1
|
Martínez-Andrade JM, Roberson RW, Riquelme M. A bird's-eye view of the endoplasmic reticulum in filamentous fungi. Microbiol Mol Biol Rev 2024; 88:e0002723. [PMID: 38372526 PMCID: PMC10966943 DOI: 10.1128/mmbr.00027-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
SUMMARYThe endoplasmic reticulum (ER) is one of the most extensive organelles in eukaryotic cells. It performs crucial roles in protein and lipid synthesis and Ca2+ homeostasis. Most information on ER types, functions, organization, and domains comes from studies in uninucleate animal, plant, and yeast cells. In contrast, there is limited information on the multinucleate cells of filamentous fungi, i.e., hyphae. We provide an analytical review of existing literature to categorize different types of ER described in filamentous fungi while emphasizing the research techniques and markers used. Additionally, we identify the knowledge gaps that need to be resolved better to understand the structure-function correlation of ER in filamentous fungi. Finally, advanced technologies that can provide breakthroughs in understanding the ER in filamentous fungi are discussed.
Collapse
Affiliation(s)
- Juan M. Martínez-Andrade
- Department of Microbiology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| | | | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| |
Collapse
|
2
|
Amini M, Benson JD. Technologies for Vitrification Based Cryopreservation. Bioengineering (Basel) 2023; 10:bioengineering10050508. [PMID: 37237578 DOI: 10.3390/bioengineering10050508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/08/2023] [Accepted: 03/30/2023] [Indexed: 05/28/2023] Open
Abstract
Cryopreservation is a unique and practical method to facilitate extended access to biological materials. Because of this, cryopreservation of cells, tissues, and organs is essential to modern medical science, including cancer cell therapy, tissue engineering, transplantation, reproductive technologies, and bio-banking. Among diverse cryopreservation methods, significant focus has been placed on vitrification due to low cost and reduced protocol time. However, several factors, including the intracellular ice formation that is suppressed in the conventional cryopreservation method, restrict the achievement of this method. To enhance the viability and functionality of biological samples after storage, a large number of cryoprotocols and cryodevices have been developed and studied. Recently, new technologies have been investigated by considering the physical and thermodynamic aspects of cryopreservation in heat and mass transfer. In this review, we first present an overview of the physiochemical aspects of freezing in cryopreservation. Secondly, we present and catalog classical and novel approaches that seek to capitalize on these physicochemical effects. We conclude with the perspective that interdisciplinary studies provide pieces of the cryopreservation puzzle to achieve sustainability in the biospecimen supply chain.
Collapse
Affiliation(s)
- Mohammad Amini
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - James D Benson
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
3
|
Faoro F, Faccio A, Balestrini R. Contributions of Ultrastructural Studies to the Knowledge of Filamentous Fungi Biology and Fungi-Plant Interactions. FRONTIERS IN FUNGAL BIOLOGY 2022; 2:805739. [PMID: 37744126 PMCID: PMC10512230 DOI: 10.3389/ffunb.2021.805739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/14/2021] [Indexed: 09/26/2023]
Abstract
Since the first experiments in 1950s, transmission electron microscopy (TEM) observations of filamentous fungi have contributed extensively to understand their structure and to reveal the mechanisms of apical growth. Additionally, also in combination with the use of affinity techniques (such as the gold complexes), several aspects of plant-fungal interactions were elucidated. Nowadays, after the huge of information obtained from -omics techniques, TEM studies and ultrastructural observations offer the possibility to support these data, considering that the full comprehension of the mechanisms at the basis of fungal morphogenesis and the interaction with other organisms is closely related to a detailed knowledge of the structural features. Here, the contribution of these approaches on fungal biology is illustrated, focusing both on hyphae cell ultrastructure and infection structures of pathogenic and mycorrhizal fungi. Moreover, a concise appendix of methods conventionally used for the study of fungal ultrastructure is provided.
Collapse
Affiliation(s)
- Franco Faoro
- Dipartimento di Scienze Agrarie e Ambientali, Università di Milano, Milan, Italy
| | - Antonella Faccio
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Raffaella Balestrini
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| |
Collapse
|
4
|
Abstract
Correlative light and electron microscopy (CLEM) combines the strengths of light microscopy (LM) and electron microscopy (EM) to pin-point and visualize cellular or macromolecular structures. However, there are many different imaging modalities that can be combined in a CLEM workflow, creating a vast number of combinations that can overwhelm new-comers to the field. Here, we offer a conceptual framework to help guide the decision-making process for choosing the CLEM workflow that can best address your research question, based on the answer to five questions.
Collapse
|
5
|
Roberson RW. Subcellular structure and behaviour in fungal hyphae. J Microsc 2020; 280:75-85. [PMID: 32700404 DOI: 10.1111/jmi.12945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022]
Abstract
This work briefly surveys the diversity of selected subcellular characteristics in hyphal tip cells of the fungal kingdom (Mycota). Hyphae are filamentous cells that grow by tip extension. It is a highly polarised mechanism that requires a robust secretory system for the delivery of materials (e.g. membrane, proteins, cell wall materials) to sites of cell growth. These events result it the self-assembly of a Spitzenkörper (Spk), found most often in the Basidiomycota, Ascomycota, and Blastocladiomycota, or an apical vesicle crescent (AVC), present in the most Mucoromycota and Zoopagomycota. The Spk is a complex apical body composed of secretory vesicles, cytoskeletal elements, and signaling proteins. The AVC appears less complex, though little is known of its composition other than secretory vesicles. Both bodies influence hyphal growth and morphogenesis. Other factors such as cytoskeletal functions, endocytosis, cytoplasmic flow, and turgor pressure are also important in sustaining hyphal growth. Clarifying subcellular structures, functions, and behaviours through bioimagining analysis are providing a better understanding of the cell biology and phylogenetic relationships of fungi. LAY DESCRIPTION: Fungi are most familiar to the public as yeast, molds, and mushrooms. They are eukaryotic organisms that inhabit diverse ecological niches around the world and are critical to the health of ecosystems performing roles in decomposition of organic matter and nutrient recycling (Heath, 1990). Fungi are heterotrophs, unlike plants, and comprise the most successful and diverse phyla of eukaryotic microbes, interacting with all other forms of life in associations that range from beneficial (e.g., mycorrhizae) to antagonistic (e.g., pathogens). Some fungi can be parasitic or pathogenic on plants (e.g., Cryphonectria parasitica, Magnaporthe grisea), insects (e.g., Beauveria bassiana, Cordyceps sp.), invertebrates (e.g., Drechslerella anchonia), vertebrates (e.g., Coccidioides immitis, Candia albicans) and other fungi (e.g., Trichoderma viride, Ampelomyces quisqualis). The majority of fungi, however, are saprophytes, obtaining nutrition through the brake down of non-living organic matter.
Collapse
Affiliation(s)
- R W Roberson
- School of Life Sciences, Arizona State University, Tempe, Arizona, U.S.A
| |
Collapse
|
6
|
Hoch HC, Staples RC. Ultrastructural Organization of the Non-Differentiated Uredospore Germling ofUromyces PhaseoliVarietyTypica. Mycologia 2018. [DOI: 10.1080/00275514.1983.12023756] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- H. C. Hoch
- Department of Plant Pathology, New York State Agricultural Experiment Station, Cornell University, Geneva, New York 14456
| | - R. C. Staples
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| |
Collapse
|
7
|
Affiliation(s)
- Michael D. Hale
- Department of Biological Sciences, Portsmouth Polytechnic, Portsmouth, PO1 2DY, United Kingdom
| | - Rodney A. Eaton
- Department of Biological Sciences, Portsmouth Polytechnic, Portsmouth, PO1 2DY, United Kingdom
| |
Collapse
|
8
|
Armbruster BL. Sporangiogenesis in Three Genera of the Saprolegniaceae. I. Pre-Sporangium Hyphae to Early Primary Spore Initial Stage. Mycologia 2018. [DOI: 10.1080/00275514.1982.12021529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Barbara L. Armbruster
- Department of Microbiology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| |
Collapse
|
9
|
Cho CW, Fuller MS. Ultrastructural Studies of Encystment and Germination in Phytophthora Palmivora. Mycologia 2018. [DOI: 10.1080/00275514.1989.12025785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Chung Won Cho
- Department of Botany, University of Georgia, Athens, Georgia 30602
| | - Melvin S. Fuller
- Department of Botany, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
10
|
Mims CW, Roberson RW, Richardson EA. Ultrastructure of Freeze-Substituted and Chemically Fixed Basidiospores of Gymnosporangium Juniperi-Virginianae. Mycologia 2018. [DOI: 10.1080/00275514.1988.12025550] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Charles W. Mims
- Departments of Plant Pathology and Botany, University of Georgia, Athens, Georgia 30602
| | - Robert W. Roberson
- Departments of Plant Pathology and Botany, University of Georgia, Athens, Georgia 30602
| | | |
Collapse
|
11
|
Giddings TH, Morphew MK, McIntosh JR. Preparing Fission Yeast for Electron Microscopy. Cold Spring Harb Protoc 2017; 2017:2017/1/pdb.prot091314. [PMID: 28049777 DOI: 10.1101/pdb.prot091314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Freezing samples while simultaneously subjecting them to a rapid increase in pressure, which inhibits ice crystal formation, is a reliable method for cryofixing fission yeast. The procedure consists simply of harvesting cells and loading them into a high-pressure freezer (HPF), and then operating the device. If equipment for high-pressure freezing is not available, fission yeast can be frozen by plunging a monolayer of cells into a liquid cryogen, usually ethane or propane. Unlike the HPF, where relatively large volumes of cells can be frozen in a single run, plunge freezing requires cells to be dispersed in a layer <20 µm thick. Unless frozen cells are to be imaged in the vitreous state, they must be fixed, dehydrated, and embedded for subsequent study by transmission electron microscopy; warming frozen cells without fixation badly damages cell structure. Fixation is best accomplished by freeze-substitution, a process in which frozen water is removed from samples by a water-miscible solvent that is liquid at a temperature low enough to prevent the cellular water from recrystallizing. Low concentrations of chemical fixatives and stains are generally added to this solvent such that they permeate the cells as the water is replaced. The activity of these additives is quite limited at the low temperatures required for minimizing ice crystal formation, but they are in the right place to react effectively as the cells warm up. Step-by-step protocols for HPF, plunge freezing, and freeze-substitution are provided here.
Collapse
Affiliation(s)
- Thomas H Giddings
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347
| | - Mary K Morphew
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347
| | - J Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347.,Laboratory for 3D Electron Microscopy, University of Colorado, Boulder, Colorado 80309-0347
| |
Collapse
|
12
|
Martin-Urdiroz M, Deeks MJ, Horton CG, Dawe HR, Jourdain I. The Exocyst Complex in Health and Disease. Front Cell Dev Biol 2016; 4:24. [PMID: 27148529 PMCID: PMC4828438 DOI: 10.3389/fcell.2016.00024] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/11/2016] [Indexed: 01/23/2023] Open
Abstract
Exocytosis involves the fusion of intracellular secretory vesicles with the plasma membrane, thereby delivering integral membrane proteins to the cell surface and releasing material into the extracellular space. Importantly, exocytosis also provides a source of lipid moieties for membrane extension. The tethering of the secretory vesicle before docking and fusion with the plasma membrane is mediated by the exocyst complex, an evolutionary conserved octameric complex of proteins. Recent findings indicate that the exocyst complex also takes part in other intra-cellular processes besides secretion. These various functions seem to converge toward defining a direction of membrane growth in a range of systems from fungi to plants and from neurons to cilia. In this review we summarize the current knowledge of exocyst function in cell polarity, signaling and cell-cell communication and discuss implications for plant and animal health and disease.
Collapse
Affiliation(s)
| | - Michael J Deeks
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Connor G Horton
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Helen R Dawe
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Isabelle Jourdain
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| |
Collapse
|
13
|
Fisher KE, Roberson RW. Hyphal tip cytoplasmic organization in four zygomycetous fungi. Mycologia 2016; 108:533-42. [PMID: 26908648 DOI: 10.3852/15-226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/11/2016] [Indexed: 11/10/2022]
Abstract
We have examined the hyphal tip structure in four zygomycetous fungi: Mortierella verticillata (Mortierellales), Coemansia reversa (Kickxellales), Mucor indicus and Gilbertella persicaria (Mucorales) using both light and transmission electron microscopy. We have used cryofixation and freeze-substitution methods to preserve fungal hyphae for transmission electron microscopy, which yielded improved preservation of ultrastructural details. Our research has confirmed studies that described the accumulation of secretory vesicles as a crescent at the hyphal apex (i.e. the apical vesicle crescent [AVC]) and provided a more detailed understanding of the vesicle populations. In addition, we have been able to observe the behavior of the AVC during hyphal growth in M. indicus and G. persicaria.
Collapse
Affiliation(s)
- Karen E Fisher
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Robert W Roberson
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| |
Collapse
|
14
|
Dee JM, Mollicone M, Longcore JE, Roberson RW, Berbee ML. Cytology and molecular phylogenetics of Monoblepharidomycetes provide evidence for multiple independent origins of the hyphal habit in the Fungi. Mycologia 2015; 107:710-28. [PMID: 25911696 DOI: 10.3852/14-275] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/08/2015] [Indexed: 12/20/2022]
Abstract
The evolution of filamentous hyphae underlies an astounding diversity of fungal form and function. We studied the cellular structure and evolutionary origins of the filamentous form in the Monoblepharidomycetes (Chytridiomycota), an early-diverging fungal lineage that displays an exceptional range of body types, from crescent-shaped single cells to sprawling hyphae. To do so, we combined light and transmission electron microscopic analyses of hyphal cytoplasm with molecular phylogenetic reconstructions. Hyphae of Monoblepharidomycetes lack a complex aggregation of secretory vesicles at the hyphal apex (i.e. Spitzenkörper), have centrosomes as primary microtubule organizing centers and have stacked Golgi cisternae instead of tubular/fenestrated Golgi equivalents. The cytoplasmic distribution of actin in Monoblepharidomycetes is comparable to the arrangement observed previously in other filamentous fungi. To discern the origins of Monoblepharidomycetes hyphae, we inferred a phylogeny of the fungi based on 18S and 28S ribosomal DNA sequence data with maximum likelihood and Bayesian inference methods. We focused sampling on Monoblepharidomycetes to infer intergeneric relationships within the class and determined 78 new sequences. Analyses showed class Monoblepharidomycetes to be monophyletic and nested within Chytridiomycota. Hyphal Monoblepharidomycetes formed a clade sister to the genera without hyphae, Harpochytrium and Oedogoniomyces. A likelihood ancestral state reconstruction indicated that hyphae arose independently within the Monoblepharidomycetes lineage and in at least two other lineages. Cytological differences among monoblepharidalean and other fungal hyphae are consistent with these convergent origins.
Collapse
Affiliation(s)
- Jaclyn M Dee
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T-1Z4 Canada
| | - Marilyn Mollicone
- School of Biology and Ecology, University of Maine, Orono, Maine 04469
| | - Joyce E Longcore
- School of Biology and Ecology, University of Maine, Orono, Maine 04469
| | - Robert W Roberson
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Mary L Berbee
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T-1Z4 Canada
| |
Collapse
|
15
|
Derksen J, Wilms FHA, Pierson ES. The plant cytoskeleton: its significance in plant development. ACTA ACUST UNITED AC 2015. [DOI: 10.1111/j.1438-8677.1990.tb01441.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- J. Derksen
- Department of Experimental Botany; University of Nijmegen; Toernooiveld NL-6525 ED Nijmegen The Netherlands
| | - F. H. A. Wilms
- Department of Experimental Botany; University of Nijmegen; Toernooiveld NL-6525 ED Nijmegen The Netherlands
| | - E. S. Pierson
- Department of Experimental Botany; University of Nijmegen; Toernooiveld NL-6525 ED Nijmegen The Netherlands
| |
Collapse
|
16
|
|
17
|
|
18
|
Bentivenga SP, Kumar TKA, Kumar L, Roberson RW, McLaughlin DJ. Cellular organization in germ tube tips of Gigaspora and its phylogenetic implications. Mycologia 2013; 105:1087-99. [PMID: 23921242 DOI: 10.3852/12-291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Comparative morphology of the fine structure of fungal hyphal tips often is phylogenetically informative. In particular, morphology of the Spitzenkörper varies among higher taxa. To date no one has thoroughly characterized the hyphal tips of members of the phylum Glomeromycota to compare them with other fungi. This is partly due to difficulty growing and manipulating living hyphae of these obligate symbionts. We observed growing germ tubes of Gigaspora gigantea, G. margarita and G. rosea with a combination of light microscopy (LM) and transmission electron microscopy (TEM). For TEM, we used both traditional chemical fixation and cryo-fixation methods. Germ tubes of all species were extremely sensitive to manipulation. Healthy germ tubes often showed rapid bidirectional cytoplasmic streaming, whereas germ tubes that had been disturbed showed reduced or no cytoplasmic movement. Actively growing germ tubes contain a cluster of 10-20 spherical bodies approximately 3-8 μm behind the apex. The bodies, which we hypothesize are lipid bodies, move rapidly in healthy germ tubes. These bodies disappear immediately after any cellular perturbation. Cells prepared with cryo-techniques had superior preservation compared to those that had been processed with traditional chemical protocols. For example, cryo-prepared samples displayed two cell-wall layers, at least three vesicle types near the tip and three distinct cytoplasmic zones were noted. We did not detect a Spitzenkörper with either LM or TEM techniques and the tip organization of Gigaspora germ tubes appeared to be similar to hyphae in zygomycetous fungi. This observation was supported by a phylogenetic analysis of microscopic characters of hyphal tips from members of five fungal phyla. Our work emphasizes the sensitive nature of cellular organization, and the need for as little manipulation as possible to observe germ tube structure accurately.
Collapse
Affiliation(s)
- Stephen P Bentivenga
- Department of Biology and Microbiology, University of Wisconsin Oshkosh, 800 Algoma Blvd., Oshkosh, Wisconsin 54901
| | | | | | | | | |
Collapse
|
19
|
Deacon J. Fungal Structure and Ultrastructure. Fungal Biol 2013. [DOI: 10.1002/9781118685068.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Schuster M, Kilaru S, Fink G, Collemare J, Roger Y, Steinberg G. Kinesin-3 and dynein cooperate in long-range retrograde endosome motility along a nonuniform microtubule array. Mol Biol Cell 2011; 22:3645-57. [PMID: 21832152 PMCID: PMC3183019 DOI: 10.1091/mbc.e11-03-0217] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The polarity of microtubules (MTs) determines the motors for intracellular motility, with kinesins moving to plus ends and dynein to minus ends. In elongated cells of Ustilago maydis, dynein is thought to move early endosomes (EEs) toward the septum (retrograde), whereas kinesin-3 transports them to the growing cell tip (anterograde). Occasionally, EEs run up to 90 μm in one direction. The underlying MT array consists of unipolar MTs at both cell ends and antipolar bundles in the middle region of the cell. Cytoplasmic MT-organizing centers, labeled with a γ-tubulin ring complex protein, are distributed along the antipolar MTs but are absent from the unipolar regions. Dynein colocalizes with EEs for 10-20 μm after they have left the cell tip. Inactivation of temperature-sensitive dynein abolishes EE motility within the unipolar MT array, whereas long-range motility is not impaired. In contrast, kinesin-3 is continuously present, and its inactivation stops long-range EE motility. This indicates that both motors participate in EE motility, with dynein transporting the organelles through the unipolar MT array near the cell ends, and kinesin-3 taking over at the beginning of the medial antipolar MT array. The cooperation of both motors mediates EE movements over the length of the entire cell.
Collapse
Affiliation(s)
- Martin Schuster
- Department of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | | | | | | | | | | |
Collapse
|
21
|
Limbach C, Staehelin LA, Sievers A, Braun M. Electron tomographic characterization of a vacuolar reticulum and of six vesicle types that occupy different cytoplasmic domains in the apex of tip-growing Chara rhizoids. PLANTA 2008; 227:1101-14. [PMID: 18193275 DOI: 10.1007/s00425-007-0684-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2007] [Accepted: 12/12/2007] [Indexed: 05/10/2023]
Abstract
We provide a 3D ultrastructural analysis of the membrane systems involved in tip growth of rhizoids of the green alga Chara. Electron tomography of cells preserved by high-pressure freeze fixation has enabled us to distinguish six different types of vesicles in the apical cytoplasm where the tip growth machinery is accommodated. The vesicle types are: dark and light secretory vesicles, plasma membrane-associated clathrin-coated vesicles (PM-CCVs), Spitzenkoerper-associated clathrin-coated vesicles (Sp-CCVs) and coated vesicles (Sp-CVs), and microvesicles. Each of these vesicle types exhibits a distinct distribution pattern, which provides insights into their possible function for tip growth. The PM-CCVs are confined to the cytoplasm adjacent to the apical plasma membrane. Within this space they are arranged in clusters often surrounding tubular plasma membrane invaginations from which CCVs bud. This suggests that endocytosis and membrane recycling are locally confined to specialized apical endocytosis sites. In contrast, exocytosis of secretory vesicles occurs over the entire membrane area of the apical dome. The Sp-CCVs and the Sp-CVs are associated with the aggregate of endoplasmic reticulum membranes in the center of the growth-organizing Spitzenkoerper complex. Here, Sp-CCVs are seen to bud from undefined tubular membranes. The subapical region of rhizoids contains a vacuolar reticulum that extends along the longitudinal cell axis and consists of large, vesicle-like segments interconnected by thin tubular domains. The tubular domains are encompassed by thin filamentous structures resembling dynamin spirals which could drive peristaltic movements of the vacuolar reticulum similar to those observed in fungal hyphae. The vacuolar reticulum appears to serve as a lytic compartment into which multivesicular bodies deliver their internal vesicles for molecular recycling and degradation.
Collapse
Affiliation(s)
- Christoph Limbach
- Gravitationsbiologie, Institut für Molekulare Physiologie und Biotechnologie der Pflanzen, Universität Bonn, Kirschallee 1, Bonn, Germany.
| | | | | | | |
Collapse
|
22
|
Introduction to electron microscopy of cells. Methods Cell Biol 2007; 79:xxi-xxvii. [PMID: 17327148 DOI: 10.1016/s0091-679x(06)79034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
|
23
|
Steinberg G. Hyphal growth: a tale of motors, lipids, and the Spitzenkörper. EUKARYOTIC CELL 2007; 6:351-60. [PMID: 17259546 PMCID: PMC1828937 DOI: 10.1128/ec.00381-06] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Gero Steinberg
- MPI für Terrestrische Mikrobiologie, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany.
| |
Collapse
|
24
|
Affiliation(s)
- Kent McDonald
- Electron Microscope Laboratory, University of California, Berkeley, California 94720, USA
| |
Collapse
|
25
|
Hohmann-Marriott MF, Uchida M, van de Meene AML, Garret M, Hjelm BE, Kokoori S, Roberson RW. Application of electron tomography to fungal ultrastructure studies. THE NEW PHYTOLOGIST 2006; 172:208-20. [PMID: 16995909 DOI: 10.1111/j.1469-8137.2006.01868.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Access to structural information at the nanoscale enables fundamental insights into many complex biological systems. The development of the transmission electron microscope (TEM) has vastly increased our understanding of multiple biological systems. However, when attempting to visualize and understand the organizational and functional complexities that are typical of cells and tissues, the standard 2-D analyses that TEM affords often fall short. In recent years, high-resolution electron tomography methods, coupled with advances in specimen preparation and instrumentation and computational speed, have resulted in a revolution in the biological sciences. Electron tomography is analogous to medical computerized axial tomography (CAT-scan imaging) except at a far finer scale. It utilizes the TEM to assemble multiple projections of an object which are then combined for 3-D analyses. For biological specimens, tomography enables the highest 3-D resolution (5 nm spatial resolution) of internal structures in relatively thick slices of material (0.2-0.4 microm) without requiring the collection and alignment of large numbers of thin serial sections. Thus accurate and revealing 3-D reconstructions of complex cytoplasmic entities and architecture can be obtained. Electron tomography is now being applied to a variety of biological questions with great success. This review gives a brief introduction into cryopreservation and electron tomography relative to aspects of cytoplasmic organization in the hyphal tip of Aspergillus nidulans.
Collapse
|
26
|
Harris SD, Read ND, Roberson RW, Shaw B, Seiler S, Plamann M, Momany M. Polarisome meets spitzenkörper: microscopy, genetics, and genomics converge. EUKARYOTIC CELL 2005; 4:225-9. [PMID: 15701784 PMCID: PMC549335 DOI: 10.1128/ec.4.2.225-229.2005] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Steven D Harris
- Plant Science Initiative, Department of Plant Pathology, University of Nebraska, Lincoln, NE 68588-0660, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Healy RA, Horner HT, Bronson CR. Visual characterization of the extracellular matrix of Cochliobolus heterostrophus and a mutant strain with a modified matrix. ACTA ACUST UNITED AC 2004. [DOI: 10.1139/b03-145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two layers of extracellular matrix (ECM) and a film secreted outside the layers were visualized on germlings of Cochliobolus heterostrophus Drechsler grown on glass slides, cellophane membranes, and the surface of maize leaves. A mutant of C. heterostrophus, less virulent than the wild type, possessed the inner layer of ECM and the film, but not the outer layer. Using cytochemical and morphological methods, we explored the hypothesis that the reduced virulence of the mutant in leaves was due to the absence of the outer layer of the ECM. All ECMs were characterized using ruthenium red fixation, cryopreservation, immunocytochemistry, and colloidal gold labeling, before being examined with light and electron microscopy. With immunocytochemistry, antigens were localized in islands stained with ruthenium red within the scaffolding of the outer layer of the wild-type ECM on leaf surfaces and within the leaf. In the mutant, antigens were localized in the film on leaf surfaces. Comparisons between leaves infected by the two strains showed hyphae to be enclosed within material interpreted to be host response within intercellular spaces of leaves infected by the mutant, but not the wild type.Key words: Cochliobolus, cytochemistry, extracellular matrix, microscopy, mutant, virulence.
Collapse
|
28
|
Mims CW, Richardson EA. Ultrastructure of the zoosporangia of Albugo ipomoeae-panduratae as revealed by conventional chemical fixation and high pressure freezing followed by freeze substitution. Mycologia 2003; 95:1-10. [PMID: 21156582 DOI: 10.1080/15572536.2004.11833125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Both conventional chemical fixation and high pressure freezing followed by freeze substitution (HPF/FS) were used to prepare zoosporangia of the oomycete Albugo ipomoeae-panduratae inside infected host leaves for study with transmission electron microscopy. Both fixations gave good preservation of ultrastructural details and data from the two sample types were highly complementary. However, HPF/FS gave better overall specimen contrast and superior preservation of microtubules, basal bodies and curved vacuoles closely associated with basal bodies. The basal body-associated vacuoles appear to represent cleavage vesicles involved in zoospore formation. Although HPF/FS did result in the rupture of some vacuoles and the extraction of lipid bodies, these problems did not interfere with our study. Overall zoosporangium morphology was similar to that reported previously for A. candida. Each zoosporangium was multinucleate and contained numerous mitochondria, lipid bodies, a variety of large and small vacoules/vesicles, and conspicuous arrays consisting of parallel strands of rough endoplasmic reticulum. Golgi cisternae and a pair of basal bodies were closely associated with each nucleus.
Collapse
Affiliation(s)
- Charles W Mims
- Department of Plant Pathology, University of Georgia, Athens, Georgia 30602
| | | |
Collapse
|
29
|
Torralba S, Heath IB. Analysis of three separate probes suggests the absence of endocytosis in Neurospora crassa hyphae. Fungal Genet Biol 2002; 37:221-32. [PMID: 12431457 DOI: 10.1016/s1087-1845(02)00513-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Reports of the existence of endocytosis in filamentous fungi have been conflicting and inconclusive. For this reason, we have tested three independent markers in Neurospora crassa: the electron opaque marker lanthanum (La) and the fluorescent probes Lucifer yellow (LY) and FM4-64. Both La and LY were endocytosed by Saccharomyces cerevisiae cells, which were used as positive controls for endocytosis, but the probes did not accumulate in N. crassa hyphae. Only FM4-64 became internalized into N. crassa hyphae, but it induced abnormal changes in membrane systems and its internalization could be explained by mechanisms other than endocytosis. Together, our results suggest that endocytosis does not occur in N. crassa hyphae and question whether the styryl dyes do in fact reliably report normal endocytosis in filamentous fungi.
Collapse
Affiliation(s)
- Sara Torralba
- Department of Biology, York University, Toronto, Canada.
| | | |
Collapse
|
30
|
Aist JR. Mitosis and motor proteins in the filamentous ascomycete, Nectria haematococca, and some related fungi. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 212:239-63. [PMID: 11804038 DOI: 10.1016/s0074-7696(01)12007-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Among filamentous fungi, mitosis has been studied in-depth in just a few species. The mitotic apparatuses in the ascomycetous Fusarium spp. are the most clearly and readily visualized in vivo within this group; fluorescent labeling is unnecessary. This superior cytological tractability has enabled detailed studies and revealing experiments that have led the way toward a more complete understanding of fungal mitosis. Some of the most important discoveries include the role of half-spindles in development of the bipolar spindle, the existence of true kinetochores in fungi, the unorthodox chromosome configurations and movements comprising metaphase and anaphase A, the attachment of astral microtubules to the plasmalemma, the role of the astral pulling force in elongating the spindle, an inwardly directed force within the spindle, and microtubule cross-bridging in both spindle and asters. Recent research has focused on the roles of microtubuleassociated motor proteins in Fusarium solani f. sp. pisi (anamorph of Nectria haematococca). Cytoplasmic dynein was shown to be involved in the development and/or maintenance of mitotic asters and necessary for motility and functionality of the interphase spindle pole body. The inwardly directed force within the anaphase spindle was shown to be produced by a kinesin-related protein, NhKRP1. Because of its superior cytological tractability, the considerable and unique knowledge we have of many aspects of its mitosis, and its genetic tractability, Fusarium solani f. sp. pisi is a good choice for further investigations of mitosis in filamentous fungi.
Collapse
Affiliation(s)
- James R Aist
- Department of Plant Pathology, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
31
|
McIntyre M, Müller C, Dynesen J, Nielsen J. Metabolic engineering of the morphology of Aspergillus. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2002; 73:103-28. [PMID: 11816809 DOI: 10.1007/3-540-45300-8_6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The morphology of filamentous organisms in submerged cultivation is a subject of considerable interest, notably due to the influence of morphology on process productivity. The relationship between process parameters and morphology is complex: the interactions between process variables, productivity, rheology, and macro- and micro-morphology create difficulties in defining and separating cause and effect. Additionally, organism physiology contributes a further level of complexity which means that the desired morphology (for optimum process performance and productivity) is likely to be process specific. However, a number of studies with increasingly powerful image analysis systems have yielded valuable information on what these desirable morphologies are likely to be. In parallel, studies on a variety of morphological mutants means that information on the genes involved in morphology is beginning to emerge. Indeed, we are now beginning to understand how morphology may be controlled at the molecular level. Coupling this knowledge with the tools of molecular biology means that it is now possible to design and engineer the morphology of organisms for specific bioprocesses. Tailor making strains with defined morphologies represents a clear advantage in optimization of submerged bioprocesses with filamentous organisms.
Collapse
Affiliation(s)
- M McIntyre
- Center for Process Biotechnology, Department of Biotechnology, Building 223, Technical University of Denmark, 2800 Lyngby, Denmark
| | | | | | | |
Collapse
|
32
|
Abstract
Hyphal tip growth is a complex process involving finely regulated interactions between the synthesis and expansion of cell wall and plasma membrane, diverse intracellular movements, and turgor regulation. F-actin is a major regulator and integrator of these processes. It directly contributes to (a) tip morphogenesis, most likely by participation in an apical membrane skeleton that reinforces the apical plasma membrane, (b) the transport and exocytosis of vesicles that contribute plasma membrane and cell wall material to the hyphal tips, (c) the localization of plasma membrane proteins in the tips, and (d) cytoplasmic and organelle migration and positioning. The pattern of reorganization of F-actin prior to formation of new tips during branch initiation also indicates a critical role in early stages of assembly of the tip apparatus. One of the universal characteristics of all critically examined tip-growing cells, including fungal hyphae, is the obligatory presence of a tip-high gradient of cytoplasmic Ca2+ that probably regulates both actin and nonactin components of the apparatus, and the formation of which may also initiate new tips. This review discusses the diversity of evidence behind these concepts.
Collapse
Affiliation(s)
- S Torralba
- Biology Department, York University, Toronto, Ontario, M3J 1P3 Canada
| | | |
Collapse
|
33
|
Khalaj V, Brookman JL, Robson GD. A study of the protein secretory pathway of Aspergillus niger using a glucoamylase-GFP fusion protein. Fungal Genet Biol 2001; 32:55-65. [PMID: 11277626 DOI: 10.1006/fgbi.2000.1245] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of various treatments that block protein secretion was visualized in Aspergillus niger using a strain expressing a glucoamylase-GFP fusion protein. Cold shock caused the retention of the fusion protein in a reticulate network (ER) with brighter nodes that may represent Golgi bodies. Treatment of germlings with brefeldin A (BFA) also initially caused accumulation within the ER but prolonged exposure led to the formation and targeting of the fusion protein to vacuoles from the ER. Disruption of actin with cytochalasin A initially led to a faint diffuse accumulation and ultimately to the formation of aggregated bodies which were not vacuoles, suggesting that the actin cytoskeleton is important in secretory vesicle transport. Disruption of microtubules with nocodazole led to hyperbranching but did not cause intracellular accumulation, suggesting that microtubules play a role in directing vesicle transport rather than vesicle movement per se. Treatment of regenerating protoplasts confirmed that BFA and cytochalasin but not nocodazole inhibited protein secretion. When germlings were subjected to carbon starvation, vacuolation was rapidly initiated throughout the hyphae and GFP fluorescence was visible in some of the vacuoles, indicating retargeting of the fusion protein from the secretory pathway to the vacuoles.
Collapse
Affiliation(s)
- V Khalaj
- School of Biological Sciences, University of Manchester, 1.800 Stopford Building, Manchester, M13 9PT, United Kingdom
| | | | | |
Collapse
|
34
|
Weber RW, Wakley GE, Thines E, Talbot NJ. The vacuole as central element of the lytic system and sink for lipid droplets in maturing appressoria of Magnaporthe grisea. PROTOPLASMA 2001; 216:101-112. [PMID: 11732192 DOI: 10.1007/bf02680137] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Histochemical and ultrastructural studies were carried out on a wild-type strain (Guy11) and a melanin-deficient mutant (buf1) of the rice-blast pathogen, Magnaporthe grisea (= Pyricularia oryzae), in order to investigate the destination of lipid storage reserves during appressorium development. Lipid droplets were abundant in conidia and were mobilised upon germination, accumulating in the appressorial hook which developed at the tip of each germ tube. Following the formation of a septum at the base of the nascent appressorium, one or a few closely appressed central vacuoles became established and were observed to enlarge in the course of appressorium maturation. On unyielding artificial surfaces such as glass or plastic, appressoria matured to completion within 36-48 h, by which time the enlarged vacuole filled most of the inside volume of the appressorium. Light and transmission electron microscopical observations revealed that the lipid droplets entered the vacuole by autophagocytosis and were degraded therein. Histochemical approaches confirmed the vacuole as the key lytic element in maturing appressoria. Endocytosis of a vital dye, Neutral Red, progressed via endosomes which migrated into the vacuole and lysed there, releasing their dye content into the vacuolar lumen. Furthermore, activity of the lysosomal marker enzyme, acid phosphomonoesterase, was strongly localised in the vacuole at all stages of appressorium maturation. It is therefore envisaged that vacuoles are involved in the degradation of lipid storage reserves which may act as sources of energy and/or osmotically active metabolites such as glycerol, which generate the very high turgor pressure known to be crucial for penetration of hard surfaces. On softer surfaces such as onion epidermis, appressoria of M. grisea were able to penetrate before degradation of lipid droplets had been completed.
Collapse
Affiliation(s)
- R W Weber
- Lehrbereich Biotechnologie, Universität Kaiserslautern, Paul-Ehrlich-Strasse 23, D-67663 Kaiserslautern, Federal Republic of Germany
| | | | | | | |
Collapse
|
35
|
Müller WH, Koster AJ, Humbel BM, Ziese U, Verkleij AJ, van Aelst AC, van der Krift TP, Montijn RC, Boekhout T. Automated electron tomography of the septal pore cap in Rhizoctonia solani. J Struct Biol 2000; 131:10-8. [PMID: 10945965 DOI: 10.1006/jsbi.2000.4243] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dolipore septa and septal pore caps (SPCs) in filamentous basidiomycetes may play an important role in maintaining the integrity of hyphal cells. We have investigated the ultrastructure of the dolipore septum and the SPC in Rhizoctonia solani hyphal cells after high-pressure freezing, freeze substitution, and Spurr embedding. We visualized the SPC with associated cell ultrastructures in three dimensions by automated electron tomography of thick-sectioned cells, followed by 3D tomographic reconstructions. Using these methods we were able to document the passage of mitochondria through the SPC, small tubular membranous structures at the entrance of the septal pore channel, filamentous structures connecting the inner side of the SPC with pore-plugging material, thin filaments anchoring the pore-plugging material with the plasma membrane, small vesicles attached to the plugging material, and tubular endoplasmic reticulum continuous with the base of the SPC. We hypothesize that the SPC, the filamentous structures, the plugging material, and the endoplasmic reticulum act in a coordinated fashion to maintain cellular integrity, intercellular communication, and the transport of solutes and cell organelles in the filamentous fungus R. solani.
Collapse
Affiliation(s)
- W H Müller
- Department of Molecular Cell Biology, EMSA, Utrecht University, Utrecht, Padualaan 8, 3584 CH, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Heath IB, Gupta G, Bai S. Plasma membrane-adjacent actin filaments, but not microtubules, are essential for both polarization and hyphal tip morphogenesis in Saprolegnia ferax and Neurospora crassa. Fungal Genet Biol 2000; 30:45-62. [PMID: 10955907 DOI: 10.1006/fgbi.2000.1203] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The organization and roles of F-actin and microtubules in the maintenance and initiation of hyphal tip growth have been analyzed in Saprolegnia ferax and Neurospora crassa. In hyphae of both species, the apex is depleted of microtubules relative to subapical regions and near-normal morphogenesis occurs in concentrations of nocodazole or MBC which remove microtubules, slow growth, and disrupt nuclear positioning. In contrast, each species contains characteristic tip-high arrays of plasma membrane-adjacent F-actin, whose organization is largely unaltered by the loss of microtubules but disruption of which by latrunculin B disrupts tip morphology. Hyphal initiation and subsequent normal morphogenesis from protoplasts of both species and spores of S. ferax are independent of microtubules, but at least in S. ferax obligatorily involve the formation of F-actin caps adjacent to the hyphal tip plasma membrane. These observations indicate an obligatory role for F-actin in hyphal polarization and tip morphogenesis and only an indirect role for microtubules.
Collapse
Affiliation(s)
- I B Heath
- Biology Department, York University, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
37
|
Abstract
Over 100 years ago, Reinhardt suggested that hyphal tip growth is comparable to ameboid movement inside a tube; the apical cytoplasm being protruded like a pseudopodium with the wall assembled on its surface. There are increasing data from hyphae which are explicable by this model. Fungi produce pseudopodia-like structures and their cytoplasm contains all of the major components implicated in pseudopodium production in animal cells. Most of these components are concentrated in hyphal tips and tip growth involves actin, a major component of pseudopodia. Together these data indicate that the essence of the ameboid model is still tenable. However, detailed mechanisms of tip growth remain too poorly known to provide definitive proof of the model and the behavior of the trailing cytoplasm indicates differences which are probably a response to the walled lifestyle.
Collapse
Affiliation(s)
- I B Heath
- Institut für Genetik, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada.
| | | |
Collapse
|
38
|
Abstract
This review traces the principal advances in the study of mitosis in filamentous fungi from its beginnings near the end of the 19(th) century to the present day. Meiosis and mitosis had been accurately described and illustrated by the second decade of the present century and were known to closely resemble nuclear divisions in higher eukaryotes. This information was effectively lost in the mid-1950s, and the essential features of mitosis were then rediscovered from about the mid-1960s to the mid-1970s. Interest in the forces that separate chromatids and spindle poles during fungal mitosis followed closely on the heels of detailed descriptions of the mitotic apparatus in vivo and ultrastructurally during this and the following decade. About the same time, fundamental studies of the structure of fungal chromatin and biochemical characterization of fungal tubulin were being carried out. These cytological and biochemical studies set the stage for a surge of renewed interest in fungal mitosis that was issued in by the age of molecular biology. Filamentous fungi have provided model studies of the cytology and genetics of mitosis, including important advances in the study of mitotic forces, microtubule-associated motor proteins, and mitotic regulatory mechanisms.
Collapse
Affiliation(s)
- J R Aist
- Department of Plant Pathology, College of Agriculture and Life Sciences, Ithaca, New York 14853, USA
| | | |
Collapse
|
39
|
Affiliation(s)
- B R Oakley
- Department of Molecular Genetics, Ohio State University, Columbus 43210, USA
| |
Collapse
|
40
|
Bourett TM, Czymmek KJ, Howard RJ. An improved method for affinity probe localization in whole cells of filamentous fungi. Fungal Genet Biol 1998; 24:3-13. [PMID: 9742188 DOI: 10.1006/fgbi.1998.1054] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fungal cell wall, though phylogenetically variable, acts universally as a potent barrier to probing intracellular structures. Thus, the use of high-molecular-weight probes such as antibodies and lectins has proven a formidable challenge. We have devised a preparative method for use with various affinity probes that can be applied to a broad spectrum of filamentous fungal species and used for imaging whole cells. In this study, confocal imaging of whole-mount fungal hyphae after freeze substitution, methacrylate embedment/de-embedment, and infiltration with affinity probes has yielded remarkably improved renderings of the three-dimensional distribution of both microtubules (using antibodies against both alpha- and beta-tubulin) and concanavalin A binding sites. Using this protocol we have been able to document: (1) the three-dimensional distribution of microtubules in all regions of hyphae, (2) the presence of apparent foci for cytoplasmic microtubules, (3) persistent cytoplasmic microtubules during mitosis, and (4) a three-dimensional view of many compartments of the endomembrane system including Golgi-equivalent organelles and apical vesicles. The last result represents the first direct confirmation of apical vesicles comprising the Spitzenkörper.
Collapse
Affiliation(s)
- T M Bourett
- DuPont Agricultural Products, Wilmington, Delaware, 19880-0402, USA
| | | | | |
Collapse
|
41
|
Regalado CM, Sleeman BD, Ritz K. Aggregation and collapse of fungal wall vesicles in hyphal tips: a model for the origin of the Spitzenkörper. Philos Trans R Soc Lond B Biol Sci 1997. [DOI: 10.1098/rstb.1997.0182] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The intracellular origins of polarity and branch initiation in fungi centre upon a localization in the supply of fungal wall constituents to specific regions on the hyphal wall. Polarity is achieved and maintained by accumulating secretory vesicles, prior to incorporation into the wall, in the form of an apical body or Spitzenkörper. However, neither the mechanisms leading to this accumulation nor the initiation of branching, are as yet understood. We propose a mechanism, based on experimental evidence, which considers the mechanical properties of the cytoskeleton in order to explain these phenomena. Cytoskeletal viscoelastic forces are hypothesized to be responsible for biasing vesicles in their motion, and a mathematical model is derived to take these considerations into account. We find that, as a natural consequence of the assumed interactions between vesicles and cytoskeleton, wall vesicles aggregate in a localized region close to the tip apex. These results are used to interpret the origin of the Spitzenkörper. The model also shows that an aggregation peak can collapse and give rise to two new centres of aggregation coexisting near the tip. We interpret this as a mechanism for apical branching, in agreement with published observations. We also investigate the consequences and presumptive role of vesicle—cytoskeleton interactions in the migration of satellite Spitzenkörper. The results of this work strongly suggest that the formation of the Spitzenkörper and the series of dynamical events leading to hyphal branching arise as a consequence of the bias in vesicle motion resulting from interactions with the cytoskeleton.
Collapse
Affiliation(s)
- Carlos M. Regalado
- Centre for Nonlinear Systems in Biology, Unit of Integrative Bioscience, Cellular and Environmental Physiology Department, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Brian D. Sleeman
- Department of Applied Mathematical Studies, University of Leeds, Leeds LS2 9JT, UK
| | - Karl Ritz
- Centre for Nonlinear Systems in Biology, Unit of Integrative Bioscience, Cellular and Environmental Physiology Department, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
42
|
Ding R, West RR, Morphew DM, Oakley BR, McIntosh JR. The spindle pole body of Schizosaccharomyces pombe enters and leaves the nuclear envelope as the cell cycle proceeds. Mol Biol Cell 1997; 8:1461-79. [PMID: 9285819 PMCID: PMC276170 DOI: 10.1091/mbc.8.8.1461] [Citation(s) in RCA: 192] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The cycle of spindle pole body (SPB) duplication, differentiation, and segregation in Schizosaccharomyces pombe is different from that in some other yeasts. Like the centrosome of vertebrate cells, the SPB of S. pombe spends most of interphase in the cytoplasm, immediately next to the nuclear envelope. Some gamma-tubulin is localized on the SPB, suggesting that it plays a role in the organization of interphase microtubules (MTs), and serial sections demonstrate that some interphase MTs end on or very near to the SPB. gamma-Tubulin is also found on osmiophilic material that lies near the inner surface of the nuclear envelope, immediately adjacent to the SPB, even though there are no MTs in the interphase nucleus. Apparently, the MT initiation activities of gamma-tubulin in S. pombe are regulated. The SPB duplicates in the cytoplasm during late G2 phase, and the two resulting structures are connected by a darkly staining bridge until the mitotic spindle forms. As the cell enters mitosis, the nuclear envelope invaginates beside the SPB, forming a pocket of cytoplasm that accumulates dark amorphous material. The nuclear envelope then opens to form a fenestra, and the duplicated SPB settles into it. Each part of the SPB initiates intranuclear MTs, and then the two structures separate to lie in distinct fenestrae as a bipolar spindle forms. Through metaphase, the SPBs remain in their fenestrae, bound to the polar ends of spindle MTs; at about this time, a small bundle of cytoplasmic MTs forms in association with each SPB. These MTs are situated with one end near to, but not on, the SPBs, and they project into the cytoplasm at an orientation that is oblique to the simple axis. As anaphase proceeds, the nuclear fenestrae close, and the SPBs are extruded back into the cytoplasm. These observations define new fields of enquiry about the control of SPB duplication and the dynamics of the nuclear envelope.
Collapse
Affiliation(s)
- R Ding
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309-0347, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
Hyphal tip growth is an exquisitely controlled process that forms developmentally regulated, species-specific, even-diameter tubes at rates of up to about 50 μm/min. The traditional view is that this process results from the balance between the expansive force of turgor pressure and the controlled extensibility of the apical cell wall. While these elements are involved, the model places regulation into either the global domain (turgor pressure) or the extracellular environment (the cell wall), neither of which seem well suited to the level of control evinced. Recent evidence suggests that F-actin-rich elements of the cytoskeleton are important in tip morphogenesis. Our current models propose that tip expansion is regulated (restrained under normal turgor pressure and protruded under low turgor) by a peripheral network of F-actin that is attached to the plasmalemma and the cell wall by integrin-containing linkages, thus placing control in the cytoplasm where it is accessible to normal intracellular regulatory systems. The F-actin system also functions in cytoplasmic and organelle motility; control of plasmalemma-located, stretch-activated, Ca2+-transporting, ion channel distribution; vectoral vesicle transport; and exocytosis. Regulation of the system may involve Ca2+, the concentration of which is influenced by the tip-high gradient of the stretch-activated channels, thus suggesting a possible feedback regulation mechanism. Key words: tip growth, fungi, stretch-activated channels, F-actin, Ca2+, hyphae.
Collapse
|
44
|
Roundhill SJ, Fineran BA, Cole ALJ, Ingerfeld M. Structural aspects of Ascochyta blight of lentil. ACTA ACUST UNITED AC 1995. [DOI: 10.1139/b95-049] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ascochyta fabae Speg. f.sp. lentis (Gossen et al. 1986) causes lesions on the leaf, stem, and pod of lentil (Lens culinaris Medik.), thereby reducing seed quality and yield. Lesion formation was studied in two cultivars, Laird and Invincible, using light and electron microscopy of intact and excised leaves and stems inoculated with spore suspension. Spores germinated usually within 6 h of inoculation and germ tubes grew for varying distances along the leaf surface before forming an appressorium, sometimes within less than 10 h. A penetration peg then either directly entered the underlying epidermal cell, or grew as a subcuticular hypha for a short distance before entering the cell. The first response of epidermal cells to presence of the fungus was an aggregation of cytoplasm abutting the site of infection. This was followed closely by deposition of a papilla. Some relatively thick papillae were seen at 29 h postinoculation. The fungus then grew into the papilla and formed an infection vesicle. In susceptible host cells, the protoplasm became necrotic before hyphae grew into the lumen of the cell from the infection vesicle. In more resistant cells, the infection vesicle often became surrounded by electron-dense wall material developed by the host. The fungus remained in susceptible epidermal cells for up to 4 days, amongst remnants of the protoplast, before spreading to the adjacent mesophyll. Hyphae grew into intercellular spaces of the mesophyll and remained there for 2 – 3 days before penetrating the cells. The mesophyll reacted in a similar way to infection as did the epidermis, with only host cells close to the fungus becoming affected. Cultivar Laird was found to be less susceptible to infection than cv. Invincible. At the structural level, the infection process was found to be similar except that in cv. Laird the infection vesicle more frequently became surrounded by electron-dense wall material formed by the host. In stem tissue of cv. Laird the middle lamella was also occasionally thickened with electron-dense material deposited on either side of it. After the degeneration of host tissue, pycnidia-bearing spores were formed 10 – 14 days after inoculation of the leaf. Key words: Ascochyta, lentil, ultrastructure, infection process.
Collapse
|
45
|
Lü H, McLaughlin DJ. A light and electron microscopic study of mitosis in the clamp connection ofAuricularia auricula-judae. ACTA ACUST UNITED AC 1995. [DOI: 10.1139/b95-034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuclear behavior and mitotic division in living and fixed somatic hyphae of Auricularia auricula-judae were studied with phase-contrast, fluorescence, and electron microscopy to clarify the process of mitosis in Auriculariales sensu stricto for cytological and phylogenetic analysis. Both conventional chemical fixation and freeze-substitution methods were employed for electron microscopic analysis. Mitotic division began when one of the two nuclei was moving into the clamp and lasted about 12 – 18 min. The spindle pole body had an electron-opaque central core surrounded by an electron-transparent zone from prometaphase to anaphase. The spindle changed the orientation of its long axis from a position parallel to the long axis of the clamp or hypha in prometaphase, to an oblique position in early metaphase, and finally to a parallel position again in midmetaphase. The nuclear envelope was disrupted in prometaphase to early metaphase and showed discontinuity at both polar and central regions in late anaphase; however, in metaphase it was intact with polar fenestrations. Nuclear division in the dikaryotic hypha was asynchronous. The data obtained from mitosis in A. auricula-judae support a close relationship of Auriculariales s.str. with homobasidiomycetes. The phylogenetic significance of the nuclear division characters is analyzed. Key words: Auricularia auricula-judae, electron microscopy, light microscopy, mitosis, phylogeny.
Collapse
|
46
|
Chapter 5 Freeze-Substitution. Methods Cell Biol 1995. [DOI: 10.1016/s0091-679x(08)61446-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
|
47
|
Abstract
This review compares the results of different methods of investigating the morphology of nucleoids of bacteria grown under conditions favoring short generation times. We consider the evidence from fixed and stained specimens, from phase-contrast and fluorescence microscopy of growing bacteria, and from electron microscopy of whole as well as thinly sectioned ones. It is concluded that the nucleoid of growing cells is in a dynamic state: part of the chromatin is "pulled out" of the bulk of the nucleoid in order to be transcribed. This activity is performed by excrescences which extend far into the cytoplasm so as to reach the maximum of available ribosomes. Different means of fixation provide markedly different views of the texture of the DNA-containing plasm of the bulk of the nucleoid. Conventional chemical fixatives stabilize the cytoplasm of bacteria but not their protein-low chromatin. Uranyl acetate does cross-link the latter well but only if the cytoplasm has first been fixed conventionally. In the interval between the two fixations, the DNA arranges itself in liquid-crystalline form, supposedly because of loss of supercoiling. In stark contrast, cryofixation preserves bacterial chromatin in a finely granular form, believed to reflect its native strongly negatively supercoiled state. In dinoflagellates the DNA of their permanently visible chromosomes (also low in histone-like protein) is natively present as a liquid crystal. The arrangement of chromatin in Epulocystis fishelsoni, one of the largest known prokaryotes, is briefly described.
Collapse
Affiliation(s)
- C Robinow
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| | | |
Collapse
|
48
|
Kim S, Inoue S, Akisaka T. Ultrastructure of quick-frozen secretory ameloblasts of the rat molar tooth. Tissue Cell 1994; 26:29-41. [PMID: 8171421 DOI: 10.1016/0040-8166(94)90081-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ameloblasts in molar tooth germs from 4 to 12-day-old neonatal rats were quick-frozen and then freeze-substituted in acetone-tannic acid and acetone-osmium tetroxide. Following quick freezing and freeze-substitution, the preservation of ameloblasts was principally the same as seen in conventionally-fixed ones. Several differences, however, became apparent between two methods. Concerning enamel formation, the quick-freezing procedure greatly improved the preservation including that of the extrusion of secretory granules into the extracellular space. The exocytosis is a type of merocrine secretion. The precursor stippled material was demonstrated at the front of Tomes' processes and in the intercellular space of the distal terminal junction. In the more advanced stage, the stippled material tended to decrease gradually in amount. Prior to the formation of the typical Tomes' process, large secretory granules fused directly with the distal plasma membrane, which plays a role in the formation of prismless enamel. After the typical Tomes' process had formed, secretory granules containing electron-dense material instead of the large secretory granules accumulated in the distal portion of the Tomes' process. These latter secretory granules had two different destinations; i.e. the granules discharged their contents into the infoldings of the distal part of Tomes' process and into the infoldings of the lateral cell membrane. These types of secretion seem to have a functional role in the rod or inter-rod enamel formation. The ultrastructure of the stippled material consisted of 3-dimensionally interconnected strands after quick freezing, which is different from the appearance of granules embedded in amorphous material after conventional fixation. The stippled material was seen in the intercrystal space among the newly formed crystals. Also, an extensive tubulo-vesicular structure was preserved in both the cell body and Tomes' process. The present data suggest that the membrane of this structure showed a smooth contour opening to the extracellular space, and also an intimate relationship with the secretory granules.
Collapse
Affiliation(s)
- S Kim
- Department of Anatomy, Asahi University School of Dentistry, Gifu, Japan
| | | | | |
Collapse
|
49
|
Affiliation(s)
- K L McDonald
- Electron Microscope Laboratory, University of California, Berkeley 94720-3330
| |
Collapse
|
50
|
Steinberg G, Schliwa M. Organelle movements in the wild type and wall-less fz;sg;os-1 mutants of Neurospora crassa are mediated by cytoplasmic microtubules. J Cell Sci 1993; 106 ( Pt 2):555-64. [PMID: 8282762 DOI: 10.1242/jcs.106.2.555] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cellular basis of organelle transport in filamentous fungi is still unresolved. Here we have studied the intracellular movement of mitochondria and other organelles in the fungus Neurospora crassa. Four different model systems were employed: hyphae, protoplasts, a cell wallless mutant, and experimentally generated small, flattened cell fragments of the mutant cells. Organelle movements were visualized by DIC optics and computer-enhanced video microscopy. In all cell models the transport of organelles was vectorial and saltatory in nature. The mean velocities for mitochondria, particles and nuclei were 1.4, 2.0, and 0.9 microns/s, respectively. Treatment with 10 microM nocodazole for 30 minutes caused a complete disappearance of microtubules and reversibly blocked directed transport of virtually all organelles, whereas cytochalasin D up to 20 microM was without effect. Correlative video and immunofluorescence microscopy of small fragments of wall-less mutant cells revealed a clear match between microtubule distribution and the tracks of moving organelles. We conclude that organelle movement in the filamentous fungus Neurospora crassa is a microtubule-dependent process.
Collapse
Affiliation(s)
- G Steinberg
- Institute for Cell Biology, Ludwig-Maximilians-University Munich, Germany
| | | |
Collapse
|