DOI: 10.3390/molecules28010378] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Tyrosinase is a key enzyme target to design new chemical ligands against melanogenesis. In the current review, different chemical derivatives are explored which have been used as anti-melanogenic compounds. These are different chemical compounds naturally present in plants and semi-synthetic and synthetic compounds inspired by these natural products, such as kojic acid produced by several species of fungi; arbutin-a glycosylated hydroquinone extracted from the bearberry plant; vanillin-a phenolic aldehyde extracted from the vanilla bean, etc. After enzyme inhibition screening, various chemical compounds showed different therapeutic effects as tyrosinase inhibitors with different values of the inhibition constant and IC50. We show how appropriately designed scaffolds inspired by the structures of natural compounds are used to develop novel synthetic inhibitors. We review the results of numerous studies, which could lead to the development of effective anti-tyrosinase agents with increased efficiency and safety in the near future, with many applications in the food, pharmaceutical and cosmetics industries.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Correspondence: or (M.H.); (A.K.)
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Correspondence: or (M.H.); (A.K.)
| |
Collapse
|
5
|
Slominski AT, Slominski RM, Raman C, Chen JY, Athar M, Elmets C. Neuroendocrine signaling in the skin with a special focus on the epidermal neuropeptides. Am J Physiol Cell Physiol 2022; 323:C1757-C1776. [PMID: 36317800 PMCID: PMC9744652 DOI: 10.1152/ajpcell.00147.2022] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Abstract
The skin, which is comprised of the epidermis, dermis, and subcutaneous tissue, is the largest organ in the human body and it plays a crucial role in the regulation of the body's homeostasis. These functions are regulated by local neuroendocrine and immune systems with a plethora of signaling molecules produced by resident and immune cells. In addition, neurotransmitters, endocrine factors, neuropeptides, and cytokines released from nerve endings play a central role in the skin's responses to stress. These molecules act on the corresponding receptors in an intra-, juxta-, para-, or autocrine fashion. The epidermis as the outer most component of skin forms a barrier directly protecting against environmental stressors. This protection is assured by an intrinsic keratinocyte differentiation program, pigmentary system, and local nervous, immune, endocrine, and microbiome elements. These constituents communicate cross-functionally among themselves and with corresponding systems in the dermis and hypodermis to secure the basic epidermal functions to maintain local (skin) and global (systemic) homeostasis. The neurohormonal mediators and cytokines used in these communications regulate physiological skin functions separately or in concert. Disturbances in the functions in these systems lead to cutaneous pathology that includes inflammatory (i.e., psoriasis, allergic, or atopic dermatitis, etc.) and keratinocytic hyperproliferative disorders (i.e., seborrheic and solar keratoses), dysfunction of adnexal structure (i.e., hair follicles, eccrine, and sebaceous glands), hypersensitivity reactions, pigmentary disorders (vitiligo, melasma, and hypo- or hyperpigmentary responses), premature aging, and malignancies (melanoma and nonmelanoma skin cancers). These cellular, molecular, and neural components preserve skin integrity and protect against skin pathologies and can act as "messengers of the skin" to the central organs, all to preserve organismal survival.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
| | - Radomir M Slominski
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jake Y Chen
- Informatics Institute, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
| | - Craig Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
| |
Collapse
|
6
|
You J, Yusupova M, Zippin JH. The potential impact of melanosomal pH and metabolism on melanoma. Front Oncol 2022; 12:887770. [PMID: 36483028 PMCID: PMC9723380 DOI: 10.3389/fonc.2022.887770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Melanin is synthesized in melanocytes and is transferred into keratinocytes to block the effects of ultraviolet (UV) radiation and is important for preventing skin cancers including melanoma. However, it is known that after melanomagenesis and melanoma invasion or metastases, melanin synthesis still occurs. Since melanoma cells are no longer involved in the sun tanning process, it is unclear why melanocytes would maintain melanin synthesis after melanomagenesis has occurred. Aside from blocking UV-induced DNA mutation, melanin may provide other metabolic functions that could benefit melanoma. In addition, studies have suggested that there may be a selective advantage to melanin synthesis in melanoma; however, mechanisms regulating melanin synthesis outside the epidermis or hair follicle is unknown. We will discuss how melanosomal pH controls melanin synthesis in melanocytes and how melanosomal pH control of melanin synthesis might function in melanoma. We will also discuss potential reasons why melanin synthesis might be beneficial for melanoma cellular metabolism and provide a rationale for why melanin synthesis is not limited to benign melanocytes.
Collapse
|
7
|
Doepner M, Lee I, Natale CA, Brathwaite R, Venkat S, Kim SH, Wei Y, Vakoc CR, Capell BC, Katzenellenbogen JA, Katzenellenbogen BS, Feigin ME, Ridky TW. Endogenous DOPA inhibits melanoma through suppression of CHRM1 signaling. SCIENCE ADVANCES 2022; 8:eabn4007. [PMID: 36054350 PMCID: PMC10848963 DOI: 10.1126/sciadv.abn4007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/14/2022] [Indexed: 05/18/2023]
Abstract
Melanoma risk is 30 times higher in people with lightly pigmented skin versus darkly pigmented skin. Using primary human melanocytes representing the full human skin pigment continuum and preclinical melanoma models, we show that cell-intrinsic differences between dark and light melanocytes regulate melanocyte proliferative capacity and susceptibility to malignant transformation, independent of melanin and ultraviolet exposure. These differences result from dihydroxyphenylalanine (DOPA), a melanin precursor synthesized at higher levels in melanocytes from darkly pigmented skin. We used both high-throughput pharmacologic and genetic in vivo CRISPR screens to determine that DOPA limits melanocyte and melanoma cell proliferation by inhibiting the muscarinic acetylcholine receptor M1 (CHRM1) signaling. Pharmacologic CHRM1 antagonism in melanoma leads to depletion of c-Myc and FOXM1, both of which are proliferation drivers associated with aggressive melanoma. In preclinical mouse melanoma models, pharmacologic inhibition of CHRM1 or FOXM1 inhibited tumor growth. CHRM1 and FOXM1 may be new therapeutic targets for melanoma.
Collapse
Affiliation(s)
- Miriam Doepner
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Inyoung Lee
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A. Natale
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roderick Brathwaite
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Swati Venkat
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sung Hoon Kim
- Department of Chemistry and Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yiliang Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Brian C. Capell
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John A. Katzenellenbogen
- Department of Chemistry and Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Benita S. Katzenellenbogen
- Departments of Molecular and Integrative Physiology and Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael E. Feigin
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Todd W. Ridky
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Casalou C, Moreiras H, Mayatra JM, Fabre A, Tobin DJ. Loss of 'Epidermal Melanin Unit' Integrity in Human Skin During Melanoma-Genesis. Front Oncol 2022; 12:878336. [PMID: 35574390 PMCID: PMC9097079 DOI: 10.3389/fonc.2022.878336] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Cutaneous melanoma can be a most challenging neoplasm of high lethality, in part due to its extreme heterogeneity and characteristic aggressive and invasive nature. Indeed, its moniker 'the great masquerader' reflects that not all melanomas are created equal in terms of their originating cellular contexts, but also that melanoma cells in the malignant tumor can adopt a wide range of different cell states and variable organotropism. In this review, we focus on the early phases of melanomagenesis by discussing how the originating pigment cell of the melanocyte lineage can be influenced to embark on a wide range of tumor fates with distinctive microanatomical pathways. In particular, we assess how cells of the melanocyte lineage can differ by maturation status (stem cell; melanoblast; transiently amplifying cell; differentiated; post-mitotic; terminally-differentiated) as well as by micro-environmental niche (in the stratum basale of the epidermis; within skin appendages like hair follicle, eccrine gland, etc). We discuss how the above variable contexts may influence the susceptibility of the epidermal-melanin unit (EMU) to become unstable, which may presage cutaneous melanoma development. We also assess how unique features of follicular-melanin unit(s) (FMUs) can, by contrast, protect melanocytes from melanomagenesis. Lastly, we postulate how variable melanocyte fates in vitiligo, albinism, psoriasis, and alopecia areata may provide new insights into immune-/non immune-mediated outcomes for melanocytes in cutaneous melanin units.
Collapse
Affiliation(s)
- Cristina Casalou
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Hugo Moreiras
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jay M Mayatra
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Aurelie Fabre
- Department of Histopathology, St Vincent's University Hospital, Dublin, Ireland.,UCD School of Medicine, University College Dublin, Dublin, Ireland.,The Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| | - Desmond J Tobin
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland.,The Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
9
|
Cabaço LC, Tomás A, Pojo M, Barral DC. The Dark Side of Melanin Secretion in Cutaneous Melanoma Aggressiveness. Front Oncol 2022; 12:887366. [PMID: 35619912 PMCID: PMC9128548 DOI: 10.3389/fonc.2022.887366] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Skin cancers are among the most common cancers worldwide and are increasingly prevalent. Cutaneous melanoma (CM) is characterized by the malignant transformation of melanocytes in the epidermis. Although CM shows lower incidence than other skin cancers, it is the most aggressive and responsible for the vast majority of skin cancer-related deaths. Indeed, 75% of patients present with invasive or metastatic tumors, even after surgical excision. In CM, the photoprotective pigment melanin, which is produced by melanocytes, plays a central role in the pathology of the disease. Melanin absorbs ultraviolet radiation and scavenges reactive oxygen/nitrogen species (ROS/RNS) resulting from the radiation exposure. However, the scavenged ROS/RNS modify melanin and lead to the induction of signature DNA damage in CM cells, namely cyclobutane pyrimidine dimers, which are known to promote CM immortalization and carcinogenesis. Despite triggering the malignant transformation of melanocytes and promoting initial tumor growth, the presence of melanin inside CM cells is described to negatively regulate their invasiveness by increasing cell stiffness and reducing elasticity. Emerging evidence also indicates that melanin secreted from CM cells is required for the immunomodulation of tumor microenvironment. Indeed, melanin transforms dermal fibroblasts in cancer-associated fibroblasts, suppresses the immune system and promotes tumor angiogenesis, thus sustaining CM progression and metastasis. Here, we review the current knowledge on the role of melanin secretion in CM aggressiveness and the molecular machinery involved, as well as the impact in tumor microenvironment and immune responses. A better understanding of this role and the molecular players involved could enable the modulation of melanin secretion to become a therapeutic strategy to impair CM invasion and metastasis and, hence, reduce the burden of CM-associated deaths.
Collapse
Affiliation(s)
- Luís C. Cabaço
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Tomás
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| | - Duarte C. Barral
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
10
|
Sevilla A, Chéret J, Slominski RM, Slominski AT, Paus R. Revisiting the role of melatonin in human melanocyte physiology: A skin context perspective. J Pineal Res 2022; 72:e12790. [PMID: 35133682 PMCID: PMC8930624 DOI: 10.1111/jpi.12790] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
The evolutionarily ancient methoxyindoleamine, melatonin, has long perplexed investigators by its versatility of functions and mechanisms of action, which include the regulation of vertebrate pigmentation. Although first discovered through its potent skin-lightening effects in amphibians, melatonin's role in human skin and hair follicle pigmentation and its impact on melanocyte physiology remain unclear. Synthesizing our limited current understanding of this role, we specifically examine its impact on melanogenesis, oxidative biology, mitochondrial function, melanocyte senescence, and pigmentation-related clock gene activity, with emphasis on human skin, yet without ignoring instructive pointers from nonhuman species. Given the strict dependence of melanocyte functions on the epithelial microenvironment, we underscore that melanocyte responses to melatonin are best interrogated in a physiological tissue context. Current evidence suggests that melatonin and some of its metabolites inhibit both, melanogenesis (via reducing tyrosinase activity) and melanocyte proliferation by stimulating melatonin membrane receptors (MT1, MT2). We discuss whether putative melanogenesis-inhibitory effects of melatonin may occur via activation of Nrf2-mediated PI3K/AKT signaling, estrogen receptor-mediated and/or melanocortin-1 receptor- and cAMP-dependent signaling, and/or via melatonin-regulated changes in peripheral clock genes that regulate human melanogenesis, namely Bmal1 and Per1. Melatonin and its metabolites also accumulate in melanocytes where they exert net cyto- and senescence-protective as well as antioxidative effects by operating as free radical scavengers, stimulating the synthesis and activity of ROS scavenging enzymes and other antioxidants, promoting DNA repair, and enhancing mitochondrial function. We argue that it is clinically and biologically important to definitively clarify whether melanocyte cell culture-based observations translate into melatonin-induced pigmentary changes in a physiological tissue context, that is, in human epidermis and hair follicles ex vivo, and are confirmed by clinical trial results. After defining major open questions in this field, we close by suggesting how to begin answering them in clinically relevant, currently available preclinical in situ research models.
Collapse
Affiliation(s)
- Alec Sevilla
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jérémy Chéret
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Radomir M. Slominski
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology Laboratory Service, Veteran Administration Medical Center at Birmingham, Birmingham, AL35294, USA
- Corresponding authors: Ralf Paus, MD, DSc: ; Andrzej T. Slominski, MD, PhD:
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Monasterium Laboratory, Münster, Germany
- CUTANEON – Skin & Hair Innovations, Hamburg, Germany
- Corresponding authors: Ralf Paus, MD, DSc: ; Andrzej T. Slominski, MD, PhD:
| |
Collapse
|
11
|
Slominski RM, Sarna T, Płonka PM, Raman C, Brożyna AA, Slominski AT. Melanoma, Melanin, and Melanogenesis: The Yin and Yang Relationship. Front Oncol 2022; 12:842496. [PMID: 35359389 PMCID: PMC8963986 DOI: 10.3389/fonc.2022.842496] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
Melanin pigment plays a critical role in the protection against the harmful effects of ultraviolet radiation and other environmental stressors. It is produced by the enzymatic transformation of L-tyrosine to dopaquinone and subsequent chemical and biochemical reactions resulting in the formation of various 5,6-dihydroxyindole-2-carboxylic acid (DHICA) and 5,6-dihydroxyindole (DHI) oligomers-main constituents of eumelanin, and benzothiazine and benzothiazole units of pheomelanin. The biosynthesis of melanin is regulated by sun exposure and by many hormonal factors at the tissue, cellular, and subcellular levels. While the presence of melanin protects against the development of skin cancers including cutaneous melanoma, its presence may be necessary for the malignant transformation of melanocytes. This shows a complex role of melanogenesis in melanoma development defined by chemical properties of melanin and the nature of generating pathways such as eu- and pheomelanogenesis. While eumelanin is believed to provide radioprotection and photoprotection by acting as an efficient antioxidant and sunscreen, pheomelanin, being less photostable, can generate mutagenic environment after exposure to the short-wavelength UVR. Melanogenesis by itself and its highly reactive intermediates show cytotoxic, genotoxic, and mutagenic activities, and it can stimulate glycolysis and hypoxia-inducible factor 1-alpha (HIF-1α) activation, which, combined with their immunosuppressive effects, can lead to melanoma progression and resistance to immunotherapy. On the other hand, melanogenesis-related proteins can be a target for immunotherapy. Interestingly, clinicopathological analyses on advanced melanomas have shown a negative correlation between tumor pigmentation and diseases outcome as defined by overall survival and disease-free time. This indicates a "Yin and Yang" role for melanin and active melanogenesis in melanoma development, progression, and therapy. Furthermore, based on the clinical, experimental data and diverse effects of melanogenesis, we propose that inhibition of melanogenesis in advanced melanotic melanoma represents a realistic adjuvant strategy to enhance immuno-, radio-, and chemotherapy.
Collapse
Affiliation(s)
- Radomir M Slominski
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Przemysław M Płonka
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anna A Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States.,Pathology Laboratory Service, Veteran Administration Medical Center at Birmingham, Birmingham, AL, United States
| |
Collapse
|
12
|
Nazir Y, Rafique H, Kausar N, Abbas Q, Ashraf Z, Rachtanapun P, Jantanasakulwong K, Ruksiriwanich W. Methoxy-Substituted Tyramine Derivatives Synthesis, Computational Studies and Tyrosinase Inhibitory Kinetics. Molecules 2021; 26:molecules26092477. [PMID: 33922836 PMCID: PMC8122972 DOI: 10.3390/molecules26092477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/27/2022] Open
Abstract
Targeting tyrosinase for melanogenesis disorders is an established strategy. Hydroxyl-substituted benzoic and cinnamic acid scaffolds were incorporated into new chemotypes that displayed in vitro inhibitory effects against mushroom and human tyrosinase for the purpose of identifying anti-melanogenic ingredients. The most active compound 2-((4-methoxyphenethyl)amino)-2-oxoethyl (E)-3-(2,4-dihydroxyphenyl) acrylate (Ph9), inhibited mushroom tyrosinase with an IC50 of 0.059 nM, while 2-((4-methoxyphenethyl)amino)-2-oxoethyl cinnamate (Ph6) had an IC50 of 2.1 nM compared to the positive control, kojic acid IC50 16700 nM. Results of human tyrosinase inhibitory activity in A375 human melanoma cells showed that compound (Ph9) and Ph6 exhibited 94.6% and 92.2% inhibitory activity respectively while the positive control kojic acid showed 72.9% inhibition. Enzyme kinetics reflected a mixed type of inhibition for inhibitor Ph9 (Ki 0.093 nM) and non-competitive inhibition for Ph6 (Ki 2.3 nM) revealed from Lineweaver–Burk plots. In silico docking studies with mushroom tyrosinase (PDB ID:2Y9X) predicted possible binding modes in the catalytic site for these active compounds. Ph9 displayed no PAINS (pan-assay interference compounds) alerts. Our results showed that compound Ph9 is a potential candidate for further development of tyrosinase inhibitors.
Collapse
Affiliation(s)
- Yasir Nazir
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
| | - Hummera Rafique
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan; (H.R.); (N.K.)
| | - Naghmana Kausar
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan; (H.R.); (N.K.)
| | - Qamar Abbas
- Department of Biology, College of Science, University of Bahrain, Sakhir 32038, Bahrain;
| | - Zaman Ashraf
- Department of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
- Correspondence: (Z.A.); (W.R.)
| | - Pornchai Rachtanapun
- Cluster of Agro Bio-Circular Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.)
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kittisak Jantanasakulwong
- Cluster of Agro Bio-Circular Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.)
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Cluster of Agro Bio-Circular Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.)
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (Z.A.); (W.R.)
| |
Collapse
|
13
|
Rivera HM, Muñoz EN, Osuna D, Florez M, Carvajal M, Gómez LA. Reciprocal Changes in miRNA Expression with Pigmentation and Decreased Proliferation Induced in Mouse B16F1 Melanoma Cells by L-Tyrosine and 5-Bromo-2'-Deoxyuridine. Int J Mol Sci 2021; 22:ijms22041591. [PMID: 33562431 PMCID: PMC7914888 DOI: 10.3390/ijms22041591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Many microRNAs have been identified as critical mediators in the progression of melanoma through its regulation of genes involved in different cellular processes such as melanogenesis, cell cycle control, and senescence. However, microRNAs’ concurrent participation in syngeneic mouse B16F1 melanoma cells simultaneously induced decreased proliferation and differential pigmentation by exposure to 5-Brd-2′-dU (5’Bromo-2-deoxyuridine) and L-Tyr (L-Tyrosine) respectively, is poorly understood. Aim: To evaluate changes in the expression of microRNAs and identify which miRNAs in-network may contribute to the functional bases of phenotypes of differential pigmentation and reduction of proliferation in B16F1 melanoma cells exposed to 5-Brd-2′-dU and L-Tyr. Methods: Small RNAseq evaluation of the expression profiles of miRNAs in B16F1 melanoma cells exposed to 5-Brd-2′-dU (2.5 μg/mL) and L-Tyr (5 mM), as well as the expression by qRT-PCR of some molecular targets related to melanogenesis, cell cycle, and senescence. By bioinformatic analysis, we constructed network models of regulation and co-expression of microRNAs. Results: We confirmed that stimulation or repression of melanogenesis with L-Tyr or 5-Brd-2′-dU, respectively, generated changes in melanin concentration, reduction in proliferation, and changes in expression of microRNAs 470-3p, 470-5p, 30d-5p, 129-5p, 148b-3p, 27b-3p, and 211-5p, which presented patterns of coordinated and reciprocal co-expression, related to changes in melanogenesis through their putative targets Mitf, Tyr and Tyrp1, and control of cell cycle and senescence: Cyclin D1, Cdk2, Cdk4, p21, and p27. Conclusions: These findings provide insights into the molecular biology of melanoma of the way miRNAs are coordinated and reciprocal expression that may operate in a network as molecular bases for understanding changes in pigmentation and decreased proliferation induced in B16F1 melanoma cells exposed to L-Tyr and 5-Brd-2′-dU.
Collapse
Affiliation(s)
- Hernán Mauricio Rivera
- Department of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (H.M.R.); (E.N.M.)
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public Health Research, National Institute of Health, Bogotá 111321, Colombia
| | - Esther Natalia Muñoz
- Department of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (H.M.R.); (E.N.M.)
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public Health Research, National Institute of Health, Bogotá 111321, Colombia
| | - Daniel Osuna
- Science Department, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (D.O.); (M.F.); (M.C.)
| | - Mauro Florez
- Science Department, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (D.O.); (M.F.); (M.C.)
| | - Michael Carvajal
- Science Department, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (D.O.); (M.F.); (M.C.)
| | - Luis Alberto Gómez
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public Health Research, National Institute of Health, Bogotá 111321, Colombia
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Correspondence:
| |
Collapse
|
14
|
Patra V, Gallais Sérézal I, Wolf P. Potential of Skin Microbiome, Pro- and/or Pre-Biotics to Affect Local Cutaneous Responses to UV Exposure. Nutrients 2020; 12:E1795. [PMID: 32560310 PMCID: PMC7353315 DOI: 10.3390/nu12061795] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
The human skin hosts innumerable microorganisms and maintains homeostasis with the local immune system despite the challenges offered by environmental factors such as ultraviolet radiation (UVR). UVR causes cutaneous alterations such as acute (i.e., sunburn) and chronic inflammation, tanning, photoaging, skin cancer, and immune modulation. Phototherapy on the other hand is widely used to treat inflammatory skin diseases such as psoriasis, atopic dermatitis, polymorphic light eruption and graft-versus-host disease (GvHD), as well as neoplastic skin diseases such as cutaneous T cell lymphoma, among others. Previous work has addressed the use of pro- and pre-biotics to protect against UVR through anti-oxidative, anti-inflammatory, anti-aging, anti-carcinogenic and/or pro-and contra-melanogenic properties. Herein, we discuss and share perspectives of the potential benefits of novel treatment strategies using microbes and pro- and pre-biotics as modulators of the skin response to UVR, and how they could act both for protection against UVR-induced skin damage and as enhancers of the UVR-driven therapeutic effects on the skin.
Collapse
Affiliation(s)
- VijayKumar Patra
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria;
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, 8010 Graz, Austria
| | - Irène Gallais Sérézal
- Department of Medicine, Unit of Rheumatology, Karolinska Institutet, 171 77 Solna, Sweden;
- Department of Dermatology, Besançon University Hospital, 25000 Besancon, France
| | - Peter Wolf
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
15
|
Gelatin-Based Hydrogels for the Controlled Release of 5,6-Dihydroxyindole-2-Carboxylic Acid, a Melanin-Related Metabolite with Potent Antioxidant Activity. Antioxidants (Basel) 2020; 9:antiox9030245. [PMID: 32197438 PMCID: PMC7139803 DOI: 10.3390/antiox9030245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
The ability of gelatin-based hydrogels of incorporating and releasing under controlled conditions 5,6-dihydroxyindole-2-carboxylic acid (DHICA), a melanin-related metabolite endowed with marked antioxidant properties was investigated. The methyl ester of DHICA, MeDHICA, was also tested in view of its higher stability, and different solubility profile. Three types of gelatin-based hydrogels were prepared: pristine porcine skin type A gelatin (HGel-A), a pristine gelatin cross-linked by amide coupling of lysines and glutamic/aspartic acids (HGel-B), and a gelatin/chitosan blend (HGel-C). HGel-B and HGel-C differed in the swelling behavior, showed satisfactorily high mechanical strength at physiological temperatures and well-defined morphology. The extent of incorporation into all the gelatins tested using a 10% w/w indole to gelatin ratio was very satisfactory ranging from 60 to 90% for either indoles. The kinetics of indole release under conditions of physiological relevance was evaluated up to 72 h. The highest values were obtained with HGel-B and HGel-C for MeDHICA (90% after 6 h), and an appreciable release was observed for DHICA reaching 30% and 40% at 6 h for HGel-B and HGel-C, respectively. At 72 h, DHICA and MeDHICA were released at around 30% from HGel-A at pH 7.4, with an increase up to 40% at pH 5.5 in the case of DHICA. DHICA incorporated into HGel-B proved fairly stable over 6 h whereas the free compound at the same concentration was almost completely oxidized. The antioxidant power of the indole loaded gelatins was monitored by chemical assays and proved unaltered even after prolonged storage in air, suggesting that the materials could be prepared in advance with respect to their use without alteration of their efficacy.
Collapse
|
16
|
Nazir Y, Saeed A, Rafiq M, Afzal S, Ali A, Latif M, Zuegg J, Hussein WM, Fercher C, Barnard RT, Cooper MA, Blaskovich MAT, Ashraf Z, Ziora ZM. Hydroxyl substituted benzoic acid/cinnamic acid derivatives: Tyrosinase inhibitory kinetics, anti-melanogenic activity and molecular docking studies. Bioorg Med Chem Lett 2019; 30:126722. [PMID: 31732410 DOI: 10.1016/j.bmcl.2019.126722] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022]
Abstract
The inhibition of tyrosinase is an established strategy for treating hyperpigmentation. Our previous findings demonstrated that cinnamic acid and benzoic acid scaffolds can be effective tyrosinase inhibitors with low toxicity. The hydroxyl substituted benzoic and cinnamic acid moieties of these precursors were incorporated into new chemotypes that displayed in vitro inhibitory effect against mushroom tyrosinase. The most active compound, (2-(3-methoxyphenoxy)-2-oxoethyl (E)-3-(4-hydroxyphenyl) acrylate) 6c, inhibited tyrosinase with an IC50 of 5.7 µM, while (2-(3-methoxyphenoxy)-2-oxoethyl 2, 4-dihydroxybenzoate) 4d had an IC50 of 23.8 µM. In comparison, the positive control, kojic acid showed tyrosinase inhibition with an IC50 = 16.7 µM. Analysis of enzyme kinetics revealed that 6c and 4d displayed noncompetitive reversible inhibition of the second tyrosinase enzymatic reaction with Ki values of 11 µM and 130 µM respectively. In silico docking studies with mushroom tyrosinase (PDB ID 2Y9X) predicted possible binding modes in the catalytic site for these active compounds. The phenolic para-hydroxy group of the most active compound 6c is predicted to interact with the catalytic site Cu++ ion. The methoxy part of this compound is predicted to form a hydrogen bond with Arg 268. Compound 6c had no observable toxic effects on cell morphology or cell viability at the highest tested concentration of 91.4 µM. When dosed at 91.4 µM onto B16F10 melanoma cells in vitro6c showed anti-melanogenic effects equivalent to kojic acid at 880 µM. 6c displayed no PAINS (pan-assay interference compounds) alerts. Our results show that compound 6c is a more potent tyrosinase inhibitor than kojic acid and is a candidate for further development. Our exposition of the details of the interactions between 6c and the catalytic pocket of tyrosinase provides a basis for rational design of additional potent inhibitors of tyrosinase, built on the cinnamic acid scaffold.
Collapse
Affiliation(s)
- Yasir Nazir
- Institute for Molecular Biosciences (IMB), The University of Queensland (UQ), St Lucia 4072, Qld, Australia; Department of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Rafiq
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Samina Afzal
- Faculty of Pharmacy, Bahauddin Zakria University, Multan 60800, Pakistan
| | - Anser Ali
- Department of Zoology, Mirpur University of Science and Technology (MUST), 10250 Mirpur, AJK, Pakistan
| | - Muhammad Latif
- College of Medicine, Centre for Genetics and Inherited Diseases (CGID), Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Johannes Zuegg
- Institute for Molecular Biosciences (IMB), The University of Queensland (UQ), St Lucia 4072, Qld, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences (SCMB) and ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland (UQ), St Lucia 4072, Qld, Australia; Helwan University, Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, EinHelwan, Helwan, Egypt
| | - Christian Fercher
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), St Lucia 4072, Qld, Australia
| | - Ross T Barnard
- School of Chemistry and Molecular Biosciences (SCMB) and ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland (UQ), St Lucia 4072, Qld, Australia
| | - Matthew A Cooper
- Institute for Molecular Biosciences (IMB), The University of Queensland (UQ), St Lucia 4072, Qld, Australia
| | - Mark A T Blaskovich
- Institute for Molecular Biosciences (IMB), The University of Queensland (UQ), St Lucia 4072, Qld, Australia
| | - Zaman Ashraf
- Department of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan.
| | - Zyta M Ziora
- Institute for Molecular Biosciences (IMB), The University of Queensland (UQ), St Lucia 4072, Qld, Australia.
| |
Collapse
|
17
|
Combination therapy of simvastatin and 5, 6-dimethylxanthenone-4-acetic acid synergistically suppresses the aggressiveness of B16.F10 melanoma cells. PLoS One 2018; 13:e0202827. [PMID: 30138430 PMCID: PMC6107259 DOI: 10.1371/journal.pone.0202827] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 08/09/2018] [Indexed: 12/15/2022] Open
Abstract
The major drawback of current anti-angiogenic therapies is drug resistance, mainly caused by overexpression of the transcription factor, hypoxia-inducible factor 1α (HIF-1α) as a result of treatment-induced hypoxia, which stimulates cancer cells to develop aggressive and immunosuppressive phenotypes. Moreover, the cancer cell resistance to anti-angiogenic therapies is deeply mediated by the communication between tumor cells and tumor-associated macrophages (TAMs)-the most important microenvironmental cells for the coordination of all supportive processes in tumor development. Thus, simultaneous targeting of TAMs and cancer cells could improve the outcome of the anti-angiogenic therapies. Since our previous studies proved that simvastatin (SIM) exerts strong antiproliferative actions on B16.F10 murine melanoma cells via reduction of TAMs-mediated oxidative stress and inhibition of intratumor production of HIF-1α, we investigated whether the antitumor efficacy of the anti-angiogenic agent-5,6-dimethylxanthenone-4-acetic acid (DMXAA) could be improved by its co-administration with the lipophilic statin. Our results provide confirmatory evidence for the ability of the combined treatment to suppress the aggressive phenotype of the B16.F10 melanoma cells co-cultured with TAMs under hypoxia-mimicking conditions in vitro. Thus, proliferation and migration capacity of the melanoma cells were strongly decelerated after the co-administration of SIM and DMXAA. Moreover, our data suggested that the anti-oxidant action of the combined treatment, as a result of melanogenesis stimulation, might be the principal cause for the simultaneous suppression of key molecules involved in melanoma cell aggressiveness, present in melanoma cells (HIF-1α) as well as in TAMs (arginase-1). Finally, the concomitant suppression of these proteins might have contributed to a very strong inhibition of the angiogenic capacity of the cell co-culture microenvironment.
Collapse
|
18
|
Slominski AT, Zmijewski MA, Plonka PM, Szaflarski JP, Paus R. How UV Light Touches the Brain and Endocrine System Through Skin, and Why. Endocrinology 2018; 159:1992-2007. [PMID: 29546369 PMCID: PMC5905393 DOI: 10.1210/en.2017-03230] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/16/2018] [Indexed: 12/15/2022]
Abstract
The skin, a self-regulating protective barrier organ, is empowered with sensory and computing capabilities to counteract the environmental stressors to maintain and restore disrupted cutaneous homeostasis. These complex functions are coordinated by a cutaneous neuro-endocrine system that also communicates in a bidirectional fashion with the central nervous, endocrine, and immune systems, all acting in concert to control body homeostasis. Although UV energy has played an important role in the origin and evolution of life, UV absorption by the skin not only triggers mechanisms that defend skin integrity and regulate global homeostasis but also induces skin pathology (e.g., cancer, aging, autoimmune responses). These effects are secondary to the transduction of UV electromagnetic energy into chemical, hormonal, and neural signals, defined by the nature of the chromophores and tissue compartments receiving specific UV wavelength. UV radiation can upregulate local neuroendocrine axes, with UVB being markedly more efficient than UVA. The locally induced cytokines, corticotropin-releasing hormone, urocortins, proopiomelanocortin-peptides, enkephalins, or others can be released into circulation to exert systemic effects, including activation of the central hypothalamic-pituitary-adrenal axis, opioidogenic effects, and immunosuppression, independent of vitamin D synthesis. Similar effects are seen after exposure of the eyes and skin to UV, through which UVB activates hypothalamic paraventricular and arcuate nuclei and exerts very rapid stimulatory effects on the brain. Thus, UV touches the brain and central neuroendocrine system to reset body homeostasis. This invites multiple therapeutic applications of UV radiation, for example, in the management of autoimmune and mood disorders, addiction, and obesity.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
- Correspondence: Andrzej T. Slominski, MD, PhD, Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294. E-mail:
| | | | - Przemyslaw M Plonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jerzy P Szaflarski
- Departments of Neurology and Neurobiology and the UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ralf Paus
- Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
19
|
Abbas Q, Ashraf Z, Hassan M, Nadeem H, Latif M, Afzal S, Seo SY. Development of highly potent melanogenesis inhibitor by in vitro, in vivo and computational studies. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2029-2046. [PMID: 28740364 PMCID: PMC5503496 DOI: 10.2147/dddt.s137550] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The present work describes the synthesis of few hydroxylated amide derivatives as melanogenesis inhibitors. In vitro, in vivo and computational studies proved that compound 6d is a highly potent melanogenesis inhibitor compared to standard kojic acid. The title amides 4a–e and 6a–e were synthesized following simple reaction routes with excellent yields. Most of the synthesized compounds exhibited good mushroom tyrosinase inhibitory activity, but compound 6d showed excellent activity (IC50 0.15 µM) compared to standard kojic acid (IC50 16.69 µM). Lineweaver–Burk plots were used for the determination of kinetic mechanism, and it was found that compounds 4c and 6d showed non-competitive inhibition while 6a and 6b showed mixed-type inhibition. The kinetic mechanism further revealed that compound 6d formed irreversible complex with the target enzyme tyrosinase. The Ki values determined for compounds 4c, 6a, 6b and 6d are 0.188, 0.84, 2.20 and 0.217 µM respectively. Results of human tyrosinase inhibitory activity in A375 human melanoma cells showed that compound 6d exhibited 91.9% inhibi-tory activity at a concentration of 50 µg/mL. In vivo cytotoxicity evaluation of compound 6d in zebrafish embryos showed that it is non-toxic to zebrafish. Melanin depigmentation assay performed in zebrafish indicated that compound 6d possessed greater potential in decreasing melanin contents compared to kojic acid at the same concentration. Computational studies also supported the wet lab findings as compound 6d showed a highest binding affinity with the target protein (PDBID: 2Y9X) with a binding energy value of −7.90 kcal/mol. Molecular dynamic simulation studies also proved that amide 6d formed the most stable complex with tyrosinase. Based upon our in vitro, in vivo and computational studies, we propose that compound 6d is a promising candidate for the development of safe cosmetic agent.
Collapse
Affiliation(s)
- Qamar Abbas
- Department of Biology, College of Natural Sciences, Kongju National University, Gongju, Republic of Korea
| | - Zaman Ashraf
- Department of Chemistry, Allama Iqbal Open University, Islamabad
| | - Mubashir Hassan
- Department of Biology, College of Natural Sciences, Kongju National University, Gongju, Republic of Korea
| | - Humaira Nadeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muhammad Latif
- Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunawwarah, Kingdom of Saudi Arabia
| | - Samina Afzal
- Faculty of Pharmacy, Bahauddin Zakria University, Multan, Pakistan
| | - Sung-Yum Seo
- Department of Biology, College of Natural Sciences, Kongju National University, Gongju, Republic of Korea
| |
Collapse
|
20
|
Vitamin D signaling and melanoma: role of vitamin D and its receptors in melanoma progression and management. J Transl Med 2017; 97:706-724. [PMID: 28218743 PMCID: PMC5446295 DOI: 10.1038/labinvest.2017.3] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022] Open
Abstract
Ultraviolet B (UVB), in addition to having carcinogenic activity, is required for the production of vitamin D3 (D3) in the skin which supplies >90% of the body's requirement. Vitamin D is activated through hydroxylation by 25-hydroxylases (CYP2R1 or CYP27A1) and 1α-hydroxylase (CYP27B1) to produce 1,25(OH)2D3, or through the action of CYP11A1 to produce mono-di- and trihydroxy-D3 products that can be further modified by CYP27B1, CYP27A1, and CYP24A1. The active forms of D3, in addition to regulating calcium metabolism, exert pleiotropic activities, which include anticarcinogenic and anti-melanoma effects in experimental models, with photoprotection against UVB-induced damage. These diverse effects are mediated through an interaction with the vitamin D receptor (VDR) and/or as most recently demonstrated through action on retinoic acid orphan receptors (ROR)α and RORγ. With respect to melanoma, low levels of 25(OH)D are associated with thicker tumors and reduced patient survival. Furthermore, single-nucleotide polymorphisms of VDR and the vitamin D-binding protein (VDP) genes affect melanomagenesis or disease outcome. Clinicopathological analyses have shown positive correlation between low or undetectable expression of VDR and/or CYP27B1 in melanoma with tumor progression and shorter overall (OS) and disease-free survival (DFS) times. Paradoxically, this correlation was reversed for CYP24A1 (inactivating 24-hydroxylase), indicating that this enzyme, while inactivating 1,25(OH)2D3, can activate other forms of D3 that are products of the non-canonical pathway initiated by CYP11A1. An inverse correlation has been found between the levels of RORα and RORγ expression and melanoma progression and disease outcome. Therefore, we propose that defects in vitamin D signaling including D3 activation/inactivation, and the expression and activity of the corresponding receptors, affect melanoma progression and the outcome of the disease. The existence of multiple bioactive forms of D3 and alternative receptors affecting the behavior of melanoma should be taken into consideration when applying vitamin D management for melanoma therapy.
Collapse
|
21
|
Carvacrol derivatives as mushroom tyrosinase inhibitors; synthesis, kinetics mechanism and molecular docking studies. PLoS One 2017; 12:e0178069. [PMID: 28542395 PMCID: PMC5441849 DOI: 10.1371/journal.pone.0178069] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/08/2017] [Indexed: 12/25/2022] Open
Abstract
The present work describesthe development of highly potent mushroom tyrosinase inhibitor better than the standard kojic acid. Carvacrol derivatives 4a-f and 6a-d having substituted benzoic acid and cinnamic acidresidues were synthesized with the aim to possess potent tyrosinase inhibitory activity.The structures of the synthesized compounds were ascertained by their spectroscopic data (FTIR, 1HNMR, 13CNMR and Mass Spectroscopy).Mushroom tyrosinase inhibitory activity of synthesized compounds was determined and it was found that one of the derivative 6c possess higher activity (IC50 0.0167μM) than standard kojic acid (IC50 16.69μM). The derivatives 4c and 6b also showed good tyrosinase inhibitory activity with (IC50 16.69μM) and (IC50 16.69μM) respectively.Lineweaver—Burk and Dixon plots were used for the determination of kinetic mechanism of the compounds 4c and 6b and 6c. The kinetic analysis revealed that compounds 4c and 6b showed mixed-type inhibition while 6c is a non-competitive inhibitor having Ki values19 μM, 10 μM, and 0.05 μMrespectively. The enzyme inhibitory kinetics further showed thatcompounds 6b and 6c formed irreversible enzyme inhibitor complex while 4c bind reversibly with mushroom tyrosinase.The docking studies showed that compound 6c have maximum binding affinity against mushroom tyrosinase (PDBID: 2Y9X) with binding energy value (-7.90 kcal/mol) as compared to others.The 2-hydroxy group in compound 6c interacts with amino acid HIS85 which is present in active binding site. The wet lab results are in good agreement with the dry lab findings.Based upon our investigation we may propose that the compound 6c is promising candidate for the development of safe cosmetic agent.
Collapse
|
22
|
Seino H, Arai Y, Nagao N, Ozawa N, Hamada K. Efficient Percutaneous Delivery of the Antimelanogenic Agent Glabridin Using Cationic Amphiphilic Chitosan Micelles. PLoS One 2016; 11:e0164061. [PMID: 27695112 PMCID: PMC5047624 DOI: 10.1371/journal.pone.0164061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/19/2016] [Indexed: 01/01/2023] Open
Abstract
Partially myristoylated chitosan pyrrolidone carboxylate (PMCP) is a cationic amphiphilic chitosan derivative. Glabridin (Glab) from licorice root extracts is a hydrophobic antimelanogenic agent. Here we assessed the effects of cationic Glab-containing polymeric micelles derived from PMCP (Glab/PMCP-PM) on the ability of Glab to penetrate the skin and inhibit melanogenesis using a human skin model. The amount of Glab absorbed 24 h after the application of Glab/PMCP-PM was approximately four times higher than that of conventional oil-in-water micelles (control) prepared using Tween 60. Further, the release of IL-1α, a mediator of inflammation, was not detected. Treatment with Glab/PMCP-PM significantly increased the inhibition of melanogenesis compared with control. The inhibition of melanogenesis depends upon the enhanced ability of Glab to penetrate the skin, particularly the epidermis. Moreover, the inhibition of melanogenesis and the cationic potential of the Glab/PMCP-PM levels were increased by the cationic phospholipid copolymer. Therefore, Glab/PMCP-PM shows potential as an effective transdermal delivery system for treating skin hyperpigmentation.
Collapse
Affiliation(s)
- Haruyoshi Seino
- Central Research Laboratory, Pias Corporation, 1-3-1 Murotani, Nishi-ku, Kobe, Japan
- * E-mail: (HS); (NN)
| | - Yukari Arai
- Central Research Laboratory, Pias Corporation, 1-3-1 Murotani, Nishi-ku, Kobe, Japan
| | - Norio Nagao
- Faculty of Life and Environmental Science, Prefectural University of Hiroshima, 562 Nanatsuka, Shobara, Japan
- * E-mail: (HS); (NN)
| | - Noriyasu Ozawa
- Central Research Laboratory, Pias Corporation, 1-3-1 Murotani, Nishi-ku, Kobe, Japan
| | - Kazuhiko Hamada
- Central Research Laboratory, Pias Corporation, 1-3-1 Murotani, Nishi-ku, Kobe, Japan
| |
Collapse
|
23
|
Slominski AT, Manna PR, Tuckey RC. On the role of skin in the regulation of local and systemic steroidogenic activities. Steroids 2015; 103:72-88. [PMID: 25988614 PMCID: PMC4631694 DOI: 10.1016/j.steroids.2015.04.006] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/21/2015] [Accepted: 04/21/2015] [Indexed: 01/08/2023]
Abstract
The mammalian skin is a heterogeneous organ/tissue covering our body, showing regional variations and endowed with neuroendocrine activities. The latter is represented by its ability to produce and respond to neurotransmitters, neuropeptides, hormones and neurohormones, of which expression and phenotypic activities can be modified by ultraviolet radiation, chemical and physical factors, as well as by cytokines. The neuroendocrine contribution to the responses of skin to stress is served, in part, by local synthesis of all elements of the hypothalamo-pituitary-adrenal axis. Skin with subcutis can also be classified as a steroidogenic tissue because it expresses the enzyme, CYP11A1, which initiates steroid synthesis by converting cholesterol to pregnenolone, as in other steroidogenic tissues. Pregnenolone, or steroidal precursors from the circulation, are further transformed in the skin to corticosteroids or sex hormones. Furthermore, in the skin CYP11A1 acts on 7-dehydrocholesterol with production of 7-dehydropregnolone, which can be further metabolized to other Δ7steroids, which after exposure to UVB undergo photochemical transformation to vitamin D like compounds with a short side chain. Vitamin D and lumisterol, produced in the skin after exposure to UVB, are also metabolized by CYP11A1 to several hydroxyderivatives. Vitamin D hydroxyderivatives generated by action of CYP11A1 are biologically active and are subject to further hydroxylations by CYP27B1, CYP27A1 and CP24A. Establishment of which intermediates are produced in the epidermis in vivo and whether they circulate on the systemic level represent a future research challenge. In summary, skin is a neuroendocrine organ endowed with steroid/secosteroidogenic activities.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, VA Medical Center, Birmingham, AL, USA.
| | - Pulak R Manna
- Department of immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
24
|
Morya VK, Dung NH, Singh BK, Lee HB, Kim EK. Homology modelling and virtual screening of P-protein in a quest for novel antimelanogenic agent and in vitro assessments. Exp Dermatol 2015; 23:838-42. [PMID: 25236473 DOI: 10.1111/exd.12549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2014] [Indexed: 01/12/2023]
Abstract
An adequate knowledge on molecular mechanism of melanogenesis provides an opportunity to find the novel molecular targets for the discovery and development of new cosmetics. Among various genes, the OCA2 is being essential for proper melanin synthesis, and mutation or deletion of this gene leads to oculocutaneous albinism type 2. Thus, for this study, the product of this gene, that is P-protein, was targeted in quest for novel inhibitors as antimelanogenic agents. Based on pattern search of amino acid sequence and homology analysis, the protein structure was modelled. The role of this protein has been predicted as a tyrosine transporter of melanosomes. Thus, the molecular library was generated on the basis of tyrosine transporter inhibitor. Based on the dock score, 20 molecules have been considered as putative inhibitors for P-protein. Among these compounds, five molecules (compound #1, #4, #8, #13 and #17) were found to be quite effective as antimelanogenic without having any toxicity. Further investigations to establish the mechanism of action, the indirect methods such as tyrosinase assay, analysis for eumelanin and pheomelanins and investigation of mRNA levels were being carried out. The results from the studies offered a new lead in antimelanogenic therapy and may be very useful for further optimization work in developing them as novel depigmenting agents.
Collapse
Affiliation(s)
- Vivek K Morya
- Department of Biological Engineering, Inha University, Incheon, Korea
| | | | | | | | | |
Collapse
|
25
|
Adini I, Adini A, Bazinet L, Watnick RS, Bielenberg DR, D'Amato RJ. Melanocyte pigmentation inversely correlates with MCP-1 production and angiogenesis-inducing potential. FASEB J 2014; 29:662-70. [PMID: 25406462 DOI: 10.1096/fj.14-255398] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The incidence of certain angiogenesis-dependent diseases is higher in Caucasians than in African Americans. Angiogenesis is amplified in wound healing and cornea models in albino C57 mice compared with black C57 mice. Moreover, mouse and human melanocytes with low pigmentation stimulate endothelial cell (EC) proliferation and migration in vitro more than melanocytes with high pigmentation. This effect is due, in part, to the secretion of an angiogenic protein called fibromodulin (FMOD) from lowly pigmented melanocytes. Herein, we expand upon the mechanism contributing to increased angiogenesis in lighter skin and report that monocyte chemotactic protein-1 (MCP-1) is secreted by nonpigmented mouse melanocytes by 5- to 10-fold more than pigmented melanocytes. MCP-1 protein stimulates EC proliferation and migration in vitro and angiogenesis in vivo. Mechanistic studies determine that FMOD is upstream of MCP-1 and promotes its secretion from both melanocytes and activated ECs via stimulation of NF-κB activity. Mice injected with FMOD-neutralizing antibodies show 2.3-fold decreased levels of circulating MCP-1. Human studies confirmed that, on average, Caucasians have 2-fold higher serum levels of MCP-1 than African Americans. Taken together, this study implicates the FMOD/MCP-1 pathway in the regulation of angiogenesis by local melanocytes and suggests that melanogenic activity may protect against aberrant angiogenic diseases.
Collapse
Affiliation(s)
- Irit Adini
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Avner Adini
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lauren Bazinet
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Randolph S Watnick
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert J D'Amato
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Man MQ, Lin TK, Santiago JL, Celli A, Zhong L, Huang ZM, Roelandt T, Hupe M, Sundberg JP, Silva KA, Crumrine D, Martin-Ezquerra G, Trullas C, Sun R, Wakefield JS, Wei ML, Feingold KR, Mauro TM, Elias PM. Basis for enhanced barrier function of pigmented skin. J Invest Dermatol 2014; 134:2399-2407. [PMID: 24732399 PMCID: PMC4134407 DOI: 10.1038/jid.2014.187] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/25/2014] [Accepted: 03/06/2014] [Indexed: 12/29/2022]
Abstract
Humans with darkly pigmented skin display superior permeability barrier function in comparison with humans with lightly pigmented skin. The reduced pH of the stratum corneum (SC) of darkly pigmented skin could account for enhanced function, because acidifying lightly pigmented human SC resets barrier function to darkly pigmented levels. In SKH1 (nonpigmented) versus SKH2/J (pigmented) hairless mice, we evaluated how a pigment-dependent reduction in pH could influence epidermal barrier function. Permeability barrier homeostasis is enhanced in SKH2/J versus SKH1 mice, correlating with a reduced pH in the lower SC that colocalizes with the extrusion of melanin granules. Darkly pigmented human epidermis also shows substantial melanin extrusion in the outer epidermis. Both acute barrier disruption and topical basic pH challenges accelerate reacidification of SKH2/J (but not SKH1) SC, while inducing melanin extrusion. SKH2/J mice also display enhanced expression of the SC acidifying enzyme, secretory phospholipase A2f (sPLA2f). Enhanced barrier function of SKH2/J mice could be attributed to enhanced activity of two acidic pH-dependent, ceramide-generating enzymes, β-glucocerebrosidase and acidic sphingomyelinase, leading to accelerated maturation of SC lamellar bilayers. Finally, organotypic cultures of darkly pigmented human keratinocytes display enhanced barrier function in comparison with lightly pigmented cultures. Together, these results suggest that the superior barrier function of pigmented epidermis can be largely attributed to the pH-lowering impact of melanin persistence/extrusion and enhanced sPLA2f expression.
Collapse
Affiliation(s)
- Mao-Qiang Man
- Dermatology Service, Department of Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
| | - Tzu-Kai Lin
- Dermatology Service, Department of Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California, San Francisco, San Francisco, California, USA; Graduate Institute of Clinical Medicine, National Cheng Kung University Medical College, Tainan, Taiwan; Department of Dermatology, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan
| | - Juan L Santiago
- Dermatology Service, Department of Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
| | - Anna Celli
- Dermatology Service, Department of Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
| | - Lily Zhong
- Dermatology Service, Department of Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
| | - Zhi-Ming Huang
- Dermatology Service, Department of Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
| | - Truus Roelandt
- Department of Dermatology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Melanie Hupe
- Dermatology Service, Department of Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
| | - John P Sundberg
- Department of Research and Development, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Kathleen A Silva
- Department of Research and Development, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Debra Crumrine
- Dermatology Service, Department of Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
| | - Gemma Martin-Ezquerra
- Dermatology Service, Department of Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California, San Francisco, San Francisco, California, USA; Department of Dermatology, Hospital del Mar-IMIM, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Richard Sun
- Dermatology Service, Department of Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
| | - Joan S Wakefield
- Dermatology Service, Department of Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
| | - Maria L Wei
- Dermatology Service, Department of Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
| | - Kenneth R Feingold
- Medical Service, Department of Veterans Affairs Medical Center, and Department of Metabolism, University of California, San Francisco, San Francisco, California, USA
| | - Theodora M Mauro
- Dermatology Service, Department of Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
| | - Peter M Elias
- Dermatology Service, Department of Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California, San Francisco, San Francisco, California, USA.
| |
Collapse
|
27
|
Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR, Tomic-Canic M. Epithelialization in Wound Healing: A Comprehensive Review. Adv Wound Care (New Rochelle) 2014; 3:445-464. [PMID: 25032064 DOI: 10.1089/wound.2013.0473] [Citation(s) in RCA: 856] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 09/20/2013] [Indexed: 12/20/2022] Open
Abstract
Significance: Keratinocytes, a major cellular component of the epidermis, are responsible for restoring the epidermis after injury through a process termed epithelialization. This review will focus on the pivotal role of keratinocytes in epithelialization, including cellular processes and mechanisms of their regulation during re-epithelialization, and their cross talk with other cell types participating in wound healing. Recent Advances: Discoveries in epidermal stem cells, keratinocyte immune function, and the role of the epidermis as an independent neuroendocrine organ will be reviewed. Novel mechanisms of gene expression regulation important for re-epithelialization, including microRNAs and histone modifications, will also be discussed. Critical Issues: Epithelialization is an essential component of wound healing used as a defining parameter of a successful wound closure. A wound cannot be considered healed in the absence of re-epithelialization. The epithelialization process is impaired in all types of chronic wounds. Future Directions: A comprehensive understanding of the epithelialization process will ultimately lead to the development of novel therapeutic approaches to promote wound closure.
Collapse
Affiliation(s)
- Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Olivera Stojadinovic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Natalie C. Yin
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Horacio Ramirez
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Aron G. Nusbaum
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Andrew Sawaya
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Shailee B. Patel
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Laiqua Khalid
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | | | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
28
|
Zbytek B, Peacock DL, Seagroves TN, Slominski A. Putative role of HIF transcriptional activity in melanocytes and melanoma biology. DERMATO-ENDOCRINOLOGY 2014; 5:239-51. [PMID: 24194964 PMCID: PMC3772912 DOI: 10.4161/derm.22678] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/23/2012] [Accepted: 10/26/2012] [Indexed: 12/30/2022]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a highly oxygen sensitive bHLH protein that is part of the heterodimeric HIF-1 transcription factor. Under hypoxic stress, HIF-1 activity is induced to control expression of multiple downstream target genes, including vascular endothelial growth factor (VEGF). The normal epidermis exists in a constant mild hypoxic microenvironment and constitutively expresses HIF-1α and HIF-2α. Expression of HIF-1α and/or HIF-2α has been suggested to correlate with the increased malignant potential of melanocytes, therefore, failures of melanoma therapies may be partially linked to high HIF activity. Notably, melanomas that have the V600E BRAF mutation exhibit increased HIF-1α expression. We have utilized a bioinformatics approach to identify putative hypoxia response elements (HREs) in a set of genes known to participate in the process of melanogenesis (includingTRPM1, SLC45A2, HRAS, C-KIT, PMEL and CRH). While some of the mechanistic links between these genes and the HIF pathway have been previously explored, others await further investigation. Although agents targeting HIF activity have been proposed as novel treatment modalities for melanoma, there are currently no clinical trials in progress to test their efficacy in melanoma.
Collapse
Affiliation(s)
- Blazej Zbytek
- Department of Pathology and Laboratory Medicine; Center for Adult Cancer Research; University of Tennessee Health Science Center; Memphis, TN USA
| | | | | | | |
Collapse
|
29
|
D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. UV radiation and the skin. Int J Mol Sci 2013; 14:12222-48. [PMID: 23749111 PMCID: PMC3709783 DOI: 10.3390/ijms140612222] [Citation(s) in RCA: 1102] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 05/18/2013] [Accepted: 05/24/2013] [Indexed: 12/14/2022] Open
Abstract
UV radiation (UV) is classified as a "complete carcinogen" because it is both a mutagen and a non-specific damaging agent and has properties of both a tumor initiator and a tumor promoter. In environmental abundance, UV is the most important modifiable risk factor for skin cancer and many other environmentally-influenced skin disorders. However, UV also benefits human health by mediating natural synthesis of vitamin D and endorphins in the skin, therefore UV has complex and mixed effects on human health. Nonetheless, excessive exposure to UV carries profound health risks, including atrophy, pigmentary changes, wrinkling and malignancy. UV is epidemiologically and molecularly linked to the three most common types of skin cancer, basal cell carcinoma, squamous cell carcinoma and malignant melanoma, which together affect more than a million Americans annually. Genetic factors also influence risk of UV-mediated skin disease. Polymorphisms of the melanocortin 1 receptor (MC1R) gene, in particular, correlate with fairness of skin, UV sensitivity, and enhanced cancer risk. We are interested in developing UV-protective approaches based on a detailed understanding of molecular events that occur after UV exposure, focusing particularly on epidermal melanization and the role of the MC1R in genome maintenance.
Collapse
Affiliation(s)
- John D’Orazio
- Graduate Center for Toxicology and the Departments of Pediatrics, Biomedical and Molecular Pharmacology and Physiology, Markey Cancer Center, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA
| | - Stuart Jarrett
- Markey Cancer Center, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA; E-Mail:
| | - Alexandra Amaro-Ortiz
- Graduate Center for Toxicology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA; E-Mail: (A.A.-O.); (T.S.)
| | - Timothy Scott
- Graduate Center for Toxicology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA; E-Mail: (A.A.-O.); (T.S.)
| |
Collapse
|
30
|
Abstract
AbstractThe majority of melanocytes originate from the neural crest cells (NCC) that migrate, spread on the whole embryo’s body to form elements of the nervous system and skeleton, endocrinal glands, muscles and melanocytes. Human melanocytes differentiate mainly from the cranial and trunk NCC. Although melanocyte development has traditionally been associated with the dorsally migrating trunk NCC, there is evidence that a part of melanocytes arise from cells migrating ventrally. The ventral NCC differentiate into neurons and glia of the ganglia or Schwann cells. It has been suggested that the precursors for Schwann cells differentiate into melanocytes. As melanoblasts travel through the dermis, they multiply, follow the process of differentiation and invade the forming human fetal epidermis up to third month. After birth, melanocytes lose the ability to proliferate, except the hair melanocytes that renew during the hair cycle. The localization of neural crest-derived melanocytes in non-cutaneous places e.g. eye (the choroid and stroma of the iris and the ciliary body), ear (cells of the vestibular organ, cochlear stria vascularis), meninges of the brain, heart seems to indicate that repertoire of melanocyte functions is much wider than we expected e.g. the protection of tissues from potentially harmful factors (e.g. free radicals, binding toxins), storage ions, and anti-inflammatory action.
Collapse
|
31
|
Slominski A, Zmijewski MA, Pawelek J. L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment Cell Melanoma Res 2012; 25:14-27. [PMID: 21834848 PMCID: PMC3242935 DOI: 10.1111/j.1755-148x.2011.00898.x] [Citation(s) in RCA: 354] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is evidence that L-tyrosine and L-dihydroxyphenylalanine (L-DOPA), besides serving as substrates and intermediates of melanogenesis, are also bioregulatory agents acting not only as inducers and positive regulators of melanogenesis but also as regulators of other cellular functions. These can be mediated through action on specific receptors or through non-receptor-mediated mechanisms. The substrate induced (L-tyrosine and/or L-DOPA) melanogenic pathway would autoregulate itself as well as regulate the melanocyte functions through the activity of its structural or regulatory proteins and through intermediates of melanogenesis and melanin itself. Dissection of regulatory and autoregulatory elements of this process may elucidate how substrate-induced autoregulatory pathways have evolved from prokaryotic or simple eukaryotic organisms to complex systems in vertebrates. This could substantiate an older theory proposing that receptors for amino acid-derived hormones arose from the receptors for those amino acids, and that nuclear receptors evolved from primitive intracellular receptors binding nutritional factors or metabolic intermediates.
Collapse
Affiliation(s)
- Andrzej Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee, Memphis, TN, USA.
| | | | | |
Collapse
|
32
|
Zmijewski MA, Slominski AT. Neuroendocrinology of the skin: An overview and selective analysis. DERMATO-ENDOCRINOLOGY 2011; 3:3-10. [PMID: 21519402 DOI: 10.4161/derm.3.1.14617] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 12/21/2010] [Indexed: 11/19/2022]
Abstract
The concept on the skin neuro-endocrine has been formulated ten years ago, and recent advances in the field further strengthened this role. Thus, skin forms a bidirectional platform for a signal exchange with other peripheral organs, endocrine and immune systems or brain to enable rapid and selective responses to the environment in order to maintain local and systemic homeostasis. In this context, it is not surprising that the function of the skin is tightly regulated by systemic neuro-endocrine system. Skin cells and skin appendages not only respond to neuropeptides, steroids and other regulatory signals, but also actively synthesis variety of hormones. The stress responses within the skin are tightly regulated by locally synthesized factors and their receptor expression. There is growing evidence for alternative splicing playing an important role in stress signaling. Deregulation of the skin neuro-endocrine signaling can lead or/and be a marker of variety of skin diseases. The major problem in this area relates to their detailed mechanisms of crosstalk between skin and brain and between the local and global endocrine as well as immune systems.
Collapse
|
33
|
Plonka PM, Passeron T, Brenner M, Tobin DJ, Shibahara S, Thomas A, Slominski A, Kadekaro AL, Hershkovitz D, Peters E, Nordlund JJ, Abdel-Malek Z, Takeda K, Paus R, Ortonne JP, Hearing VJ, Schallreuter KU. What are melanocytes really doing all day long...? Exp Dermatol 2009; 18:799-819. [PMID: 19659579 PMCID: PMC2792575 DOI: 10.1111/j.1600-0625.2009.00912.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Everyone knows and seems to agree that melanocytes are there to generate melanin - an intriguing, but underestimated multipurpose molecule that is capable of doing far more than providing pigment and UV protection to skin (1). What about the cell that generates melanin, then? Is this dendritic, neural crest-derived cell still serving useful (or even important) functions when no-one looks at the pigmentation of our skin and its appendages and when there is essentially no UV exposure? In other words, what do epidermal and hair follicle melanocytes do in their spare time - at night, under your bedcover? How much of the full portfolio of physiological melanocyte functions in mammalian skin has really been elucidated already? Does the presence or absence of melanocytes matter for normal epidermal and/or hair follicle functions (beyond pigmentation and UV protection), and for skin immune responses? Do melanocytes even deserve as much credit for UV protection as conventional wisdom attributes to them? In which interactions do these promiscuous cells engage with their immediate epithelial environment and who is controlling whom? What lessons might be distilled from looking at lower vertebrate melanophores and at extracutaneous melanocytes in the endeavour to reveal the 'secret identity' of melanocytes? The current Controversies feature explores these far too infrequently posed, biologically and clinically important questions. Complementing a companion viewpoint essay on malignant melanocytes (2), this critical re-examination of melanocyte biology provides a cornucopia of old, but under-appreciated concepts and novel ideas on the slowly emerging complexity of physiological melanocyte functions, and delineates important, thought-provoking questions that remain to be definitively answered by future research.
Collapse
Affiliation(s)
- P M Plonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, PL-30-387 Kraków, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
More than 15 years ago, we have proposed that melanocytes are sensory and regulatory cells with computing capability, which transform external and/or internal signals/energy into organized regulatory network(s) for the maintenance of the cutaneous homeostasis. This concept is substantiated by accumulating evidence that melanocytes produce classical stress neurotransmitters, neuropeptides and hormones, express corresponding receptors and these processes are modified and/or regulated by ultraviolet radiation, biological factors or stress. Examples of the above are catecholamines, serotonin, N-acetyl-serotonin, melatonin, proopiomelanocortin-derived adrenocorticotropic hormone, beta-endorphin or melanocyte-stimulating hormone peptides, corticotropin releasing factor, related urocortins and corticosteroids including cortisol and corticosterone as well as their precursors. Furthermore, their production is not random, but hierarchical and follows the structures of classical neuroendocrine organizations such as hypothalamic-pituitary-adrenal axis, serotoninergic, melatoninergic and catecholaminergic systems. An example of an intrinsic but overlooked neuroendocrine activity is production and secretion of melanogenesis intermediates including l-DOPA or its derivatives that could enter circulation and act on distant sites. Such capabilities have defined melanocytes as neuroendocrine cells that not only coordinate cutaneous but also can affect a global homeostasis.
Collapse
Affiliation(s)
- Andrzej Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
35
|
Thingnes J, Oyehaug L, Hovig E, Omholt SW. The mathematics of tanning. BMC SYSTEMS BIOLOGY 2009; 3:60. [PMID: 19505344 PMCID: PMC2714304 DOI: 10.1186/1752-0509-3-60] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 06/09/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND The pigment melanin is produced by specialized cells, called melanocytes. In healthy skin, melanocytes are sparsely spread among the other cell types in the basal layer of the epidermis. Sun tanning results from an UV-induced increase in the release of melanin to neighbouring keratinocytes, the major cell type component of the epidermis as well as redistribution of melanin among these cells. Here we provide a mathematical conceptualization of our current knowledge of the tanning response, in terms of a dynamic model. The resolution level of the model is tuned to available data, and its primary focus is to describe the tanning response following UV exposure. RESULTS The model appears capable of accounting for available experimental data on the tanning response in different skin and photo types. It predicts that the thickness of the epidermal layer and how far the melanocyte dendrites grow out in the epidermal layers after UV exposure influence the tanning response substantially. CONCLUSION Despite the paucity of experimental validation data the model is constrained enough to serve as a foundation for the establishment of a theoretical-experimental research programme aimed at elucidating the more fine-grained regulatory anatomy underlying the tanning response.
Collapse
Affiliation(s)
- Josef Thingnes
- Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (UMB), PO Box 5003, 1432 As, Norway.
| | | | | | | |
Collapse
|
36
|
Izvolskaia M, Duittoz AH, Ugrumov MV, Tillet Y. Tyrosine hydroxylase expression in the olfactory/respiratory epithelium in early sheep fetuses (Ovis aries). Brain Res 2006; 1083:29-38. [PMID: 16556435 DOI: 10.1016/j.brainres.2006.01.130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 01/26/2006] [Accepted: 01/30/2006] [Indexed: 11/26/2022]
Abstract
Transient expression of tyrosine hydroxylase (TH, the first enzyme in catecholamine synthesis) has been shown in different brain and peripheral structures of various species. TH-immunoreactive neurons have been reported in the nasal region of human and rat fetuses migrating to the forebrain with GnRH neurons during embryogenesis. In the present study, immunohistochemical analysis and in situ hybridization were performed in fetal sheep and in vitro sheep embryo olfactory placode cultures to confirm this population in this species. On embryonic days 33 to 35, TH-immunoreactive cells as well as TH cDNA-hybridized cells were found in the olfactory and respiratory epithelium and were spatially separated from GnRH-immunoreactive neurons. In days 40 to 44 of gestation, TH-immunoreactive neurons were no longer observed in the olfactory epithelium, and TH-immunoreactive fibers were found on the trajectories of the olfactory nerves. At this stage, some TH-immunoreactive fibers were also labeled for GnRH. TH-immunoreactive cells were also found in primary cultures of olfactory placodes of fetal sheep at 10 to 18 days in vitro. Some of them coexpressed GnRH. These results imply that olfactory epithelium is also able to give rise to TH expressing cells in fetal sheep, but this expression is suppressed earlier in ontogenesis than in humans due to some unidentified factors not present in the primary cultures of olfactory placode. The role of TH expression remains unclear as in other previously described examples.
Collapse
Affiliation(s)
- Marina Izvolskaia
- Laboratory of Hormonal Regulations, Institute of Developmental Biology, Russian Academy of Sciences, Vavilov str., 26,119991 Moscow, Russia
| | | | | | | |
Collapse
|
37
|
Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 2004; 84:1155-228. [PMID: 15383650 DOI: 10.1152/physrev.00044.2003] [Citation(s) in RCA: 1382] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cutaneous melanin pigment plays a critical role in camouflage, mimicry, social communication, and protection against harmful effects of solar radiation. Melanogenesis is under complex regulatory control by multiple agents interacting via pathways activated by receptor-dependent and -independent mechanisms, in hormonal, auto-, para-, or intracrine fashion. Because of the multidirectional nature and heterogeneous character of the melanogenesis modifying agents, its controlling factors are not organized into simple linear sequences, but they interphase instead in a multidimensional network, with extensive functional overlapping with connections arranged both in series and in parallel. The most important positive regulator of melanogenesis is the MC1 receptor with its ligands melanocortins and ACTH, whereas among the negative regulators agouti protein stands out, determining intensity of melanogenesis and also the type of melanin synthesized. Within the context of the skin as a stress organ, melanogenic activity serves as a unique molecular sensor and transducer of noxious signals and as regulator of local homeostasis. In keeping with these multiple roles, melanogenesis is controlled by a highly structured system, active since early embryogenesis and capable of superselective functional regulation that may reach down to the cellular level represented by single melanocytes. Indeed, the significance of melanogenesis extends beyond the mere assignment of a color trait.
Collapse
Affiliation(s)
- Andrzej Slominski
- Dept. of Pathology, Suite 599, University of Tennessee Health Science Center, 930 Madison Avenue, Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
38
|
Halaban R, Cheng E, Svedine S, Aron R, Hebert DN. Proper folding and endoplasmic reticulum to golgi transport of tyrosinase are induced by its substrates, DOPA and tyrosine. J Biol Chem 2001; 276:11933-8. [PMID: 11124258 DOI: 10.1074/jbc.m008703200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tyrosinase is essential for pigmentation and is a source of tumor-derived antigenic peptides and cellular immune response. Wild type tyrosinase in melanoma cells and certain albino mutants in untransformed melanocytes are targeted to proteolytic degradation by the 26 S proteasome due to retention of the misfolded protein in the endoplasmic reticulum and its subsequent retranslocation to the cytosol. Here, we demonstrate that the substrates DOPA and tyrosine induced in melanoma cells a transition of misfolded wild type tyrosinase to the native form that is resistant to proteolysis, competent to exit the endoplasmic reticulum, and able to produce melanin. Because the enzymatic activity of tyrosinase is induced by DOPA, we propose that proper folding of the wild type protein, just like mutant forms, is tightly linked to its catalytic state. Loss of pigmentation, therefore, in tyrosinase-positive melanoma cells is a consequence of tumor-induced metabolic changes that suppress tyrosinase activity and DOPA production within these cells.
Collapse
Affiliation(s)
- R Halaban
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | | | | | |
Collapse
|
39
|
Abstract
The classical observations of the skin as a target for melanotropins have been complemented by the discovery of their actual production at the local level. In fact, all of the elements controlling the activity of the hypothalamus-pituitary-adrenal axis are expressed in the skin including CRH, urocortin, and POMC, with its products ACTH, alpha-MSH, and beta-endorphin. Demonstration of the corresponding receptors in the same cells suggests para- or autocrine mechanisms of action. These findings, together with the demonstration of cutaneous production of numerous other hormones including vitamin D3, PTH-related protein (PTHrP), catecholamines, and acetylcholine that share regulation by environmental stressors such as UV light, underlie a role for these agents in the skin response to stress. The endocrine mediators with their receptors are organized into dermal and epidermal units that allow precise control of their activity in a field-restricted manner. The skin neuroendocrine system communicates with itself and with the systemic level through humoral and neural pathways to induce vascular, immune, or pigmentary changes, to directly buffer noxious agents or neutralize the elicited local reactions. Therefore, we suggest that the skin neuroendocrine system acts by preserving and maintaining the skin structural and functional integrity and, by inference, systemic homeostasis.
Collapse
Affiliation(s)
- A Slominski
- Department of Pathology ,University of Tennessee, Memphis 38163, USA.
| | | |
Collapse
|
40
|
Slominski AT, Botchkarev V, Choudhry M, Fazal N, Fechner K, Furkert J, Krause E, Roloff B, Sayeed M, Wei E, Zbytek B, Zipper J, Wortsman J, Paus R. Cutaneous expression of CRH and CRH-R. Is there a "skin stress response system?". Ann N Y Acad Sci 1999; 885:287-311. [PMID: 10816662 DOI: 10.1111/j.1749-6632.1999.tb08686.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The classical neuroendocrine pathway for response to systemic stress is by hypothalamic release of corticotropin releasing hormone (CRH), subsequent activation of pituitary CRH receptors (CRH-R), and production and release of proopiomelanocortin (POMC) derived peptides. It has been proposed that an equivalent to the hypothalamic-pituitary-adrenal axis functions in mammalian skin, in response to local stress (see Reference 1). To further define such system we used immunocytochemistry, RP-HPLC separation, and RIA techniques, in rodent and human skin, and in cultured normal and malignant melanocytes and keratinocytes. Production of mRNA for CRH-R1 was documented in mouse and human skin using RT-PCR and Northern blot techniques; CRH binding sites and CRH-R1 protein were also identified. Addition of CRH to immortalized human keratinocytes, and to rodent and human melanoma cells induced rapid, specific, and dose-dependent increases in intracellular Ca2+. The latter were inhibited by the CRH antagonist alpha-helical-CRH(9-41) and by the depletion of extracellular calcium with EGTA. CRH production was enhanced by ultraviolet light radiation and forskolin (a stimulator for intracellular cAMP production), and inhibited by dexamethasone. Thus, evidence that skin cells, both produce CRH and express functional CRH-R1, supports the existence of a local CRH/CRH-R neuroendocrine pathway that may be activated within the context of a skin stress response system.
Collapse
Affiliation(s)
- A T Slominski
- Department of Pathology, Loyola University, Maywood, Illinois, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Slominski A, Pawelek J. Animals under the sun: effects of ultraviolet radiation on mammalian skin. Clin Dermatol 1998; 16:503-15. [PMID: 9699062 DOI: 10.1016/s0738-081x(98)00023-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- A Slominski
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
42
|
Reichrath J, Schilli M, Kerber A, Bahmer FA, Czarnetzki BM, Paus R. Hair follicle expression of 1,25-dihydroxyvitamin D3 receptors during the murine hair cycle. Br J Dermatol 1994; 131:477-82. [PMID: 7947199 DOI: 10.1111/j.1365-2133.1994.tb08547.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Because the hair follicle is a highly hormone-sensitive miniorgan, the role of hormones produced locally in the skin in the control of hair growth deserves systematic analysis. It has been shown previously that the potent steroid hormone 1,25-dihydroxyvitamin D3 (1,25-D3) modulates growth and differentiation of keratinocytes via binding to a high-affinity nuclear vitamin D receptor (VDR). In this study, we have examined the in situ expression of VDR during the murine hair cycle. VDR expression was detected immunohistochemically. To obtain defined stages of the murine hair cycle, hair growth was induced by depilation in C57 BL-6 mice. In addition to the recognized VDR expression of outer root sheath keratinocytes, we detected VDR immunoreactive cells in the dermal papilla, the mesenchymal key structure of the hair follicle. Furthermore, VDR immunoreactivity in the nuclei of outer root sheath keratinocytes and in dermal papilla cells was stronger during anagen IV-VI and catagen than during telogen and anagen I-III. This suggests hair cycle-associated changes in the expression of VDR, and points to a potential role for 1,25-D3 in hair follicle biology. Selected follicular cell populations may display hair cycle-dependent sensitivity to 1,25-D3 stimulation.
Collapse
Affiliation(s)
- J Reichrath
- Department of Dermatology, Universität des Saarlandes, Homburg, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Slominski A, Paus R. Melanogenesis is coupled to murine anagen: Toward new concepts for the role of melanocytes and the regulation of melanogenesis in hair growth. J Invest Dermatol 1993. [DOI: 10.1016/0022-202x(93)90507-e] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Slominski A, Paus R. Melanogenesis is coupled to murine anagen: toward new concepts for the role of melanocytes and the regulation of melanogenesis in hair growth. J Invest Dermatol 1993; 101:90S-97S. [PMID: 8326158 DOI: 10.1111/1523-1747.ep12362991] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Hair is actively pigmented only when it grows: the melanogenic activity of follicular melanocytes (MC) is strictly coupled to the anagen stage of the hair cycle. In catagen, melanin formation is switched off and is absent throughout telogen. The appearance of pigmentation is preceded, and further accompanied by, a time-frame - restricted, differential pattern of tyrosinase transcription, translation, and enzyme activities during the development of anagen follicles. In this speculative review, we argue that signals required for melanin synthesis and pigment transfer to bulb keratinocytes (KC) are intrinsic to the skin, rather than coming from the serum. First, the proopiomelanocortin (POMC) gene is expressed and translated during anagen, but is below the level of detectability in telogen; POMC is a precursor protein for adrenocorticotropin and melanotropins, which are potent regulators of MC proliferation and differentiation. Second, fibroblasts and KC produce factors that affect MC proliferation and differentiation. We suggest that signals regulating follicular MC activity partially derive from cutaneous cells expressing POMC. Vice versa, MC transfer to surrounding KC pigment granules with potent bioregulatory properties. MC also produce and secrete various signal molecules that can regulate mesenchymal and epithelial cell functions. Anagen-associated melanogenesis and the cyclic production of a pigmented hair shaft result from programmed and tightly coordinated epithelial-mesenchymal-neuroectodermal interactions, in which MC may act not only as pigmentary, but also as hair growth-regulatory cells.
Collapse
Affiliation(s)
- A Slominski
- Department of Microbiology, Immunology and Molecular Genetics, Albany Medical College, NY 12208
| | | |
Collapse
|
45
|
Slominski A, Friedrich T. L-dopa inhibits in vitro phosphorylation of melanoma glycoproteins. PIGMENT CELL RESEARCH 1992; 5:396-9. [PMID: 1492074 DOI: 10.1111/j.1600-0749.1992.tb00569.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
L-DOPA had no effect on the endogenous phosphorylation of proteins after extraction with 1% Triton X-100 from hamster melanoma. When proteins were purified further by wheat germ-agglutinin chromatography, however, a dramatic and dose-dependent inhibitory effect of DOPA on glycoprotein phosphorylation was observed in the presence of Mn+2.
Collapse
Affiliation(s)
- A Slominski
- Department of Microbiology, Immunology and Molecular Genetics, Albany Medical College, New York 12208
| | | |
Collapse
|
46
|
Zuasti A, Johnson WC, Samaraweera P, Bagnara JT. Intrinsic Pigment-Cell Stimulating Activity in the Catfish Integument. ACTA ACUST UNITED AC 1992; 5:253-62. [PMID: 1363134 DOI: 10.1111/j.1600-0749.1992.tb00545.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In keeping with the concept that local factors in the vertebrate integument affect the expression of pigment cells, the present study was directed toward demonstrating the existence of such factors in the skin of the channel catfish, Ictalurus punctatus. This species has a dark dorsal surface in marked contrast to an almost white midventral surface. Pieces of skin from these two surfaces were used to condition culture media, which were in turn bioassayed using the Xenopus neural tube explant system (Fukuzawa and Ide, 1988, Dev. Biol. 129:25). A certain number of neural crest cells grow out from the explant, and many of these are melanized in a culture medium of Steinberg's basic salt solution (BSS). When the BSS was conditioned with either dorsal or ventral skin, a profound increase in both the number of crest cells emigrated from the neural tubes and the percentage of melanized cells was observed. The effects of dorsal skin were stronger than those of ventral skin and were evident on a dose/response basis. Initial fractionation of conditioned BSS with DEAE ion exchange chromatography produced fractions of particular potency in the stimulation of melanogenesis. A similarly conditioned medium based upon Leibovitz's L-15 was used in the primary culture of mature chromatophores, namely, melanophores, iridophores, and xanthophores from tadpoles of Rana pipiens. Both dorsal and ventral conditioned media stimulated iridophores and xanthophores, but seemed to have little or no effect on tadpole melanophores. A melanization inhibiting factor (MIF) from the ventral surface of adult frogs has been suggested as the basis for the light colored ventrum of amphibians, and although the present experiments were not designed to study catfish MIF, the possible existence of such a factor in this species was supported by the results. The total results of this investigation are discussed in the light of the possible presence of a melanization inhibiting factor (MIF) of greater prevalence in the ventrum and a melanization stimulatory factor (MSF) of greater prevalence in the dorsal integument. It is suggested that the light-colored ventral surface of the catfish and other poikilotherms may result from the presence of higher levels of MIF than MSF. Thus, the expression of melanophores is inhibited while that of iridophores is enhanced. In contrast, higher levels of MSF over MIF in the dark dorsal surface would result in melanophore stimulation and inhibition of iridophore expression.
Collapse
Affiliation(s)
- A Zuasti
- Department of Anatomy, University of Arizona, Tucson 85724
| | | | | | | |
Collapse
|
47
|
Slominski A, Pruski D. L-dopa binding sites in rodent melanoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1139:324-8. [PMID: 1515457 DOI: 10.1016/0925-4439(92)90109-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Rapid, saturable, specific and stereoselective binding of L-dopa to crude membranes and purified nuclei from rodent amelanotic melanoma cells is reported. Cross-linking of [3H]dopa to melanoma cell surface emphasized proteins of approx. 55, 30, 25 and less than 20 kDa. It is suggested that these binding sites may regulate melanocyte activity.
Collapse
|
48
|
Mangano FT, Fukuzawa T, Johnson WC, Bagnara JT. Intrinsic pigment cell stimulating activity in the skin of the leopard frog, Rana pipiens. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1992; 263:112-8. [PMID: 1645118 DOI: 10.1002/jez.1402630112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Consistent with the concept that specific pigment patterns of amphibians might result from the highly localized distribution of stimulators and inhibitors of pigment cell expression in the skin, the spot pattern of the leopard frog, Rana pipiens, was examined through the use of the Xenopus neural tube explant assay system (Fukuzawa and Ide, 1988). Media conditioned with pieces of skin from dorsal black spotted areas promoted melanization of neural crest cells at a significantly higher level than did media conditioned with dorsal interspot skin in the absence of extra tyrosine. All conditioned media contained exceedingly low concentrations of tyrosine. With the addition of supplemental tyrosine, the melanization capacity of conditioned media from the interspot areas was elevated to that of the spotted skin. Control media conditioned with ventral frog skin inhibited melanization, as usual, because of the presumed presence of melanization inhibiting factor (MIF). It is considered that dorsal skin contains a melanization stimulating factor (MSF) which is present in significantly higher levels in spotted skin than in interspot areas and that expression of the particular pigmentary pattern of this leopard frog is regulated by the relative distribution of MIF, MSF, and possibly other intrinsic substances present in the skin.
Collapse
Affiliation(s)
- F T Mangano
- Department of Anatomy, University of Arizona, Tucson 85724
| | | | | | | |
Collapse
|
49
|
Pankovich JM, Jimbow K. Tyrosine transport in a human melanoma cell line as a basis for selective transport of cytotoxic analogues. Biochem J 1991; 280 ( Pt 3):721-5. [PMID: 1764036 PMCID: PMC1130513 DOI: 10.1042/bj2800721] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tyrosine is an essential amino acid for the initial step of melanin synthesis, yet little is known concerning its transport in melanocytes. As an important first step in the development of new anti-melanoma agents based upon chemical and pharmacological modifications of melanin synthesis, the present study characterized the transport mechanism of tyrosine in vitro using the human melanoma cell line SK-MEL 23. Several tyrosine transport systems may be involved in melanocytes: systems L and T, which transport neutral amino acids with branched or aromatic side chains, and systems A and ASC, which transport neutral amino acids with smaller side chains. In order to determine which system or combination of systems is involved in tyrosine transport in melanoma cells, studies of kinetics, Na(+)-dependence and competitive inhibition were undertaken. The Km and Vmax. for the Na(+)-independent transport system were found to be 0.164 +/- 0.016 mM and 21.6 +/- 1.1 nmol/min per mg of protein respectively. This transport was preferentially inhibited by the system L specific analogue, 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid, the system T substrate tryptophan, and the sulphur homologue of tyrosine, 4-S-cysteinylphenol. Sequential addition of these inhibitors at increasing concentrations indicated that they inhibit the same transporter. Our results suggest that tyrosine transport in SK-MEL 23 melanoma cells is similar to system L transport previously characterized in other cell types. This one transport system appears to supply all the tyrosine required for both cell growth and melanin synthesis. The transport system may be subject to manipulation by melanogenic stimulating factors, making the transport of cytotoxic tyrosine analogues an important area for further study.
Collapse
Affiliation(s)
- J M Pankovich
- Division of Dermatology and Cutaneous Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
50
|
Slominski A. L-tyrosine-binding proteins on melanoma cells. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1991; 27A:735-8. [PMID: 1917793 DOI: 10.1007/bf02633219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Crosslinking of [14C]L-tyrosine to at least five hamster melanoma cell surface proteins is reported. This effect was abolished by addition of nonradioactive L-tyrosine, L-phenylalanine, or L-dopa, but not by D-tyrosine, tyramine, dopamine, norepinephrine, or epinephrine. The above proteins can be purified by tyrosine-affinity chromatography. They have molecular weights different from proteins staining for dopa oxidase and proteins that bind anti-tyrosinase antibody in Western blots. It is suggested that they may be a hithergo unrecognized part of the cellular apparatus governing melanogenesis.
Collapse
Affiliation(s)
- A Slominski
- Department of Immunology and Microbiology, Albany Medical College, New York 12208
| |
Collapse
|