1
|
Miller RL, Guimond SE, Schwörer R, Zubkova OV, Tyler PC, Xu Y, Liu J, Chopra P, Boons GJ, Grabarics M, Manz C, Hofmann J, Karlsson NG, Turnbull JE, Struwe WB, Pagel K. Shotgun ion mobility mass spectrometry sequencing of heparan sulfate saccharides. Nat Commun 2020; 11:1481. [PMID: 32198425 PMCID: PMC7083916 DOI: 10.1038/s41467-020-15284-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/27/2020] [Indexed: 01/23/2023] Open
Abstract
Despite evident regulatory roles of heparan sulfate (HS) saccharides in numerous biological processes, definitive information on the bioactive sequences of these polymers is lacking, with only a handful of natural structures sequenced to date. Here, we develop a “Shotgun” Ion Mobility Mass Spectrometry Sequencing (SIMMS2) method in which intact HS saccharides are dissociated in an ion mobility mass spectrometer and collision cross section values of fragments measured. Matching of data for intact and fragment ions against known values for 36 fully defined HS saccharide structures (from di- to decasaccharides) permits unambiguous sequence determination of validated standards and unknown natural saccharides, notably including variants with 3O-sulfate groups. SIMMS2 analysis of two fibroblast growth factor-inhibiting hexasaccharides identified from a HS oligosaccharide library screen demonstrates that the approach allows elucidation of structure-activity relationships. SIMMS2 thus overcomes the bottleneck for decoding the informational content of functional HS motifs which is crucial for their future biomedical exploitation. Heparan sulfates (HS) contain functionally relevant structural motifs, but determining their monosaccharide sequence remains challenging. Here, the authors develop an ion mobility mass spectrometry-based method that allows unambiguous characterization of HS sequences and structure-activity relationships.
Collapse
Affiliation(s)
- Rebecca L Miller
- Copenhagen Center for Glycomics, Department of Cellular & Molecular Medicine, University of Copenhagen, Copenhagen, N 2200, Denmark. .,Centre for Glycobiology, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK. .,Laboratory of Cancer Biology, Department of Oncology, Medical Sciences Division, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| | - Scott E Guimond
- Centre for Glycobiology, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.,Institute for Science and Technology in Medicine, School of Medicine, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Ralf Schwörer
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt, 5010, New Zealand
| | - Olga V Zubkova
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt, 5010, New Zealand
| | - Peter C Tyler
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt, 5010, New Zealand
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Science, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Márkó Grabarics
- Freie Universitaet Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195, Berlin, Germany.,Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Christian Manz
- Freie Universitaet Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195, Berlin, Germany.,Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Johanna Hofmann
- Freie Universitaet Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195, Berlin, Germany.,Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jeremy E Turnbull
- Copenhagen Center for Glycomics, Department of Cellular & Molecular Medicine, University of Copenhagen, Copenhagen, N 2200, Denmark.,Centre for Glycobiology, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Weston B Struwe
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3QZ, UK
| | - Kevin Pagel
- Freie Universitaet Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195, Berlin, Germany.,Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| |
Collapse
|
2
|
Abstract
Our knowledge of heredity has recently undergone major upheaval. Heredity transmits considerably more than just genetic elements. First, the oocyte is full of maternal cytoplasmic components that subsequently are present in each new cell. Second, maternal cells can pass to the progeny, where they remain active into adult life (microchimerism). Here, we examine the notion that the transmission of characters involves at least two processes in addition to that of mendelian heredity, long considered to be the only hereditary mechanism. These processes all involve epigenetic processes, including the transmission of macromolecules, subcellular organelles, and living cells solely from the mother to her offspring, whether female or male, during pregnancy and lactation. We postulate that cytoplasmic heredity and maternal transmission of cells leading to a long-term state of microchimerism in progeny are two good examples of matrilineal, nonmendelian heredity. A mother's important contribution to the development and health of her progeny seems to possess many uncharted depths.
Collapse
Affiliation(s)
- Marie-Christine Maurel
- Laboratoire de Biochimie de l'Evolution et Adaptabilité Moléculaire, Institut Jacques-Monod, UMR 7592, CNRS and Universités Paris 6 and 7, 75251 Paris Cedex 05, France.
| | | |
Collapse
|
3
|
Davies JD, Wilson DH, Hermel E, Lindahl KF, Butcher GW, Wilson DB. Generation of T cells with lytic specificity for atypical antigens. I. A mitochondrial antigen in the rat. J Exp Med 1991; 173:823-32. [PMID: 1672544 PMCID: PMC2190809 DOI: 10.1084/jem.173.4.823] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
F1 rats primed with normal parental strain lymphocyte populations and restimulated in culture with parental lymphoblasts generate potent cytotoxic T cell responses to unusual antigen systems. Here we describe in the Lewis (L)/DA anti-DA combination an antigen system most likely of mitochondrial origin with the following properties: it is transmitted maternally from DA strain females, inherited in an extra-chromosomal manner, restricted by class I RT1Aa major histocompatibility complex gene products, extinguished on target cells treated with chloramphenicol, and its pattern of expression in different rat strains correlates with restriction fragment-length polymorphisms of mitochondrial DNA. Sequence analysis of the rat ND1 gene indicates that the maternally transferred factor in the rat is not a homologue of the maternally transmitted factor responsible for the mitochondrial antigen in mice. In keeping with its inheritance from DA females, this antigen is present on target cells from (DA female x L male)F1 donors and all other F1 combinations derived from DA female parents, but absent from target cells from some F1 combinations (L/DA and Wistar-Furth [WF]/DA) derived from DA strain males. The presence of this antigen in other F1 combinations (Brown Norway [BN]/DA, August 2880 [AUG]/DA, and PVG/DA) indicates that this mitochondrial antigen system is shared by the DA, BN, and PVG strains, but not by the L and WF strains.
Collapse
Affiliation(s)
- J D Davies
- Medical Biology Institute, La Jolla, California 92037
| | | | | | | | | | | |
Collapse
|