1
|
Jin Y, Yang M, Zhao W, Liu M, Fang W, Wang Y, Gao G, Wang Y, Fu Q. Scaffold-based tissue engineering strategies for urethral repair and reconstruction. Biofabrication 2024; 17:012003. [PMID: 39433068 DOI: 10.1088/1758-5090/ad8965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Urethral strictures are common in urology; however, the reconstruction of long urethral strictures remains challenging. There are still unavoidable limitations in the clinical application of grafts for urethral injuries, which has facilitated the advancement of urethral tissue engineering. Tissue-engineered urethral scaffolds that combine cells or bioactive factors with a biomaterial to mimic the native microenvironment of the urethra, offer a promising approach to urethral reconstruction. Despite the recent rapid development of tissue engineering materials and techniques, a consensus on the optimal strategy for urethral repair and reconstruction is still lacking. This review aims to collect the achievements of urethral tissue engineering in recent years and to categorize and summarize them to shed new light on their design. Finally, we visualize several important future directions for urethral repair and reconstruction.
Collapse
Affiliation(s)
- Yangwang Jin
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Ming Yang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States of America
| | - Meng Liu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Wenzhuo Fang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Yuhui Wang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Guo Gao
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ying Wang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Qiang Fu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| |
Collapse
|
2
|
Rashidbenam Z, Jasman MH, Tan GH, Goh EH, Fam XI, Ho CCK, Zainuddin ZM, Rajan R, Rani RA, Nor FM, Shuhaili MA, Kosai NR, Imran FH, Ng MH. Fabrication of Adipose-Derived Stem Cell-Based Self-Assembled Scaffold under Hypoxia and Mechanical Stimulation for Urethral Tissue Engineering. Int J Mol Sci 2021; 22:ijms22073350. [PMID: 33805910 PMCID: PMC8036589 DOI: 10.3390/ijms22073350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Long urethral strictures are often treated with autologous genital skin and buccal mucosa grafts; however, risk of hair ingrowth and donor site morbidity, restrict their application. To overcome this, we introduced a tissue-engineered human urethra comprising adipose-derived stem cell (ASC)-based self-assembled scaffold, human urothelial cells (UCs) and smooth muscle cells (SMCs). ASCs were cultured with ascorbic acid to stimulate extracellular matrix (ECM) production. The scaffold (ECM) was stained with collagen type-I antibody and the thickness was measured under a confocal microscope. Results showed that the thickest scaffold (28.06 ± 0.59 μm) was achieved with 3 × 104 cells/cm2 seeding density, 100 μg/mL ascorbic acid concentration under hypoxic and dynamic culture condition. The biocompatibility assessment showed that UCs and SMCs seeded on the scaffold could proliferate and maintain the expression of their markers (CK7, CK20, UPIa, and UPII) and (α-SMA, MHC and Smootheline), respectively, after 14 days of in vitro culture. ECM gene expression analysis showed that the ASC and dermal fibroblast-based scaffolds (control) were comparable. The ASC-based scaffold can be handled and removed from the plate. This suggests that multiple layers of scaffold can be stacked to form the urothelium (seeded with UCs), submucosal layer (ASCs only), and smooth muscle layer (seeded with SMCs) and has the potential to be developed into a fully functional human urethra for urethral reconstructive surgeries.
Collapse
Affiliation(s)
- Zahra Rashidbenam
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia Medical Centre, 12th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Mohd Hafidzul Jasman
- Clinical Skills Learning and Simulation Unit, Department of Medical Education, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Guan Hee Tan
- Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (G.H.T.); (E.H.G.); (X.I.F.); (Z.M.Z.)
| | - Eng Hong Goh
- Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (G.H.T.); (E.H.G.); (X.I.F.); (Z.M.Z.)
| | - Xeng Inn Fam
- Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (G.H.T.); (E.H.G.); (X.I.F.); (Z.M.Z.)
| | - Christopher Chee Kong Ho
- School of Medicine, Taylor’s University, No. 1 Jalan Taylor’s, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia;
| | - Zulkifli Md Zainuddin
- Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (G.H.T.); (E.H.G.); (X.I.F.); (Z.M.Z.)
| | - Reynu Rajan
- Minimally Invasive Upper Gastrointestinal and Bariatric Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (R.R.); (M.A.S.); (N.R.K.)
| | - Rizal Abdul Rani
- Arthoplasty Unit, Department of Orthopaedics and Traumatology Surgery, Universiti Kebangsaan Malaysia Medical Centre, 9th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Fatimah Mohd Nor
- Plastic and Reconstructive Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, Clinical Block, 8th Floor, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (F.M.N.); (F.H.I.)
| | - Mohamad Aznan Shuhaili
- Minimally Invasive Upper Gastrointestinal and Bariatric Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (R.R.); (M.A.S.); (N.R.K.)
| | - Nik Ritza Kosai
- Minimally Invasive Upper Gastrointestinal and Bariatric Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (R.R.); (M.A.S.); (N.R.K.)
| | - Farrah Hani Imran
- Plastic and Reconstructive Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, Clinical Block, 8th Floor, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (F.M.N.); (F.H.I.)
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia Medical Centre, 12th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
- Correspondence: ; Tel.: +6012-313-9179
| |
Collapse
|
3
|
Wang B, Lv X, Li Z, Zhang M, Yao J, Sheng N, Lu M, Wang H, Chen S. Urethra-inspired biomimetic scaffold: A therapeutic strategy to promote angiogenesis for urethral regeneration in a rabbit model. Acta Biomater 2020; 102:247-258. [PMID: 31734410 DOI: 10.1016/j.actbio.2019.11.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022]
Abstract
Limited angiogenesis and epithelialization make urethral regeneration using conventional tissue-engineered grafts a great challenge. Consequently, inspired from the native urethra, bacterial cellulose (BC) and bladder acellular matrix (BAM) were combined to design a three dimensional (3D) biomimetic scaffold. The developed BC/BAM scaffold was engineered for accelerating urethral regeneration by enhancing angiogenesis and epithelialization. The BC/BAM scaffold reveals the closest mimic of native urethra in terms of the 3D porous nanofibrous structure and component including collagen, glycosaminoglycans, and intrinsic vascular endothelial growth factor (VEGF). In vitro studies showed that the bioinspired BC/BAM scaffold promoted in vitro angiogenesis by facilitating human umbilical vein endothelial cells (HUVECs) growth, expression of endothelial function related proteins and capillary-like tube formation. Effect of the BC/BAM scaffold on angiogenesis and epithelialization was studied by its implantation in a rabbit urethral defect model for 1 and 3 months. Results demonstrated that the improved blood vessels formation in the urethra-inspired BC/BAM scaffold significantly promoted epithelialization and accelerated urethral regeneration. The urethra-inspired BC/BAM scaffold provides us a new design approach to construct grafts for urethral regeneration. STATEMENT OF SIGNIFICANCE: Findings in urethral regeneration demonstrate that an ideal tissue-engineered urethra should have adequate angiogenesis to support epithelialization for urethral regeneration in vivo. In this study, inspired from the native urethra, a bioinspired bacterial cellulose/bladder acellular matrix (BC/BAM) scaffold was developed to promote angiogenesis and epithelialization. The designed scaffold showed the closest physical structure and component to natural urethra, which is beneficial to angiogenesis and regeneration of urethral epithelium. This is the first time to utilize BC and dissolved BAM to develop biomimetic scaffold in urethral tissue engineering. Our biomimetic strategy on urethra graft design provided enhanced angiogenesis and epithelialization to achieve an accelerated and successful rabbit urethral repair. We believe that our urethra-inspired biomimetic scaffold would provide new insights into the design of urethral tissue engineering grafts.
Collapse
|
4
|
Pederzoli F, Joice G, Salonia A, Bivalacqua TJ, Sopko NA. Regenerative and engineered options for urethroplasty. Nat Rev Urol 2019; 16:453-464. [PMID: 31171866 DOI: 10.1038/s41585-019-0198-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2019] [Indexed: 02/07/2023]
Abstract
Surgical correction of urethral strictures by substitution urethroplasty - the use of grafts or flaps to correct the urethral narrowing - remains one of the most challenging procedures in urology and is frequently associated with complications, restenosis and poor quality of life for the affected individual. Tissue engineering using different cell types and tissue scaffolds offers a promising alternative for tissue repair and replacement. The past 30 years of tissue engineering has resulted in the development of several therapies that are now in use in the clinic, especially in treating cutaneous, bone and cartilage defects. Advances in tissue engineering for urethral replacement have resulted in several clinical applications that have shown promise but have not yet become the standard of care.
Collapse
Affiliation(s)
- Filippo Pederzoli
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Gregory Joice
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Trinity J Bivalacqua
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Nikolai A Sopko
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| |
Collapse
|
5
|
Rashidbenam Z, Jasman MH, Hafez P, Tan GH, Goh EH, Fam XI, Ho CCK, Zainuddin ZM, Rajan R, Nor FM, Shuhaili MA, Kosai NR, Imran FH, Ng MH. Overview of Urethral Reconstruction by Tissue Engineering: Current Strategies, Clinical Status and Future Direction. Tissue Eng Regen Med 2019; 16:365-384. [PMID: 31413941 DOI: 10.1007/s13770-019-00193-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/03/2019] [Accepted: 01/18/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Urinary tract is subjected to a variety of disorders such as urethral stricture, which often develops as a result of scarring process. Urethral stricture can be treated by urethral dilation and urethrotomy; but in cases of long urethral strictures, substitution urethroplasty with genital skin and buccal mucosa grafts is the only option. However a number of complications such as infection as a result of hair growth in neo-urethra, and stone formation restrict the application of those grafts. Therefore, tissue engineering techniques recently emerged as an alternative approach, aiming to overcome those restrictions. The aim of this review is to provide a comprehensive coverage on the strategies employed and the translational status of urethral tissue engineering over the past years and to propose a combinatory strategy for the future of urethral tissue engineering. METHODs Data collection was based on the key articles published in English language in years between 2006 and 2018 using the searching terms of urethral stricture and tissue engineering on PubMed database. RESULTS Differentiation of mesenchymal stem cells into urothelial and smooth muscle cells to be used for urologic application does not offer any advantage over autologous urothelial and smooth muscle cells. Among studied scaffolds, synthetic scaffolds with proper porosity and mechanical strength is the best option to be used for urethral tissue engineering. CONCLUSION Hypoxia-preconditioned mesenchymal stem cells in combination with autologous cells seeded on a pre-vascularized synthetic and biodegradable scaffold can be said to be the best combinatory strategy in engineering of human urethra.
Collapse
Affiliation(s)
- Zahra Rashidbenam
- 1Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, 12th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Mohd Hafidzul Jasman
- 2Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Pezhman Hafez
- 3Faculty of Medicine and Health Science, UCSI University, No. 1 Jalan Puncak Menara Gading, Taman Connaught, 56000 Kuala Lumpur, Malaysia
| | - Guan Hee Tan
- 2Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Eng Hong Goh
- 2Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Xeng Inn Fam
- 2Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Christopher Chee Kong Ho
- 4School of Medicine, Taylor's University, No. 1 Jalan Taylor's, 47500 Subang Jaya, Selangor Darul Ehsan Malaysia
| | - Zulkifli Md Zainuddin
- 2Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Reynu Rajan
- 5Minimally Invasive, Upper Gastrointestinal and Bariatric Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Fatimah Mohd Nor
- 6Plastic and Reconstructive Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Mohamad Aznan Shuhaili
- 5Minimally Invasive, Upper Gastrointestinal and Bariatric Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Nik Ritza Kosai
- 5Minimally Invasive, Upper Gastrointestinal and Bariatric Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Farrah Hani Imran
- 6Plastic and Reconstructive Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- 1Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, 12th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Abbas TO, Yalcin HC, Pennisi CP. From Acellular Matrices to Smart Polymers: Degradable Scaffolds that are Transforming the Shape of Urethral Tissue Engineering. Int J Mol Sci 2019; 20:E1763. [PMID: 30974769 PMCID: PMC6479944 DOI: 10.3390/ijms20071763] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/24/2022] Open
Abstract
Several congenital and acquired conditions may result in severe narrowing of the urethra in men, which represent an ongoing surgical challenge and a significant burden on both health and quality of life. In the field of urethral reconstruction, tissue engineering has emerged as a promising alternative to overcome some of the limitations associated with autologous tissue grafts. In this direction, preclinical as well as clinical studies, have shown that degradable scaffolds are able to restore the normal urethral architecture, supporting neo-vascularization and stratification of the tissue. While a wide variety of degradable biomaterials are under scrutiny, such as decellularized matrices, natural, and synthetic polymers, the search for scaffold materials that could fulfill the clinical performance requirements continues. In this article, we discuss the design requirements of the scaffold that appear to be crucial to better resemble the structural, physical, and biological properties of the native urethra and are expected to support an adequate recovery of the urethral function. In this context, we review the biological performance of the degradable polymers currently applied for urethral reconstruction and outline the perspectives on novel functional polymers, which could find application in the design of customized urethral constructs.
Collapse
Affiliation(s)
- Tariq O Abbas
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
- Pediatric Surgery Department, Hamad General Hospital, 3050 Doha, Qatar.
- College of Medicine, Qatar University, 2713 Doha, Qatar.
- Surgery Department, Weill Cornell Medicine⁻Qatar, 24144 Doha, Qatar.
| | | | - Cristian P Pennisi
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| |
Collapse
|
7
|
Kriete AS, Ginzburg N, Shah N, Huneke RB, Reimold E, Prudnikova K, Montgomery O, Hou JS, Phillips ER, Marcolongo MS. In vivo
molecular engineering of the urethra for treatment of stress incontinence using novel biomimetic proteoglycans. J Biomed Mater Res B Appl Biomater 2019; 107:2409-2418. [DOI: 10.1002/jbm.b.34334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/26/2018] [Accepted: 01/13/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Alicia S. Kriete
- Materials Science and EngineeringDrexel University Philadelphia Pennsylvania 19104
| | - Natasha Ginzburg
- College of MedicineDrexel University Philadelphia Pennsylvania 19129
| | - Nima Shah
- College of MedicineDrexel University Philadelphia Pennsylvania 19129
| | - Richard B. Huneke
- College of MedicineDrexel University Philadelphia Pennsylvania 19129
| | - Emily Reimold
- College of MedicineDrexel University Philadelphia Pennsylvania 19129
| | | | - Owen Montgomery
- College of MedicineDrexel University Philadelphia Pennsylvania 19129
| | - J. Steve Hou
- College of MedicineDrexel University Philadelphia Pennsylvania 19129
| | - Evan R. Phillips
- Materials Science and EngineeringDrexel University Philadelphia Pennsylvania 19104
| | | |
Collapse
|
8
|
Medeiros JL, Costa WS, Felix-Patricio B, Sampaio FJB, Cardoso LEM. Protective effects of nutritional supplementation with arginine and glutamine on the penis of rats submitted to pelvic radiation. Andrology 2014; 2:943-50. [PMID: 25271133 DOI: 10.1111/andr.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 08/02/2013] [Accepted: 08/26/2013] [Indexed: 12/14/2022]
Abstract
Radiotherapy is widely used to treat pelvic malignancies, but normal tissues near the target tumour are often affected. Our aims were thus to determine whether the structural organization of the rat penis is altered by radiation, and whether supplementation with L-arginine (ARG) or L-glutamine (GLN) would have protective effects against these alterations. Groups of rats were treated with: no intervention (CONTR); pelvic radiation, followed by sacrifice 7 (RAD7) or 15 (RAD15) days later; and pelvic radiation, daily supplementation with ARG or GLN, followed by sacrifice 7 (RAD7+ARG, RAD7+GLN) or 15 (RAD15+ARG, RAD15+GLN) days after radiation. Structural components in the corpus cavernosum (CC), tunica albuginea of the corpus spongiosum (TACS) and urethral epithelium (UE) were analysed using stereological and immunohistochemical methods. The results showed that in the CC, connective tissue was increased by 18% in RAD15 (p < 0.04), but this change was partially prevented in RAD15+GLN (p < 0.05) and RAD15+ARG (p < 0.04). The fibrous matrix of the CC trabeculae stained evenly for collagen type I. In RAD15, the intensity of the labelling was increased, whereas in RAD15+GLN and RAD15+ARG the staining was similar to that of CONTR. No staining changes were seen in the groups that were sacrificed 7 days after radiation. Cavernosal elastic fibre content in RAD15 was increased by 61% (p < 0.004), and this was prevented in RAD15+ARG (p < 0.004) but not in RAD15+GLN. In TACS, the amino acids protected (p < 0.02) against the radiation-induced 92% increase in elastic fibre content, but only in RAD15. Cell density in the UE, as well as UE thickness, were reduced by 30% in RAD15 (p < 0.004), and there were protective effects of both amino acids. In conclusion, radiation-induced alterations in penile structures tend to be more pronounced 15 days after radiation session. Both ARG and GLN have protective effects against these changes, with the former being slightly more effective.
Collapse
Affiliation(s)
- J L Medeiros
- Urogenital Research Unit, State University of Rio de Janeiro, UERJ, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
9
|
da Silva EA, de Marins RL, Rondon A, Damião R. Age-related structural changes of the urethral plate in hypospadias. J Pediatr Urol 2013; 9:1155-60. [PMID: 23706383 DOI: 10.1016/j.jpurol.2013.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 04/19/2013] [Indexed: 12/31/2022]
Abstract
PURPOSE To describe age-related changes in the extracellular matrix (ECM) of the human urethral plate in patients operated on for hypospadias, specifically describing histological features and determining the differences in the major components of the ECM, and thus providing an evaluation of the quality and wound healing potential of the urethral tissue. PATIENTS AND METHODS Urethral plate samples were obtained from 16 patients who underwent hypospadias repair (6 months-53 years of age), not previously submitted to any surgery. As a control group, male urethras were obtained from five fetuses. ECM structural characterization was performed by Hematoxylin and Eosin, Masson's trichrome, Weigert's resorcin-fuchsin, and Sirius red. The concentration of total collagen was determined by a hydroxyproline assay. RESULTS Urethral plates were lined with squamous epithelium. Most urethral plate samples showed well-vascularized connective tissue and typical vascular sinusoids surrounded by an ECM with smooth muscle cells, collagen, elastic fibers and fibroblasts. ECM of the older urethral plates was characterized by abundant collagen content (types I and III), scarce elastic fibers, low cellular density, and no vascular sinusoids. Total collagen concentration increased significantly with aging (r = 0.798; p = 0.006). CONCLUSIONS Urethral plates of hypospadias present important age-related structural changes. These changes may play a role in urethral healing following hypospadias repair, although this subject deserves more investigation.
Collapse
Affiliation(s)
- Eloísio Alexsandro da Silva
- Laboratory for Translational Research in Urology - UroLab, Service of Urology, Pedro Ernesto Memorial Hospital, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | |
Collapse
|
10
|
da Silva FG, Filho AM, Damião R, da Silva EA. Human acellular matrix graft of tunica albuginea for penile reconstruction. J Sex Med 2011; 8:3196-203. [PMID: 21819544 DOI: 10.1111/j.1743-6109.2011.02413.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Penile curvature is one of the most common male conditions, affecting nearly 10% of men, and can impair sexual intercourse. Tunica albuginea (hTA) plays a key role in penile curvature, and reconstructive procedures may be necessary for its substitution. Although several grafts have been proposed for hTA repair, the ideal graft is not yet available. AIM The aim of this article is to evaluate a new human tunica albuginea acellular matrix (hTAAM) as potential graft for penile reconstructive procedures. METHODS Twelve penises were obtained during sex reassignment surgeries from male-to-female transsexual patients. After dissection, hTAs were assigned into two groups according to the decellularization methods: polyethylene glycol (PEG) 1000 method following ultraviolet-C radiation, and Triton X-100 modified method. MAIN OUTCOME MEASURES Structural analyses were assessed by hematoxilin and eosin, Masson's trichrome, Weigert's, and picrosirius-polarization staining methods. Total protein, total glycosaminoglycan (GAG), and nucleic acid (DNA and RNA) concentrations were assessed by specific biochemical analyses. Uniaxial strength tests were performed to evaluate biomechanical properties. RESULTS All hTAAMs presented no nuclear or cellular remnants. Total protein concentration was significantly higher in PEG 1000 hTAAM. Despite GAG concentration decreased significantly in hTAAM, Triton X-100 hTAAM retained the highest GAG concentration (1.0 ± 0.42 µg HexUr/mg dry tissue, P > 0.05). All decellularization methods were efficacious to remove nucleic acids. The maximal break point presented no difference between hTA and hTAAM groups (P > 0.05). CONCLUSIONS PEG 1000 and Triton X-100 decellularization methods provide equally successful hTAAMs, preserving original structural and biochemical properties.
Collapse
Affiliation(s)
- Fernando Gomes da Silva
- Service of Urology, Pedro Ernesto Memorial Hospital, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | | | | | | |
Collapse
|
11
|
Ponglowhapan S, Church DB, Khalid M. Effect of the gonadal status and the gender on glycosaminoglycans profile in the lower urinary tract of dogs. Theriogenology 2011; 76:1284-92. [PMID: 21777968 DOI: 10.1016/j.theriogenology.2011.05.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/12/2011] [Accepted: 05/13/2011] [Indexed: 10/17/2022]
Abstract
Glycosaminoglycans (GAGs) form a functional component of connective tissues that affect the structural and functional integrity of the lower urinary tract (LUT). The specific GAGs of physiological relevance are both nonsulfated (hyaluronan) and sulfated GAGs (chondroitin sulphate [CS], dermatan sulphate [DS], keratan sulphate [KS], and heparan sulphate [HS]). As GAG composition in the LUT is hormonally regulated, we postulated that gonadectomy-induced endocrine imbalance alters the profile of GAGs in the canine LUT. Four regions of the LUT (body and neck of the bladder as well as the proximal and distal urethra) from 20 clinically healthy dogs (5 intact males, 5 intact anoestrus females, 4 castrated males, and 6 spayed females) were collected, wax-embedded and sectioned. Alcian blue staining at critical electrolyte concentrations was performed on the sections to determine total GAGs, hyaluronan, total sulfated GAGs, combined components of CS and DS, as well as KS and HS. The amount of staining was evaluated in 3 tissue layers, i.e., epithelium, subepithelial stroma and muscle within a region. Overall, hyaluronan (67.1%) was the predominant GAG in the LUT. Among sulfated GAGs, a combined component of KS and HS was found to be 61.8% and 38.2% for CS and DS. Gonadal status significantly affected GAG profiles in the LUT (P < 0.01). All GAG components were lower (P < 0.05) in body of the bladder of gonadectomized dogs. Total sulfated GAGs and a combined component of KS and HS were lower (P < 0.05) in all 4 regions of gonadectomized dogs. Except for a combined component of CS and DS, decreases in all GAGs were found more consistently in the muscle compared to other tissue layers. Differences between genders became obvious only when considered along with the effect of gonadal status. In gonadectomized dogs, changes in GAG components in the LUT were more consistent in females compared to males; this may partly explain different levels of risk in the development of urinary incontinence between genders. Quantitative differences in GAG profiles found between intact and gonadectomized dogs indicate a potential role of gonadectomy-induced endocrine imbalance in modifying GAG composition in the canine LUT. Profound alteration in the pattern of GAGs in gonadectomized dogs may compromise structural and functional integrity of the LUT and is possibly involved in the underlying mechanism of urinary incontinence post neutering.
Collapse
Affiliation(s)
- S Ponglowhapan
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | | |
Collapse
|
12
|
Krane LS, Gorbachinsky I, Sirintrapun J, Yoo JJ, Atala A, Hodges SJ. Halofuginone-coated urethral catheters prevent periurethral spongiofibrosis in a rat model of urethral injury. J Endourol 2011; 25:107-12. [PMID: 21204688 DOI: 10.1089/end.2010.0514] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Urethral strictures are from periurethral spongiofibrosis that develops as a result of urethral trauma, disease, or iatrogenic injury. The spongy tissue that surrounds the strictured urethra has an altered ratio of collagen, with increased collagen type I relative to type III. We evaluated the ability of a urethral catheter that was coated with halofuginone (HF), a potent type I collagen inhibitor, to prevent spongiofibrosis formation in a rat model. MATERIALS AND METHODS HF was coated on silicone catheters and release kinetics were measured. Success of impregnation was evaluated with scanning electron microscopy, serial weights, and drug elution data. Urethral strictures were induced in rats using electrocautery. Half the animals had placement of an HF-coated catheter while the others had uncoated silicone controls. Animals were sacrificed at predetermined time points, and urethral tissue was either processed for staining with Masson trichrome and anti-alpha-1 collagen or digested to determine HF concentration. Serum drug levels were also determined in treated animals. Slides were graded by a pathologist who was blinded to treatment to determine collagen deposition. RESULTS HF was coated successfully on silicone catheters. Local urethral concentration of HF was tenfold higher than serum concentration in treated rats. Animals with HF-coated catheters had no new type I collagen deposition after urethral injury. Control animals had increased periurethral collagen type I deposition, typical of urethral stricture formation. CONCLUSIONS HF can be coated successfully on silicone catheters. HF successfully inhibits periurethral type I collagen deposition after urethral injury. This may become an important therapy to prevent urethral stricture formation or recurrence after endoscopic therapy.
Collapse
Affiliation(s)
- Louis S Krane
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | |
Collapse
|
13
|
Da Silva EA, Schiavini JL, Santos JBP, Damião R. Histological Characterization of the Urethral Edges in Patients Who Underwent Bulbar Anastomotic Urethroplasty. J Urol 2008; 180:2042-6. [DOI: 10.1016/j.juro.2008.07.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Indexed: 11/25/2022]
Affiliation(s)
- Eloísio Alexsandro Da Silva
- Laboratory for Translational Research in Urology, Service of Urology, Pedro Ernesto Memorial Hospital, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - João Luis Schiavini
- Laboratory for Translational Research in Urology, Service of Urology, Pedro Ernesto Memorial Hospital, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - João Bosco Pinheiro Santos
- Laboratory for Translational Research in Urology, Service of Urology, Pedro Ernesto Memorial Hospital, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ronaldo Damião
- Laboratory for Translational Research in Urology, Service of Urology, Pedro Ernesto Memorial Hospital, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Kulkarni S, Barbagli G, Kirpekar D, Mirri F, Lazzeri M. Lichen sclerosus of the male genitalia and urethra: surgical options and results in a multicenter international experience with 215 patients. Eur Urol 2008; 55:945-54. [PMID: 18691809 DOI: 10.1016/j.eururo.2008.07.046] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Accepted: 07/22/2008] [Indexed: 12/29/2022]
Abstract
BACKGROUND Surgical options in male patients with genital lichen sclerosus (LS) involving the anterior urethra still represent a challenging issue. OBJECTIVE To review the outcome of surgical treatment in patients with genital and urethral LS. DESIGN, SETTING, AND PARTICIPANTS Multicenter, international, retrospective, observational descriptive study performed in two specialized centers. Two hundred fifteen male patients underwent surgery for histologically proven genital LS involving the foreskin and/or the anterior urethra. INTERVENTION Circumcision (34 cases), meatotomy (15 cases), circumcision and meatotomy (8 cases), one-stage penile oral mucosal graft urethroplasty (8 cases), two-stage penile oral mucosal graft urethroplasty (15 cases), one-stage bulbar oral mucosal graft urethroplasty (88 cases), and definitive perineal urethrostomy (47 cases). MEASUREMENTS Primary outcome was considered a failure when any postoperative instrumentation was needed, including dilation, or when recurrence was diagnosed. RESULTS AND LIMITATIONS The average follow-up was 56 mo (range: 12-170 mo). Circumcision showed 100% success rate with no recurrence of the disease; meatotomy, 80% success rate; circumcision and meatotomy, 100% success rate; one-stage penile oral mucosal graft urethroplasty, 100% success rate; two-stage penile oral mucosal graft urethroplasty, 73% success rate; one-stage bulbar oral mucosal graft urethroplasty, 91% success rate; and definitive perineal urethrostomy, 72% success rate. Limitations include short follow-up for recording neoplastic degeneration and no instrument to investigate quality of life. CONCLUSIONS Patients with LS disease restricted to the foreskin and/or external urinary meatus showed a high surgery success rate. In patients with penile urethral strictures or panurethral strictures, the use of one-stage oral graft urethroplasty showed greater success than the staged procedures.
Collapse
|
15
|
Bastos AL, Silva EA, Silva Costa W, Sampaio FJB. The concentration of elastic fibres in the male urethra during human fetal development. BJU Int 2004; 94:620-3. [PMID: 15329125 DOI: 10.1111/j.1464-410x.2004.05012.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To describe the distribution of elastic fibres in the developing male urethra and to provide stereological data of the concentration of elastic fibres in the human urethra. MATERIALS AND METHODS Urethras were obtained from 10 fresh normal human fetuses at 15-36 weeks of gestation. A place-matched spongy urethra of a 27-year-old normal adult man was also analysed. Samples were fixed in Bouin's solution, embedded in paraffin and histologically processed. The elastic system fibres were evaluated by light microscopy using Weigert's resorcin-fuchsin technique after oxidation. Morphometric values were assessed by the point-counting method. The volumetric density (Vv) of elastic fibres was correlated with fetal age. RESULTS At 15 weeks the elastic fibres were sparse and homogeneously distributed. The size and thickness of elastic fibres increased with age, mainly in the third trimester of gestation. Elastic fibres formed a randomly orientated network in the trabeculae of the corpus spongiosum. The mean (sem) Vv of elastic fibres in the spongy urethra was 5.2 (0.4)% in the fetus at 15 weeks and 14.8 (1.0)% at 36 weeks. In the urethra of the place- matched young man the Vv was 19.0 (1.3)%. The concentration of elastic fibres in the spongy urethra increased significantly with age. CONCLUSION The high concentration of elastic fibres in the spongy urethra may partly explain its high extensibility. The progressive increase in elastic fibres during development implies functional adaptation of the fetal male urethra.
Collapse
Affiliation(s)
- Ana L Bastos
- Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
16
|
Cavalcanti AG, Yucel S, Deng DY, McAninch JW, Baskin LS. The Distribution of Neuronal and Inducible Nitric Oxide Synthase in Urethral Stricture Formation. J Urol 2004; 171:1943-7. [PMID: 15076317 DOI: 10.1097/01.ju.0000121261.03616.63] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE The distribution of neuronal (n) and inducible (i) nitric oxide synthase (NOS) may have a role in the maintenance of normal urethral spongiosum and during the development of spongiofibrosis in urethral stricture disease. MATERIALS AND METHODS Eight normal and 33 strictured human bulbar urethras were studied by histological and immunohistochemical techniques for the neuronal markers S-100, nNOS and iNOS. The smooth muscle-to-collagen ratio was calculated by morphometric analysis of Masson's trichrome sections. Immunohistochemical staining patterns of the neuronal markers in normal urethral tissue was compared to that in urethral stricture tissue with spongiofibrosis. RESULTS The smooth muscle-to-collagen ratio was significantly lower in the strictured urethra compared to that in the control group (p = 0.001). In the strictured bulbar urethra nNOS immunoreactivity was decreased compared to that in normal urethral tissue. The severity of spongiofibrosis corresponded to the loss of nNOS immunoreactivity. iNOS immunoreactivity was found in strictured urethral epithelium and spongiosal tissue, whereas the control group was nonimmunoreactive to iNOS. CONCLUSIONS Urethral stricture formation is a fibrotic process associated with significant changes in NOS metabolism. Abnormal collagen synthesis following urethral trauma may be stimulated by inappropriate iNOS activity. A functional nerve supply to the urethral spongiosum seems to be crucial in the maintenance of the unique ultrastructure of the urethral spongiosum.
Collapse
Affiliation(s)
- Andre G Cavalcanti
- Department of Urology and Pediatrics, University of California-San Francisco Children's Medical Center, University of California-San Francisco, 94143, USA
| | | | | | | | | |
Collapse
|
17
|
Da-silva EA, Sampaio FJ, Dornas MC, DamiÃO R, Cardoso LE. Extracellular Matrix Changes in Urethral Stricture Disease. J Urol 2002. [DOI: 10.1016/s0022-5347(05)64747-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- E. Alexsandro Da-silva
- From the Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francisco J.B. Sampaio
- From the Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M. Cristina Dornas
- From the Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronaldo DamiÃO
- From the Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz E.M. Cardoso
- From the Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Extracellular Matrix Changes in Urethral Stricture Disease. J Urol 2002. [DOI: 10.1097/00005392-200208000-00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|