1
|
Manning JR, Carpenter G, Porter DR, House SL, Pietras DA, Doetschman T, Schultz JEJ. Fibroblast growth factor-2-induced cardioprotection against myocardial infarction occurs via the interplay between nitric oxide, protein kinase signaling, and ATP-sensitive potassium channels. Growth Factors 2012; 30:124-39. [PMID: 22304432 PMCID: PMC7041406 DOI: 10.3109/08977194.2012.656759] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fibroblast growth factor-2 (FGF2) protects the heart from ischemia-reperfusion (I-R) injury via a vast network of protein kinases. In the heart, downstream effectors of these FGF2-triggered signals have not yet been identified. It is hypothesized that nitric oxide (NO) signaling and ATP-sensitive potassium (K(ATP)) channel activity are key effectors of protein kinases activated by FGF2-mediated cardioprotection. Hearts with a cardiac-specific overexpression of FGF2 (FGF2 Tg) were subjected to I-R injury in the absence or the presence of selective inhibitors of NO synthase (NOS) isoforms or sarcolemmal (sarcK(ATP)) and mitochondrial (mitoK(ATP)) K(ATP) channels. Multiple NOS isoforms are necessary for FGF2-mediated cardioprotection, and nitrite levels are significantly reduced in FGF2 Tg hearts upon inhibition of protein kinase C or mitogen-activated protein kinases. Likewise, sarcK(ATP) and mitoK(ATP) channels are important for cardioprotection elicited by endogenous FGF2. These findings suggest that FGF2-induced cardioprotection occurs via protein kinase-NOS pathways as well as K(ATP) channel activity.
Collapse
Affiliation(s)
- Janet R Manning
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | |
Collapse
|
2
|
Simvastatin in contrast to postconditioning reduces infarct size in hyperlipidemic rabbits: possible role of oxidative/nitrosative stress attenuation. Basic Res Cardiol 2010; 105:193-203. [DOI: 10.1007/s00395-009-0078-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 12/07/2009] [Accepted: 12/12/2009] [Indexed: 11/25/2022]
|
3
|
Abstract
Nitric oxide (NO) plays a crucial role in many aspects of the pathophysiology of heart failure. NO is a double-edged sword; NO inhibits ischemia/reperfusion (I/R) injury, represses inflammation, and prevents left ventricular (LV) remodeling, whereas excess NO and co-existence of reactive oxygen species (ROS) with NO are injurious. The failing heart is exposed to not only oxidative stress by a plethora of humoral factors and inflammatory cells but also nitrosative stress. Activation of nitric oxide synthase (NOS) of any isoforms, [i.e., endothelial NOS (eNOS), inducible NOS (iNOS), and neuronal NOS (nNOS)], concomitant with oxidative stress results in NOS uncoupling, leading to further oxidative/nitrosative stress. Indiscriminate removal of oxidative stress is not an effective means to prevent this detrimental process, because oxidative stress is necessary for an adaptive mechanism for cell survival against noxious stimuli. Therefore, removal of ROS in a site-specific manner or inhibition of the source of injurious ROS without affecting redox-sensitive survival signal transduction pathways represents a promising approach to elicit the beneficial effect of NO. Recent emerging pharmacological tools and regular exercise inhibit ROS generation in the proximity of NOSs, thereby increasing bioavailable NO and exerting cardioprotection against I/R injury and LV remodeling.
Collapse
Affiliation(s)
- Hajime Otani
- The Second Department of Internal Medicine, Division of Cardiology, Kansai Medical University, Moriguchi City, Japan.
| |
Collapse
|
4
|
Adenosine triggers the nuclear translocation of protein kinase C epsilon in H9c2 cardiomyoblasts with the loss of phosphorylation at Ser729. J Cell Biochem 2009; 106:633-42. [DOI: 10.1002/jcb.22043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Parissis JT, Andreadou I, Bistola V, Paraskevaidis I, Filippatos G, Kremastinos DT. Novel biologic mechanisms of levosimendan and its effect on the failing heart. Expert Opin Investig Drugs 2008; 17:1143-50. [DOI: 10.1517/13543784.17.8.1143] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- John T Parissis
- University of Athens and Attikon General Hospital, Heart Failure Clinic and Second Cardiology Department, Navarinou 13, 15122 Maroussi, Athens, Greece ;
| | - Ioanna Andreadou
- University of Athens and Attikon General Hospital, Heart Failure Clinic and Second Cardiology Department, Navarinou 13, 15122 Maroussi, Athens, Greece ;
| | - Vassiliki Bistola
- University of Athens and Attikon General Hospital, Heart Failure Clinic and Second Cardiology Department, Navarinou 13, 15122 Maroussi, Athens, Greece ;
| | - Ioannis Paraskevaidis
- University of Athens and Attikon General Hospital, Heart Failure Clinic and Second Cardiology Department, Navarinou 13, 15122 Maroussi, Athens, Greece ;
| | - Gerasimos Filippatos
- University of Athens and Attikon General Hospital, Heart Failure Clinic and Second Cardiology Department, Navarinou 13, 15122 Maroussi, Athens, Greece ;
| | - Dimitrios T Kremastinos
- University of Athens and Attikon General Hospital, Heart Failure Clinic and Second Cardiology Department, Navarinou 13, 15122 Maroussi, Athens, Greece ;
| |
Collapse
|
6
|
Fotopoulou T, Iliodromitis EK, Koufaki M, Tsotinis A, Zoga A, Gizas V, Pyriochou A, Papapetropoulos A, Andreadou I, Kremastinos DT. Design and synthesis of nitrate esters of aromatic heterocyclic compounds as pharmacological preconditioning agents. Bioorg Med Chem 2008; 16:4523-31. [PMID: 18328715 DOI: 10.1016/j.bmc.2008.02.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 02/08/2008] [Accepted: 02/15/2008] [Indexed: 10/22/2022]
Abstract
Ischemic preconditioning (IPC) constitutes an endogenous protective mechanism in which one or more brief periods of myocardial ischemia and reperfusion render the myocardium resistant to a subsequent more-sustained ischemic insult. Pharmacological preconditioning represents an ideal alternative of IPC. We now describe the design and synthesis of indole, quinoline, and purine systems with an attached pharmacophoric nitrate ester group. The indole and quinoline derivatives 4 and 5 possess structural features of the nitrate containing K(ATP) channel openers. Purine analogues 11 and 12, substituted at the position 6 by a piperidine moiety and at position 9 by an alkyl nitrate, could combine the effects of the nitrate containing K(ATP) channel openers and those of adenosine. Compound 13 bears the nicotinamide moiety of nicorandil instead of nitrate ester. Compounds 4, 5, and 11 reduced infarction and the levels of malondialdehyde (MDA) at reperfusion in anesthetized rabbits. Compounds 12 and 13 did not significantly reduce the infarct size. Analogues 4 and 5 increased cGMP and MDA during ischemia, while combined analogue 4 and mitoK(ATP) blocker 5-hydroxydecanoic acid (5-HD) abrogated this benefit suggesting an action through mitoK(ATP) channel opening. Treatment with derivative 11 combined with 5-HD as well as treatment with 11 and adenosine receptor blocker 8-(p-sulfophenyl)theophylline (SPT) did not abrogate cardioprotection. Compound 11 is a lead molecule for the synthesis of novel analogues possessing a dual mode of action through cGMP-mitoK(ATP) channel opening-free radicals and through adenosine receptors.
Collapse
Affiliation(s)
- Theano Fotopoulou
- National Hellenic Research Foundation, Institute of Organic and Pharmaceutical Chemistry, 48, Vas. Constantinou Avenue, 11635 Athens, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Ischemia/reperfusion (I/R) injury is a major contributory factor to cardiac dysfunction and infarct size that determines patient prognosis after acute myocardial infarction. Considerable interest exists in harnessing the heart's endogenous capacity to resist I/R injury, known as ischemic preconditioning (IPC). The IPC research has contributed to uncovering the pathophysiology of I/R injury on a molecular and cellular basis and to invent potential therapeutic means to combat such damage. However, the translation of basic research findings learned from IPC into clinical practice has often been inadequate because the majority of basic research findings have stemmed from young and healthy animals. Few if any successful implementations of IPC have occurred in the diseased hearts that are the primary target of viable therapies activating cardioprotective mechanisms to limit cardiac dysfunction and infarct size. Therefore, the first purpose of this review is to facilitate understanding of pathophysiology of I/R injury and the mechanisms of cardioprotection afforded by IPC in the normal heart. Then I focus on the problems and opportunities for successful bench-to-bedside translation of IPC in the diseased hearts.
Collapse
Affiliation(s)
- Hajime Otani
- Second Department of Internal Medicine, Division of Cardiology, Kansai Medical University, Moriguchi City, Japan.
| |
Collapse
|
8
|
Abstract
In work spanning more than a century, mitochondria have been recognized for their multifunctional roles in metabolism, energy transduction, ion transport, inheritance, signaling, and cell death. Foremost among these tasks is the continuous production of ATP through oxidative phosphorylation, which requires a large electrochemical driving force for protons across the mitochondrial inner membrane. This process requires a membrane with relatively low permeability to ions to minimize energy dissipation. However, a wealth of evidence now indicates that both selective and nonselective ion channels are present in the mitochondrial inner membrane, along with several known channels on the outer membrane. Some of these channels are active under physiological conditions, and others may be activated under pathophysiological conditions to act as the major determinants of cell life and death. This review summarizes research on mitochondrial ion channels and efforts to identify their molecular correlates. Except in a few cases, our understanding of the structure of mitochondrial ion channels is limited, indicating the need for focused discovery in this area.
Collapse
Affiliation(s)
- Brian O'Rourke
- Institute of Molecular Cardiobiology, Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205, USA.
| |
Collapse
|
9
|
Penna C, Alloatti G, Cappello S, Gattullo D, Berta G, Mognetti B, Losano G, Pagliaro P. Platelet-activating factor induces cardioprotection in isolated rat heart akin to ischemic preconditioning: role of phosphoinositide 3-kinase and protein kinase C activation. Am J Physiol Heart Circ Physiol 2005; 288:H2512-20. [PMID: 15637120 DOI: 10.1152/ajpheart.00599.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemic preconditioning (IP) is a cardioprotective mechanism against myocellular death and cardiac dysfunction resulting from reperfusion of the ischemic heart. At present, the precise list of mediators involved in IP and the pathways of their mechanisms of action are not completely known. The aim of the present study was to investigate the role of platelet-activating factor (PAF), a phospholipid mediator that is known to be released by the ischemic-reperfused heart, as a possible endogenous agent involved in IP. Experiments were performed on Langendorff-perfused rat hearts undergoing 30 min of ischemia followed by 2 h of reperfusion. Treatment with a low concentration of PAF (2 × 10−11 M) before ischemia reduced the extension of infarct size and improved the recovery of left ventricular developed pressure during reperfusion. The cardioprotective effect of PAF was comparable to that observed in hearts in which IP was induced by three brief (3 min) periods of ischemia separated by 5-min reperfusion intervals. The PAF receptor antagonist WEB-2170 (1 × 10−9 M) abrogated the cardioprotective effect induced by both PAF and IP. The protein kinase C (PKC) inhibitor chelerythrine (5 × 10−6 M) or the phosphoinositide 3-kinase (PI3K) inhibitor LY-294002 (5 × 10−5 M) also reduced the cardioprotective effect of PAF. Western blot analysis revealed that following IP treatment or PAF infusion, the phosphorylation of PKC-ε and Akt (the downstream target of PI3K) was higher than that in control hearts. The present data indicate that exogenous applications of low quantities of PAF induce a cardioprotective effect through PI3K and PKC activation, similar to that afforded by IP. Moreover, the study suggests that endogenous release of PAF, induced by brief periods of ischemia and reperfusion, may participate to the triggering of the IP of the heart.
Collapse
Affiliation(s)
- Claudia Penna
- Dipartimento di Scienze Cliniche e Biologiche, ASO S. Luigi, Orbassano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Okada T, Otani H, Wu Y, Uchiyama T, Kyoi S, Hattori R, Sumida T, Fujiwara H, Imamura H. Integrated pharmacological preconditioning and memory of cardioprotection: role of protein kinase C and phosphatidylinositol 3-kinase. Am J Physiol Heart Circ Physiol 2005; 289:H761-7. [PMID: 15805233 DOI: 10.1152/ajpheart.00012.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although protein kinase C (PKC) and phosphatidylinositol 3 (PI3)-kinase are implicated in cardioprotective signal transduction mediated by ischemic preconditioning, their role in pharmacological preconditioning (PPC) has not been determined. Cultured neonatal rat cardiomyocytes (CMCs) were subjected to simulated ischemia for 2 h followed by 15 min of reoxygenation. PPC of CMCs consisted of administration of 50 microM adenosine, 50 microM diazoxide, and 50 microM S-nitroso-N-acetylpenicillamine (SNAP), each alone or in combination, for 15 min followed by 30 min of washout before simulated ischemia. Although PKC-epsilon and PI3-kinase were significantly activated during treatment with adenosine, activation of these kinases dissipated after washout. In contrast, PPC combined with adenosine, diazoxide, and SNAP elicited sustained activation of PKC-epsilon and PI-3 kinase after washout. The combined-PPC, but not the single-PPC, protocol conferred antiapoptotic and antinecrotic effects after reoxygenation. The PKC inhibitor chelerythrine (5 microM) or the PI3-kinase inhibitor LY-294002 (10 microM) given during the washout period partially blocked the activation of PKC-epsilon and PI3-kinase mediated by the combined-PPC protocol, whereas combined addition of chelerythrine and LY-294002 completely inhibited activation of PKC-epsilon and PI3-kinase. Chelerythrine or LY-294002 partially blocked antiapoptotic and antinecrotic effects mediated by the combined-PPC protocol, whereas combined addition of chelerythrine and LY-294002 completely abrogated antiapoptotic and antinecrotic effects. These results suggest that the combined-PPC protocol confers cardioprotective memory through sustained and interdependent activation of PKC and PI3-kinase.
Collapse
Affiliation(s)
- Takayuki Okada
- Cardiovascular Center, Kansai Medical Univ., 10-15 Fumizono-cho, Moriguchi City 570-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Ischemic preconditioning (IPC) is a most powerful endogenous mechanism for myocardial protection against ischemia/reperfusion injury. It is now apparent that reactive oxygen species (ROS) generated in the mitochondrial respiratory chain act as a trigger of IPC. ROS mediate signal transduction in the early phase of IPC through the posttranslational modification of redox-sensitive proteins. ROS-mediated activation of Src tyrosine kinases serves a scaffold for interaction of proteins recruited by G protein-coupled receptors and growth factor receptors that is necessary for amplification of cardioprotective signal transduction. Protein kinase C (PKC) plays a central role in this signaling cascade. A crucial target of PKC is the mitochondrial ATP-sensitive potassium channel, which acts as a trigger and a mediator of IPC. Mitogen-activated protein (MAP) kinases (extracellular signal-regulated kinase, p38 MAP kinase, and c-Jun NH(2)-terminal kinase) are thought to exist downstream of the Src-PKC signaling module, although the role of MAP kinases in IPC remains undetermined. The late phase of IPC is mediated by cardioprotective gene expression. This mechanism involves redox-sensitive activation of transcription factors through PKC and tyrosine kinase signal transduction pathways that are in common with the early phase of IPC. The effector proteins then act against myocardial necrosis and stunning presumably through alleviation of oxidative stress and Ca(2+) overload. Elucidation of IPC-mediated complex signaling processes will help in the development of more effective pharmacological approaches for prevention of myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Hajime Otani
- Department of Thoracic and Cardiovascular Surgery, Kansai Medical University, Moriguchi City, Osaka 570, Japan.
| |
Collapse
|